Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-11T04:17:20.629Z Has data issue: false hasContentIssue false

15 - Cosmochemical Models for the Formation and Evolution of Solar Systems

Published online by Cambridge University Press:  10 February 2022

Harry McSween, Jr
Affiliation:
University of Tennessee, Knoxville
Gary Huss
Affiliation:
University of Hawaii, Manoa
Get access

Summary

Cosmochemical constraints on models for the formation and early evolution of our solar system and exoplanets

Type
Chapter
Information
Cosmochemistry , pp. 370 - 399
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggestions for Further Reading

Halliday, A. N. (2014) The origin and earliest history of the Earth. In Treatise on Geochemistry, 2nd edition, Vol. 2: Planets, Asteroids, Comets and the Solar System, Davis, A. M., editor, pp. 149211, Elsevier, Oxford. A thoughtful summary of a very large topic.CrossRefGoogle Scholar
Hester, J. J., and Desch, S. J. (2005) Understanding our origins: Star formation in H II region environments. In Chondrites and the Protoplanetary Disk, ASP Conference Series, 341, Krot, A. N., Scott, E. R. D., and Reipurth, A., editors, pp. 107130, Astronomical Society of the Pacific, San Francisco. A clear review of astronomical observations that constrain models for solar system formation.Google Scholar
Taylor, S. R. (1992) Solar System Evolution: A New Perspective. Cambridge University Press, Cambridge, 307 pp. A thorough treatise that covers ideas about the origin and evolution of the terrestrial planets.Google Scholar
Agee, C. B., and Walker, D. (1988) Mass balance and phase density constraints on early differentiation of chondritic mantle. Earth & Planetary Science Letters, 90, 144156.CrossRefGoogle Scholar
Albarède, F. (2009) Late accretion of volatiles to Earth. Nature, 461, 12271233.CrossRefGoogle Scholar
Alexander, C. M. O’D., McKeegan, K. D., and Altweg, K. (2018) Water reservoirs in small planetary bodies: Meteorites, asteroids, and comets. Space Science Reviews, 214 , 36.Google Scholar
Andrews, S. (2018) Focus on DSHAP results. Astrophysical Journal Letters, 869, L41L50 (introduction to a series of 10 papers).Google Scholar
Avice, G., and Marty, B. (2014) The iodine-plutonium-xenon age of the Moon-Earth system revisited. Philosophical Transactions of the Royal Society A, 372, 20130260.CrossRefGoogle ScholarPubMed
Barshay, S. S., and Lewis, J. S. (1976) Chemistry of primitive solar material. Annual Reviews of Astronomy & Astrophysics, 14, 8194.CrossRefGoogle Scholar
Basaltic Volcanism Study Project (1981) Basaltic Volcanism on the Terrestrial Planets. Pergamon Press, New York, 1286 pp.Google Scholar
Batalha, N. M. (2014) Exploring exoplanet populations with NASA’S Kepler mission. Proceedings of the National Academy of Sciences, USA, 111, 647654.Google Scholar
Black, D. C., and Pepin, R. O. (1969) Trapped neon in meteorites, II. Earth & Planetary Science Letters, 6, 395405.Google Scholar
Bogard, D. D. (1995) Impact ages of meteorites: A synthesis. Meteoritics, 30, 244268.Google Scholar
Boss, A. P. (2004) Convective cooling of protoplanetary disks and rapid giant planet formation. Astrophysical Journal, 610, 456463.Google Scholar
Bottke, W. F., Nesvorny, D., Grimm, R. E., et al. (2006) Iron meteorites as remnants of planetesimals formed in the terrestrial planet region. Nature, 439, 821824.CrossRefGoogle ScholarPubMed
Bottke, W. F, and Norman, M. D. (2017) The Late Heavy Bombardment. Annual Reviews of Earth & Planetary Sciences, 45, 619647.CrossRefGoogle Scholar
Brown, S. M., and Elkins-Tanton, L. T. (2009) Compositions of Mercury’s earliest crust from magma ocean models. Earth & Planetary Science Letters, 286, 446455.Google Scholar
Burkhardt, C., Dauphas, N., Hans, U., et al. (2019) Elemental and isotopic variability in solar system materials by mixing and processing of primordial disk reservoirs. Geochimica et Cosmochimica Acta, 261, 145170.Google Scholar
