Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-16T12:02:45.786Z Has data issue: false hasContentIssue false

Chapter 17 - Screening for High-Risk Pregnancy

from Section 3 - Fetal Medicine

Published online by Cambridge University Press:  20 November 2021

Tahir Mahmood
Affiliation:
Victoria Hospital, Kirkcaldy
Charles Savona Ventura
Affiliation:
University of Malta, Malta
Ioannis Messinis
Affiliation:
University of Thessaly, Greece
Sambit Mukhopadhyay
Affiliation:
Norfolk & Norwich University Hospital, UK
Get access

Summary

There are several medical conditions, both maternal and fetal, which can influence the course of pregnancy or even the developing fetus. In the era of modern technology, high-tech ultrasound machines, sophisticated monitoring methods for both mother and her unborn child, it is not enough to deliver a live neonate. What is highly expected by all future parents is a delivery of a healthy baby with a very good prognosis. Therefore, it has to be acknowledged and appreciated that the role of an obstetrician or maternal-fetal specialist cannot be underestimated. General population screening of all pregnant women for medical conditions is essential to achieve this target; otherwise, it is not possible to select a group of pregnant women who require more detailed and watchful monitoring, special care or even targeted treatment. However, not only identification of pregnancies at increased risk for maternal or fetal morbidity and mortality is involved, but also health promotion, education and support for parents. Nowadays, it is possible to predict many severe medical conditions as early as in the first trimester of pregnancy. The awareness of a high-risk pregnancy may improve pregnancy outcomes or even be lifesaving for a mother, her fetus or even both.