Cameron, A. G. W. (1962) The formation of the sun and planets. Icarus, 1, 1369.Google Scholar
Cameron, A. G. W. (1978) Physics of the primitive solar accretion disk. Moon & Planets, 18, 540.CrossRefGoogle Scholar
Cameron, A. G. W., and Truran, J. W. (1977) The supernova trigger for formation of the solar system. Icarus, 30, 447461.Google Scholar
Cano, E. J., Sharp, Z. D., and Shearer, C. K. (2020) Distinct oxygen isotope compositions of the Earth and Moon. Nature Geoscience, 13, 270274.Google Scholar
Carlson, R. W., Garnero, E., Harrison, T. M., et al. (2014) How did early Earth become our modern world? Annual Reviews of Earth & Planetary Sciences, 42, 151178.CrossRefGoogle Scholar
Chabot, N. L., Draper, D. S., and Agee, C. B. (2005) Conditions of core formation in the Earth: Constraints from nickel and cobalt partitioning. Geochimica et Cosmochimica Acta, 69, 21412151.Google Scholar
Ciesla, F. J. (2007) Outward transport of high-temperature materials around the midplane of the solar nebula. Science, 318, 613615.Google Scholar
Clayton, R. N., Grossman, L., and Mayeda, T. K. (1973) A component of primitive nuclear composition in carbonaceous meteorites. Science, 182, 485487.Google Scholar
Clayton, R. N., Onuma, N., Grossman, L., and Mayeda, T. K. (1977) Distribution of the pre-solar component in Allende and other carbonaceous chondrites. Earth & Planetary Science Letters, 34, 209224.Google Scholar
Cohen, B. A., Swindle, T. D., and Kring, D. A. (2005) Geochemical and 40Ar/39Ar geochronology of impact-melt clasts in feldspathic lunar meteorites: Implications for lunar bombardment history. Meteoritics & Planetary Science, 40, 755777.CrossRefGoogle Scholar
Connolly, H. C. Jr., and Jones, R. H. (2016) Chondrules: The canonical and noncanonical views. Journal of Geophysical Research, Planets, 121, 18851899.CrossRefGoogle Scholar
Crossley, S. D., Ash, R. D., Sunshine, J. M., et al. (2020) Sulfide-dominated partial melting pathways in brachinites. Meteoritics & Planetary Science, 55, 20212043.CrossRefGoogle Scholar
Cuzzi, J. N., and Weidenschilling, S. J. (2006) Particle-gas dynamics and primary accretion. In Meteorites and the Early Solar System II, Lauretta, D. S. and McSween, H. Y., editors, pp. 353381, University of Arizona Press, Tucson.CrossRefGoogle Scholar
Dauphas, N. (2017) The isotopic nature of the Earth’s accreting material through time. Nature, 541, 521524.Google Scholar
Desch, S. J., and Cuzzi, J. N. (2000) The generation of lightning in the solar nebula. Icarus, 143, 87105.Google Scholar
Desch, S. J., and Connolly, H. C. (2002) A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules. Meteoritics & Planetary Science, 37, 183207.CrossRefGoogle Scholar
Desch, S. J., Morris, M. A., Connolly, H. C., and Boss, A. P. (2010) A critical examination of the X-wind model of chondrule and CAI formation and radionuclide production. Astrophysical Journal, 725, 692711.Google Scholar
Delsemme, A. H. (1999) The deuterium enrichment observed in recent comets is consistent with the cometary origin of seawater. Planetary & Space Science, 47, 125131.Google Scholar
de Wit, J., Wakeford, H.R., Gillon, M., et al. (2016) A combined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1 b and c. Nature, 537, 6972.Google Scholar
Drake, M. J. (2005) Origin of water in the terrestrial planets. Meteoritics & Planetary Science, 40, 519527Google Scholar
Dyck, B., Wade, J., and Palin, R. (2021) The effect of core formation on surface composition and planetary habitability. Astrophysics Journal Letters, arxiv.org/pdf/2104.10612.pdf.Google Scholar
Fegley, B. F., and Cameron, A. G. W. (1987) A vaporization model for iron/silicate fractionation in the Mercury protoplanet. Earth & Planetary Science Letters, 82, 207222.Google Scholar
Goettel, K. A. (1988) Present bounds on the bulk composition of Mercury: Implications for planetary formation processes. In Mercury, Vilas, F., Chapman, C. R., and Matthews, M. S., editors, pp. 613621, University of Arizona Press, Tucson.Google Scholar
Gomes, R., Levison, H. F., Tsiganis, K., and Morbidelli, A. (2005) Origin of the cataclysmic late heavy bombardment period of the terrestrial planets. Nature, 435, 466469.Google Scholar
Gounelle, M., Shu, F. H., Shang, H., et al. (2001) Extinct radioactivities and protosolar cosmic-rays: Self-shielding and light elements. Astrophysical Journal, 548, 10511070.Google Scholar
Greenwood, R. C., Barrat, J.-A., Miller, M. F., et al. (2018) Oxygen isotopic evidence for accretion of Earth’s water before a high-energy Moon-forming giant impact. Science Advances, 4, eaao5928.Google Scholar
Grossman, J. N., Rubin, A. E., Nagahara, H., and King, E. A. (1988) Properties of chondrules. In Meteorites and the Early Solar System, Kerridge, J. M., and Mathews, M. S., editors, pp. 619659, University of Arizona, Tucson.Google Scholar
Halliday, A. N., and Wood, B. J. (2009) How did Earth accrete? Science, 325, 4445.CrossRefGoogle ScholarPubMed
He, M. Y., Ford, E. B, and Ragozzine, D. (2019) Architectures of exoplanetary systems – I. A clustered forward model for exoplanetary systems around Kepler’s FGK stars. Monthly Notices of the Royal Astronomical Society, 490, 45754605.Google Scholar
Helled, R., and Stevenson, D. (2017) The fuzziness of giant planets’ cores. Astrophysical Journal Letters, 840, L4.Google Scholar
Hopkins, M. D., and Mojzsis, S. J. (2015) A protracted timeline for lunar bombardment from mineral chemistry, Ti thermometry and U-Pb geochronology of Apollo 14 melt breccia zircons. Contributions to Mineralogy & Petrology, 169, 118.Google Scholar
Humayan, M., and Cassen, P. (2000) Processes determining the volatile abundances of the meteorites and terrestrial planets. In Origin of the Earth and Moon, Canup, R. M., and Righter, K., editors, pp. 323, University of Arizona Press, Tucson.CrossRefGoogle Scholar
Huss, G. R. (1988) The role of presolar dust in the formation of the solar system. Earth, Moon & Planets, 40, 165211.CrossRefGoogle Scholar
Huss, G. R. (1990) Ubiquitous interstellar diamond and silicon carbide in primitive chondrites: Abundances reflect metamorphism. Nature, 347, 159162.Google Scholar
Johnson, B. C., Ciesla, F. J., Dullemond, C. P., and Melosh, H. H. (2018) Formation of chondrules by planetesimal collisions. In Chondrules, Records of Protoplanetary Disk Processes, Russell, S. S., Connolly, H. C. Jr., and Krot, A. N., editors, pp. 343360, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Jontoff-Hutter, D. (2019) The compositional diversity of low-mass exoplanets. Annual Reviews of Earth & Planetary Sciences, 47, 141171.Google Scholar
Kargel, J. S., and Lewis, J. S. (1993) The composition and early evolution of Earth. Icarus, 105, 125.Google Scholar
Kleine, T., and Walker, R. J. (2017) Tungsten isotopes in planets. Annual Reviews of Earth & Planetary Science, 45, 389417.Google Scholar
Kleine, T., Mezger, K., Palme, H., et al. (2005) Early core formation in asteroids and late accretion of chondrite parent bodies: Evidence from 182Hf-182W in CAIs, metal-rich chondrites and iron meteorites. Geochimica et Cosmochimica Acta, 69, 58055818.Google Scholar
Kleine, T., Budde, G., Burkhardt, C., et al. (2020) The non-carbonaceous – carbonaceous meteorite dichotomy. Space Science Reviews, 216, 55, doi.org/10.1007/s11214–020-00675-w.Google Scholar
Krot, A. N., Amelin, Y., Cassen, P., and Meibom, A. (2005) Young chondrules in CV chondrites from a giant impact in the early solar system. Nature, 436, 989992.Google Scholar
Krot, A. N., Nagashima, K., Libourel, G., and Miller, K. (2018) Multiple mechanisms of transient heating events in the protoplanetary disk. In Chondrules, Records of Protoplanetary Disk Processes, Russell, S. S., Connolly, H. C. Jr., and Krot, A. N., editors, pp. 1156, Cambridge University Press, Cambridge.Google Scholar
Kruijer, T. S., Burkhardt, C., Budde, G., and Kleine, T. (2017) Age of Jupiter inferred from distinct genetics and formation times of meteorites. Proceedings of the National Academy of Sciences, USA, 114, 67126716.CrossRefGoogle ScholarPubMed