Type
Chapter
Information
The EBCOG Postgraduate Textbook of Obstetrics & Gynaecology
Obstetrics & Maternal-Fetal Medicine
, pp. 139 - 146
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sherer, DM. Adverse perinatal outcome of twin pregnancies according to chorionicity: review of the literature. Am J Perinatol. 2001;18(1):2337.Google Scholar
Dube, J, Dodds, L, Armson, BA. Does chorionicity or zygosity predict adverse perinatal outcomes in twins? Am J Obstet Gynecol. 2002 Mar;186(3):579–83.Google Scholar
Adegbite, AL, Castille, S, Ward, S, Bajoria, R. Neuromorbidity in preterm twins in relation to chorionicity and discordant birth weight. Am J Obstet Gynecol. 2004 Jan;190(1):156–63.CrossRefGoogle ScholarPubMed
Dias, T, Arcangeli, T, Bhide, A, et al. First-trimester ultrasound determination of chorionicity in twin pregnancy. Ultrasound Obstet Gynecol. 2011 Nov;38(5):530–2.Google Scholar
Sebire, NJ, Snijders, RJ, Hughes, K, Sepulveda, W, Nicolaides, KH. The hidden mortality of monochorionic twin pregnancies. Br J Obstet Gynaecol. 1997 Oct;104(10):1203–7.Google Scholar
Napolitano, R, Thilaganathan, B. Late termination of pregnancy and foetal reduction for foetal anomaly. Best Pract Res Clin Obstet Gynaecol. 2010 Aug;24(4):529–37.CrossRefGoogle ScholarPubMed
Denbow, ML, Cox, P, Taylor, M, Hammal, DM, Fisk, NM. Placental angioarchitecture in monochorionic twin pregnancies: relationship to fetal growth, fetofetal transfusion syndrome, and pregnancy outcome. Am J Obstet Gynecol. 2000 Feb;182(2):417–26.Google Scholar
Gratacos, E, Carreras, E, Becker, J, et al. Prevalence of neurological damage in monochorionic twins with selective intrauterine growth restriction and intermittent absent or reversed end-diastolic umbilical artery flow. Ultrasound Obstet Gynecol. 2004 Aug;24(2):159–63.Google Scholar
Victoria, A, Mora, G, Arias, F. Perinatal outcome, placental pathology, and severity of discordance in monochorionic and dichorionic twins. Obstet Gynecol. 2001 Feb;97(2):310–5.Google ScholarPubMed
Bejar, R, Vigliocco, G, Gramajo, H, et al. Antenatal origin of neurologic damage in newborn infants. II. Multiple gestations. Am J Obstet Gynecol. 1990 May;162(5):1230–6.Google Scholar
Wright, D, Kagan, KO, Molina, FS, Gazzoni, A, Nicolaides, KH. A mixture model of nuchal translucency thickness in screening for chromosomal defects. Ultrasound Obstet Gynecol. 2008 Apr;31(4):376–83.CrossRefGoogle ScholarPubMed
Kagan, KO, Wright, D, Valencia, C, Maiz, N, Nicolaides, KH. Screening for trisomies 21, 18 and 13 by maternal age, fetal nuchal translucency, fetal heart rate, free beta-hCG and pregnancy-associated plasma protein-A. Hum Reprod. 2008 Sep;23(9):1968–75.Google Scholar
Agathokleous, M, Chaveeva, P, Poon, LC, Kosinski, P, Nicolaides, KH. Meta-analysis of second-trimester markers for trisomy 21. Ultrasound Obstet Gynecol. 2013 Mar;41(3):247–61.Google Scholar
Wang, E, Batey, A, Struble, C, et al. Gestational age and maternal weight effects on fetal cell-free DNA in maternal plasma. Prenat Diagn. 2013 Jul;33(7):662–6.CrossRefGoogle ScholarPubMed
Mackie, FL, Hemming, K, Allen, S, Morris, RK, Kilby, MD. The accuracy of cell-free fetal DNA-based non-invasive prenatal testing in singleton pregnancies: a systematic review and bivariate meta-analysis. BJOG. 2017 Jan;124(1):3246.CrossRefGoogle ScholarPubMed
Iwarsson, E, Jacobsson, B, Dagerhamn, J, et al. Analysis of cell-free fetal DNA in maternal blood for detection of trisomy 21, 18 and 13 in a general pregnant population and in a high risk population – a systematic review and meta-analysis. Acta Obstet Gynecol Scand. 2017 Jan;96(1):718.CrossRefGoogle Scholar
Chaiworapongsa, T, Chaemsaithong, P, Yeo, L, Romero, R. Pre-eclampsia part 1: current understanding of its pathophysiology. Nat Rev Nephrol. 2014 Aug;10(8):466–80.Google Scholar
Duckitt, K, Harrington, D. Risk factors for pre-eclampsia at antenatal booking: systematic review of controlled studies. BMJ. 2005 Mar 12;330(7491):565.Google Scholar
Roberts, L, Chaemsaithong, P, Sahota, DS, Nicolaides, KH, Poon, LCY. Protocol for measurement of mean arterial pressure at 10–40 weeks’ gestation. Pregnancy Hypertens. 2017 Oct;10:155–60.Google Scholar
Tan, MY, Syngelaki, A, Poon, LC, et al. Screening for pre-eclampsia by maternal factors and biomarkers at 11–13 weeks’ gestation. Ultrasound Obstet Gynecol. 2018 Aug;52(2):186–95.CrossRefGoogle ScholarPubMed