Kruijer, T. S., Kleine, T., and Borg, L. R. (2020) The great isotopic dichotomy of the early solar system. Nature Astronomy, 4, 3240.Google Scholar
Lambrechts, M., and Johansen, A. (2012) Growth of gas-giant cores by pebble accretion. Astronomy & Astrophysics, 544, A32.Google Scholar
Lee, T., Papanastassiou, D. A., and Wasserburg, G. J. (1977) Aluminum-26 in the early solar system: Fossil or fuel? Astrophysical Journal Letters, 211, L107L110.Google Scholar
Levy, E. H. (1988) Energetics of chondrule formation. In Meteorites and the Early Solar System, Kerridge, J. F., and Matthews, M. S., editors, pp. 697711, University of Arizona Press, Tucson.Google Scholar
Lewis, R. S., Tang, M., Wacker, J. F., et al. (1987) Interstellar diamonds in meteorites. Nature, 326, 160162.Google Scholar
Liffman, K., and Brown, M. (1995) The motion and size sorting of particles ejected from a protostellar accretion disk. Icarus, 116, 275290.Google Scholar
Lissauer, J. J., and de Pater, I. (2013) Fundamental Planetary Science: Physics, Chemistry and Habitability. Cambridge University Press, Cambridge, 583 pp.Google Scholar
Lodders, K. (2010) Atmospheric chemistry of the gas giant planets. Geochemical News, 142, geochemsoc.org/publications/geochemicalnews/gn142.Google Scholar
Lodders, K., and Fegley, B. F. (1998) The Planetary Scientist’s Companion. Oxford University Press, New York, 371 pp.Google Scholar
Love, S. G., Keil, K., and Scott, E. R. D. (1995) Electrical discharge heating of chondrules in the solar nebula. Icarus, 115, 97108.Google Scholar
Lunine, J. I. (2014) Giant planets. In Treatise in Geochemistry, 2nd edition, Vol. 2: Planets, Asteroids, Comets and the Solar System, Davis, A. M., editor, pp. 301311, Elsevier, Amsterdam.Google Scholar
MacPherson, G. J., Simon, S. B., Davis, A. M., et al. (2005) Calcium-aluminum-rich inclusions; Major unanswered questions. In Chondrites and the Protoplanetary Disk, ASP Conference Series, 341, Krot, A. N., Scott, E. R. D., and Reipurth, A., editors, pp. 225250, Astronomical Society of the Pacific, San Francisco.Google Scholar
Manser, C. J., Gansicke, B. T., Eggl, S., et al. (2019) A planetesimal orbiting within the debris disk around a white dwarf star. Science, 364, 6669.Google Scholar
Marcy, G. W., Weiss, L. M., Petigura, E. K., et al. (2014) Occurrence and core-envelope structure of 1-4x Earth-size planets around Sun-like stars. Proceedings of the National Academy of Sciences USA, 111, 655660.Google Scholar
Marty, B., Altwegg, K., Balsiger, H., et al. (2017) Xenon isotopes in 67P/Churyumov-Gerasimenko show that comets contributed to Earth’s atmosphere. Science, 356, 10691073.Google Scholar
Mazevet, S., Musella, R., and Guyot, F. (2019) The fate of planetary cores in giant and ice-giant planets. Astronomy & Astrophysics, 631, L4.Google Scholar
McCulloch, M. T., and Wasserburg, G. J. (1978a) Barium and neodymium isotopic anomalies in the Allende meteorite. Astrophysical Journal Letters, 220 , L15L19.Google Scholar
McCulloch, M. T., and Wasserburg, G. J. (1978b) More anomalies from the Allende meteorite: Samarium. Geophysical Research Letters, 5, 599602.Google Scholar
McKeegan, K. D., Chaussidon, M., and Robert, F. (2000) Incorporation of short-lived 10Be in a calcium-aluminum-rich inclusion from the Allende meteorite. Science, 289, 13341337.Google Scholar
McKeegan, K. D., Kallio, A. P. A., Heber, V. S., et al. (2011) The oxygen isotopic composition of the Sun inferred from captured solar wind. Science, 332, 15281532.Google Scholar
McSween, H. Y., Moersch, J. E., Burr, D. M., et al. (2019) Planetary Geoscience. Cambridge University Press, Cambridge, 334 pp.Google Scholar
Minton, D. A., and Malhotra, R. (2011) Secular resonance sweeping of the main asteroid belt during planet migration. Astrophysical Journal, 732, 5364.Google Scholar
Morbidelli, A., Chambers, J., Lunine, J. I., et al. (2000) Source regions and timescales for the delivery of water to the Earth. Meteoritics & Planetary Science, 35, 13091320.Google Scholar
Morbidelli, A., and Raymond, S. N. (2016) Challenges in planet formation. Journal of Geophysical Research, Planets, 121, 19621980.Google Scholar
Morbidelli, A., Lunine, J. I., O’Brien, D. P., et al. (2012) Building terrestrial planets. Annual Reviews of Earth & Planetary Sciences, 40, 251275.Google Scholar
Morbidelli, A., Lambrechts, M., Jacobson, S., and Bitsch, B. (2015) The great dichotomy of the solar system: Small terrestrial embryos and massive giant planet cores. Icarus, 258, 418429.Google Scholar
Morris, M. A., and Boley, A. C. (2018) Formation of chondrules by shock waves. In Chondrules, Records of Protoplanetary Disk Processes, Russell, S. S., Connolly, H. C. Jr., and Krot, A. N., editors, pp. 375399, Cambridge University Press, Cambridge.Google Scholar
Nakano, H., Hirakawa, H., Natsubara, Y., et al. (2020) Precometary organic matter: A hidden reservoir of water inside the snow line. Scientific Reports, 10, doi:10.1038/s41598–020-64815-6.Google Scholar
O’Brien, D. P., Izidoro, A., Jacobson, S. A., et al. (2018) The delivery of water during terrestrial planet formation. Space Science Reviews, 214, 47, doi.org/10.1007/s11214–018-0475-8.Google Scholar
Ogliore, R. C., Huss, G. R., and Nagashima, K. (2011) Ratio estimation in SIMS analysis. Nuclear Instruments & Methods in Physics Research B, 269, 19101918.Google Scholar
Ouellette, N., Desch, S. J., Hester, J. J., and Leshin, L. A. (2005) A nearby supernova injected short-lived radionuclides into our protoplanetary disk. In Chondrites and the Protoplanetary Disk, ASP Conference Series, 341, Krot, A. N., Scott, E. R. D., and Reipurth, A., editors, pp. 527538, Astronomical Society of the Pacific, San Francisco.Google Scholar
Paardekooper, S-J., and Johansen, A. (2018) Giant planet formation and migration. Space Science Reviews, 214, 38, doi.org/10.1007/s11214–018-0472-y.Google Scholar
Peslier, A. H., Schonbacher, M., Busemann, H., and Karato, S.-I. (2017) Water in the Earth’s interior: Distribution and origin. Space Science Reviews, 212, 743810.Google Scholar
Piani, L., Marroucchi, Y., Rigaudier, T., et al. (2020) Earth’s water may have been inherited from material similar to enstatite chondrite meteorites. Science, 369, 11101113.Google Scholar
Reynolds, J. H., and Turner, G. (1964) Rare gases in the chondrite Renazzo. Journal of Geophysical Research, 69, 32633281.Google Scholar
Righter, K. (2011) Prediction of metal-silicate partition coefficients for siderophile elements: An update and assessment of PT conditions for metal-silicate equilibrium during accretion of the Earth. Earth & Planetary Science Letters, 304, 158167.Google Scholar
Righter, K., Drake, M. J., and Scott, E. R. D. (2006) Compositional relationships between meteorites and terrestrial planets. In Meteorites and the Early Solar System II, Lauretta, D. S., and McSween, H. Y., editors, pp. 803828, University of Arizona Press, Tucson.CrossRefGoogle Scholar
Rugel, B., Faestermann, T., Knie, K., et al. (2009) New measurements of the 60Fe half-life. Physical Review Letters, 103, 072502.CrossRefGoogle ScholarPubMed
Sanders, I. S., and Scott, E. R D. (2018) Making chondrules by splashing molten planetesimals: The dirty impact plume model. In Chondrules, Records of Protoplanetary Disk Processes, Russell, S., Connolly, H. C. Jr., and Krot, A. N., editors, pp. 361374, Cambridge University Press, Cambridge.Google Scholar
Sarafian, A. R., Nielsen, S. G., Marschall, H. R., et al. (2014) Early accretion of water in the inner solar system from a carbonaceous chondrite-like source. Science, 346, 623626.Google Scholar
Saxena, S. K., and Hrubiak, R. (2014) Mapping the nebular condensates and the chemical composition of the terrestrial planets. Earth & Planetary Science Letters, 393, 113110.Google Scholar
Scott, E. R. D., Krot, A. D., and Sanders, I. S. (2018) Isotopic dichotomy among meteorites and its bearing on the protoplanetary disk. Astrophysical Journal, 854, 164176.Google Scholar