Baschat, AA. First-trimester screening for pre-eclampsia: moving from personalized risk prediction to prevention. Ultrasound Obstet Gynecol. 2015 Feb;45(2):119–29.CrossRefGoogle ScholarPubMed
Khalil, A, Nicolaides, KH. How to record uterine artery Doppler in the first trimester. Ultrasound Obstet Gynecol. 2013 Oct;42(4):478–9.Google Scholar
Tayyar, A, Guerra, L, Wright, A, Wright, D, Nicolaides, KH. Uterine artery pulsatility index in the three trimesters of pregnancy: effects of maternal characteristics and medical history. Ultrasound Obstet Gynecol. 2015 Jun;45(6):689–97.CrossRefGoogle ScholarPubMed
Martin, AM, Bindra, R, Curcio, P, Cicero, S, Nicolaides, KH. Screening for pre-eclampsia and fetal growth restriction by uterine artery Doppler at 11–14 weeks of gestation. Ultrasound Obstet Gynecol. 2001 Dec;18(6):583–6.Google Scholar
Cnossen, JS, Morris, RK, ter Riet, G, et al. Use of uterine artery Doppler ultrasonography to predict pre-eclampsia and intrauterine growth restriction: a systematic review and bivariable meta-analysis. CMAJ. 2008 Mar 11;178(6):701–11.Google Scholar
Sotiriadis, A, Hernandez-Andrade, E, da Silva Costa, F, et al. ISUOG Practice Guidelines: role of ultrasound in screening for and follow-up of pre-eclampsia. Ultrasound Obstet Gynecol. 2019 Jan;53(1):722.Google Scholar
Velauthar, L, Plana, MN, Kalidindi, M, et al. First-trimester uterine artery Doppler and adverse pregnancy outcome: a meta-analysis involving 55,974 women. Ultrasound Obstet Gynecol. 2014 May;43(5):500–7.CrossRefGoogle ScholarPubMed
Poon, LC, Nicolaides, KH. Early prediction of preeclampsia. Obstet Gynecol Int. 2014;2014:297397.Google Scholar
Plasencia, W, Maiz, N, Bonino, S, Kaihura, C, Nicolaides, KH. Uterine artery Doppler at 11 + 0 to 13 + 6 weeks in the prediction of pre-eclampsia. Ultrasound Obstet Gynecol. 2007 Oct;30(5):742–9.CrossRefGoogle Scholar
Resnik, R, Killam, AP, Battaglia, FC, Makowski, EL, Meschia, G. The stimulation of uterine blood flow by various estrogens. Endocrinology. 1974 Apr;94(4):1192–6.CrossRefGoogle ScholarPubMed
Kusanovic, JP, Romero, R, Chaiworapongsa, T, et al. A prospective cohort study of the value of maternal plasma concentrations of angiogenic and anti-angiogenic factors in early pregnancy and midtrimester in the identification of patients destined to develop preeclampsia. J Matern Fetal Neonatal Med. 2009 Nov;22(11):1021–38.CrossRefGoogle ScholarPubMed
Kosinski, P, Bomba-Opon, D, Biskupski Samaha, RB, Wielgos, M. Suitable application of selected biochemical and biophysical markers during the first trimester screening. Neuro Endocrinol Lett. 2014;35(6):440–4.Google Scholar
Ferreira, AE, Mauad Filho, F, Abreu, PS, et al. Reproducibility of first- and second-trimester uterine artery pulsatility index measured by transvaginal and transabdominal ultrasound. Ultrasound Obstet Gynecol. 2015 Nov;46(5):546–52.CrossRefGoogle ScholarPubMed
Onwudiwe, N, Yu, CK, Poon, LC, Spiliopoulos, I, Nicolaides, KH. Prediction of pre-eclampsia by a combination of maternal history, uterine artery Doppler and mean arterial pressure. Ultrasound Obstet Gynecol. 2008 Dec;32(7):877–83.CrossRefGoogle ScholarPubMed
Agrawal, S, Cerdeira, AS, Redman, C, Vatish, M. Meta-analysis and systematic review to assess the role of soluble fms-like tyrosine kinase-1 and placenta growth factor ratio in prediction of preeclampsia: the SaPPPhirE Study. Hypertension. 2018 Feb;71(2):306–16.CrossRefGoogle ScholarPubMed
Zeisler, H, Llurba, E, Chantraine, F, et al. Soluble fms-like tyrosine kinase-1-to-placental growth factor ratio and time to delivery in women with suspected preeclampsia. Obstet Gynecol. 2016 Aug;128(2):261–9.Google Scholar
Tayyar, A, Krithinakis, K, Wright, A, Wright, D, Nicolaides, KH. Mean arterial pressure at 12, 22, 32 and 36 weeks’ gestation in screening for pre-eclampsia. Ultrasound Obstet Gynecol. 2016 May;47(5):573–9.CrossRefGoogle ScholarPubMed
Tsiakkas, A, Mendez, O, Wright, A, Wright, D, Nicolaides, KH. Maternal serum soluble fms-like tyrosine kinase-1 at 12, 22, 32 and 36 weeks’ gestation in screening for pre-eclampsia. Ultrasound Obstet Gynecol. 2016 Apr;47(4):478–83.Google ScholarPubMed
Bredaki, FE, Matalliotakis, M, Wright, A, Wright, D, Nicolaides, KH. Maternal serum alpha-fetoprotein at 12, 22 and 32 weeks’ gestation in screening for pre-eclampsia. Ultrasound Obstet Gynecol. 2016 Apr;47(4):466–71.CrossRefGoogle ScholarPubMed
Spencer, K, Cowans, NJ, Nicolaides, KH. Low levels of maternal serum PAPP-A in the first trimester and the risk of pre-eclampsia. Prenat Diagn. 2008 Jan;28(1):710.Google Scholar
Khalil, A, Maiz, N, Garcia-Mandujano, R, Penco, JM, Nicolaides, KH. Longitudinal changes in maternal serum placental growth factor and soluble fms-like tyrosine kinase-1 in women at increased risk of pre-eclampsia. Ultrasound Obstet Gynecol. 2016 Mar;47(3):324–31.CrossRefGoogle ScholarPubMed
O’Gorman, N, Tampakoudis, G, Wright, A, Wright, D, Nicolaides, KH. Uterine artery pulsatility index at 12, 22, 32 and 36 weeks’ gestation in screening for pre-eclampsia. Ultrasound Obstet Gynecol. 2016 May;47(5):565–72.Google Scholar
Roberge, S, Bujold, E, Nicolaides, KH. Aspirin for the prevention of preterm and term preeclampsia: systematic review and metaanalysis. Am J Obstet Gynecol. 2018 Mar;218(3):287–93 e1.Google Scholar
Bujold, E, Roberge, S, Nicolaides, KH. Low-dose aspirin for prevention of adverse outcomes related to abnormal placentation. Prenat Diagn. 2014 Jul;34(7):642–8.CrossRefGoogle ScholarPubMed
Rolnik, DL, Wright, D, Poon, LC, et al. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N Engl J Med. 2017 Aug 17;377(7):613–22.CrossRefGoogle ScholarPubMed
ACOG Committee Opinion No. 743 Summary: low-dose aspirin use during pregnancy. Obstet Gynecol. 2018 Jul;132(1):254–6.Google Scholar
Redman, CW. Hypertension in pregnancy: the NICE guidelines. Heart. 2011 Dec;97(23):1967–9.Google Scholar
Lausman, A, McCarthy, FP, Walker, M, Kingdom, J. Screening, diagnosis, and management of intrauterine growth restriction. J Obstet Gynaecol Can. 2012 Jan;34(1):1728.Google Scholar
Treyvaud, K. Parent and family outcomes following very preterm or very low birth weight birth: a review. Semin Fetal Neonatal Med. 2014 Apr;19(2):131–5.CrossRefGoogle ScholarPubMed
Romero, R, Espinoza, J, Kusanovic, JP, et al. The preterm parturition syndrome. BJOG. 2006 Dec;113 Suppl 3:1742.Google Scholar
Deshpande, SN, van Asselt, AD, Tomini, F, et al. Rapid fetal fibronectin testing to predict preterm birth in women with symptoms of premature labour: a systematic review and cost analysis. Health Technol Assess. 2013 Sep;17(40):1138.Google Scholar
Wing, DA, Haeri, S, Silber, AC, et al. Placental alpha microglobulin-1 compared with fetal fibronectin to predict preterm delivery in symptomatic women. Obstet Gynecol. 2017 Dec;130(6):1183–91.Google Scholar
Ting, HS, Chin, PS, Yeo, GS, Kwek, K. Comparison of bedside test kits for prediction of preterm delivery: phosphorylated insulin-like growth factor binding protein-1 (pIGFBP-1) test and fetal fibronectin test. Ann Acad Med Singapore. 2007 Jun;36(6):399402.Google Scholar
To, MS, Skentou, CA, Royston, P, Yu, CK, Nicolaides, KH. Prediction of patient-specific risk of early preterm delivery using maternal history and sonographic measurement of cervical length: a population-based prospective study. Ultrasound Obstet Gynecol. 2006 Apr;27(4):362–7.Google Scholar
Celik, E, To, M, Gajewska, K, Smith, GC, Nicolaides, KH, Fetal Medicine Foundation Second Trimester Screening G. Cervical length and obstetric history predict spontaneous preterm birth: development and validation of a model to provide individualized risk assessment. Ultrasound Obstet Gynecol. 2008 May;31(5):549–54.Google Scholar
Honest, H, Bachmann, LM, Coomarasamy, A, et al. Accuracy of cervical transvaginal sonography in predicting preterm birth: a systematic review. Ultrasound Obstet Gynecol. 2003 Sep;22(3):305–22.Google Scholar
Greco, E, Lange, A, Ushakov, F, Calvo, JR, Nicolaides, KH. Prediction of spontaneous preterm delivery from endocervical length at 11 to 13 weeks. Prenat Diagn. 2011 Jan;31(1):84–9.CrossRefGoogle ScholarPubMed
Fonseca, EB, Celik, E, Parra, M, Singh, M, Nicolaides, KH, Fetal Medicine Foundation Second Trimester Screening G. Progesterone and the risk of preterm birth among women with a short cervix. N Engl J Med. 2007 Aug 02;357(5):462–9.Google Scholar
Hassan, SS, Romero, R, Vidyadhari, D, et al. Vaginal progesterone reduces the rate of preterm birth in women with a sonographic short cervix: a multicenter, randomized, double-blind, placebo-controlled trial. Ultrasound Obstet Gynecol. 2011 Jul;38(1):1831.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×