Shu, F. H., Shang, H., and Lee, T. (1996) Toward an astrophysical theory of chondrites. Science, 271, 15451552.Google Scholar
Shu, F. H., Shang, H., Gounelle, M., et al. (2001) The origin of chondrules and refractory inclusions in chondritic meteorites. Astrophysical Journal, 548, 10291050.Google Scholar
Spiegel, D. S., Fortney, J. J., and Sotin, C. (2014) Structure of exoplanets. Proceedings of the National Academy of Sciences, USA, 111, 622627.CrossRefGoogle ScholarPubMed
Tachibana, S., and Huss, G. R. (2003) The initial abundance of 60Fe in the solar system. Astrophysical Journal Letters, 588, L41L44.Google Scholar
Taylor, S. R., and McLennan, S. M. (1995) The geochemical evolution of continental crust. Reviews of Geophysics, 33, 241265.CrossRefGoogle Scholar
Taylor, S. R., and McLennan, S. M. (2009) Planetary Crusts: Their Composition, Origin and Evolution. Cambridge University Press, Cambridge, 378 pp.Google Scholar
Telus, M., Huss, G. R., Ogliore, R. C., et al. (2016) Mobility of iron and nickel at low temperatures: Implications for 60Fe-60Ni systematics of chondrules from unequilibrated ordinary chondrites. Geochimica et Cosmochimica Acta, 178, 87105.Google Scholar
Tera, F., Papanastassiou, D. A., and Wasserberg, G. J. (1974) Isotopic evidence for a terminal lunar cataclysm. Earth & Planetary Science, 22, 121.CrossRefGoogle Scholar
Tobin, J., Sheehan, P. D., Megeath, S. T., et al. (2020) The VLA/ALMA Nascent Disk and Multiplicity (VANDAM) Survey of Orion protostars. II. A statistical characterization of class 0 and class 1 protostellar disks. Astrophysical Journal, 890, doi.org/10.3847/1538-4357/ab659e.Google Scholar
Tolstikhin, I., and Kramers, J. (2008) The Evolution of Matter from the Big Bang to the Present Day Earth. Cambridge University Press, Cambridge, 521 pp.Google Scholar
Toplis, M. J., Mizzon, H., Monnereau, M., et al. (2013) Chondritic models of 4 Vesta: implications for geochemical and geophysical properties. Meteoritics & Planetary Science, 48, 23002315.Google Scholar
Tsiganis, K., Gomes, R., Morbidelli, A., and Levison, H. F. (2005) Origin of the orbital architecture of the giant planets of the solar system. Nature, 435, 459461.Google Scholar
Wadhwa, M., Srinivasan, G., and Carlson, R. W. (2006) Timescales of planetesimal differentiation in the early solar system. In Meteorites and the Early Solar System II, Lauretta, D. S., and McSween, H. Y., editors, pp. 715732, University of Arizona Press, Tucson.Google Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., et al. (2011) Sculpting the inner solar system by gas-driven orbital migration of Jupiter. Nature, 475, 206209.Google Scholar
Wänke, H. (1981) Constitution of terrestrial planets. Philosophical Transactions of the Royal Society of London, A325, 545557.Google Scholar
Warren, P. H. (2011) Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites. Earth & Planetary Science Letters, 311, 93100.Google Scholar
Wasserburg, G. J., Lee, T., and Papanastassiou, D. A. (1977) Correlated O and Mg isotopic anomalies in Allende inclusions II: Magnesium. Geophysical Research Letters, 4, 299302.Google Scholar
Yang, L., and Ciesla, F. J. (2012) The effects of disk building on the distributions of refractory materials in the solar nebula. Meteoritics & Planetary Science, 47, 99119.CrossRefGoogle Scholar
Yoshizaki, T., and McDonough, W. F. (2020) The composition of Mars. Geochimica et Cosmochimica Acta, 273, 137162.Google Scholar
Agee, C. B., and Walker, D. (1988) Mass balance and phase density constraints on early differentiation of chondritic mantle. Earth & Planetary Science Letters, 90, 144156.CrossRefGoogle Scholar
Albarède, F. (2009) Late accretion of volatiles to Earth. Nature, 461, 12271233.CrossRefGoogle Scholar
Alexander, C. M. O’D., McKeegan, K. D., and Altweg, K. (2018) Water reservoirs in small planetary bodies: Meteorites, asteroids, and comets. Space Science Reviews, 214 , 36.Google Scholar
Andrews, S. (2018) Focus on DSHAP results. Astrophysical Journal Letters, 869, L41L50 (introduction to a series of 10 papers).Google Scholar
Avice, G., and Marty, B. (2014) The iodine-plutonium-xenon age of the Moon-Earth system revisited. Philosophical Transactions of the Royal Society A, 372, 20130260.CrossRefGoogle ScholarPubMed
Barshay, S. S., and Lewis, J. S. (1976) Chemistry of primitive solar material. Annual Reviews of Astronomy & Astrophysics, 14, 8194.CrossRefGoogle Scholar
Basaltic Volcanism Study Project (1981) Basaltic Volcanism on the Terrestrial Planets. Pergamon Press, New York, 1286 pp.Google Scholar
Batalha, N. M. (2014) Exploring exoplanet populations with NASA’S Kepler mission. Proceedings of the National Academy of Sciences, USA, 111, 647654.Google Scholar
Black, D. C., and Pepin, R. O. (1969) Trapped neon in meteorites, II. Earth & Planetary Science Letters, 6, 395405.Google Scholar
Bogard, D. D. (1995) Impact ages of meteorites: A synthesis. Meteoritics, 30, 244268.Google Scholar
Boss, A. P. (2004) Convective cooling of protoplanetary disks and rapid giant planet formation. Astrophysical Journal, 610, 456463.Google Scholar
Bottke, W. F., Nesvorny, D., Grimm, R. E., et al. (2006) Iron meteorites as remnants of planetesimals formed in the terrestrial planet region. Nature, 439, 821824.CrossRefGoogle ScholarPubMed
Bottke, W. F, and Norman, M. D. (2017) The Late Heavy Bombardment. Annual Reviews of Earth & Planetary Sciences, 45, 619647.CrossRefGoogle Scholar
Brown, S. M., and Elkins-Tanton, L. T. (2009) Compositions of Mercury’s earliest crust from magma ocean models. Earth & Planetary Science Letters, 286, 446455.Google Scholar
Burkhardt, C., Dauphas, N., Hans, U., et al. (2019) Elemental and isotopic variability in solar system materials by mixing and processing of primordial disk reservoirs. Geochimica et Cosmochimica Acta, 261, 145170.Google Scholar
Cameron, A. G. W. (1962) The formation of the sun and planets. Icarus, 1, 1369.Google Scholar
Cameron, A. G. W. (1978) Physics of the primitive solar accretion disk. Moon & Planets, 18, 540.CrossRefGoogle Scholar
Cameron, A. G. W., and Truran, J. W. (1977) The supernova trigger for formation of the solar system. Icarus, 30, 447461.Google Scholar
Cano, E. J., Sharp, Z. D., and Shearer, C. K. (2020) Distinct oxygen isotope compositions of the Earth and Moon. Nature Geoscience, 13, 270274.Google Scholar
Carlson, R. W., Garnero, E., Harrison, T. M., et al. (2014) How did early Earth become our modern world? Annual Reviews of Earth & Planetary Sciences, 42, 151178.CrossRefGoogle Scholar
Chabot, N. L., Draper, D. S., and Agee, C. B. (2005) Conditions of core formation in the Earth: Constraints from nickel and cobalt partitioning. Geochimica et Cosmochimica Acta, 69, 21412151.Google Scholar
Ciesla, F. J. (2007) Outward transport of high-temperature materials around the midplane of the solar nebula. Science, 318, 613615.Google Scholar
Clayton, R. N., Grossman, L., and Mayeda, T. K. (1973) A component of primitive nuclear composition in carbonaceous meteorites. Science, 182, 485487.Google Scholar
Clayton, R. N., Onuma, N., Grossman, L., and Mayeda, T. K. (1977) Distribution of the pre-solar component in Allende and other carbonaceous chondrites. Earth & Planetary Science Letters, 34, 209224.Google Scholar
Cohen, B. A., Swindle, T. D., and Kring, D. A. (2005) Geochemical and 40Ar/39Ar geochronology of impact-melt clasts in feldspathic lunar meteorites: Implications for lunar bombardment history. Meteoritics & Planetary Science, 40, 755777.CrossRefGoogle Scholar
Connolly, H. C. Jr., and Jones, R. H. (2016) Chondrules: The canonical and noncanonical views. Journal of Geophysical Research, Planets, 121, 18851899.CrossRefGoogle Scholar
Crossley, S. D., Ash, R. D., Sunshine, J. M., et al. (2020) Sulfide-dominated partial melting pathways in brachinites. Meteoritics & Planetary Science, 55, 20212043.CrossRefGoogle Scholar
Cuzzi, J. N., and Weidenschilling, S. J. (2006) Particle-gas dynamics and primary accretion. In Meteorites and the Early Solar System II, Lauretta, D. S. and McSween, H. Y., editors, pp. 353381, University of Arizona Press, Tucson.CrossRefGoogle Scholar
Dauphas, N. (2017) The isotopic nature of the Earth’s accreting material through time. Nature, 541, 521524.Google Scholar
Desch, S. J., and Cuzzi, J. N. (2000) The generation of lightning in the solar nebula. Icarus, 143, 87105.Google Scholar
Desch, S. J., and Connolly, H. C. (2002) A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules. Meteoritics & Planetary Science, 37, 183207.CrossRefGoogle Scholar
Desch, S. J., Morris, M. A., Connolly, H. C., and Boss, A. P. (2010) A critical examination of the X-wind model of chondrule and CAI formation and radionuclide production. Astrophysical Journal, 725, 692711.Google Scholar
Delsemme, A. H. (1999) The deuterium enrichment observed in recent comets is consistent with the cometary origin of seawater. Planetary & Space Science, 47, 125131.Google Scholar
de Wit, J., Wakeford, H.R., Gillon, M., et al. (2016) A combined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1 b and c. Nature, 537, 6972.Google Scholar
Drake, M. J. (2005) Origin of water in the terrestrial planets. Meteoritics & Planetary Science, 40, 519527Google Scholar
Dyck, B., Wade, J., and Palin, R. (2021) The effect of core formation on surface composition and planetary habitability. Astrophysics Journal Letters, arxiv.org/pdf/2104.10612.pdf.Google Scholar
Fegley, B. F., and Cameron, A. G. W. (1987) A vaporization model for iron/silicate fractionation in the Mercury protoplanet. Earth & Planetary Science Letters, 82, 207222.Google Scholar
Goettel, K. A. (1988) Present bounds on the bulk composition of Mercury: Implications for planetary formation processes. In Mercury, Vilas, F., Chapman, C. R., and Matthews, M. S., editors, pp. 613621, University of Arizona Press, Tucson.Google Scholar
Gomes, R., Levison, H. F., Tsiganis, K., and Morbidelli, A. (2005) Origin of the cataclysmic late heavy bombardment period of the terrestrial planets. Nature, 435, 466469.Google Scholar
Gounelle, M., Shu, F. H., Shang, H., et al. (2001) Extinct radioactivities and protosolar cosmic-rays: Self-shielding and light elements. Astrophysical Journal, 548, 10511070.Google Scholar
Greenwood, R. C., Barrat, J.-A., Miller, M. F., et al. (2018) Oxygen isotopic evidence for accretion of Earth’s water before a high-energy Moon-forming giant impact. Science Advances, 4, eaao5928.Google Scholar
Grossman, J. N., Rubin, A. E., Nagahara, H., and King, E. A. (1988) Properties of chondrules. In Meteorites and the Early Solar System, Kerridge, J. M., and Mathews, M. S., editors, pp. 619659, University of Arizona, Tucson.Google Scholar
Halliday, A. N., and Wood, B. J. (2009) How did Earth accrete? Science, 325, 4445.CrossRefGoogle ScholarPubMed
He, M. Y., Ford, E. B, and Ragozzine, D. (2019) Architectures of exoplanetary systems – I. A clustered forward model for exoplanetary systems around Kepler’s FGK stars. Monthly Notices of the Royal Astronomical Society, 490, 45754605.Google Scholar
Helled, R., and Stevenson, D. (2017) The fuzziness of giant planets’ cores. Astrophysical Journal Letters, 840, L4.Google Scholar
Hopkins, M. D., and Mojzsis, S. J. (2015) A protracted timeline for lunar bombardment from mineral chemistry, Ti thermometry and U-Pb geochronology of Apollo 14 melt breccia zircons. Contributions to Mineralogy & Petrology, 169, 118.Google Scholar
Humayan, M., and Cassen, P. (2000) Processes determining the volatile abundances of the meteorites and terrestrial planets. In Origin of the Earth and Moon, Canup, R. M., and Righter, K., editors, pp. 323, University of Arizona Press, Tucson.CrossRefGoogle Scholar
Huss, G. R. (1988) The role of presolar dust in the formation of the solar system. Earth, Moon & Planets, 40, 165211.CrossRefGoogle Scholar
Huss, G. R. (1990) Ubiquitous interstellar diamond and silicon carbide in primitive chondrites: Abundances reflect metamorphism. Nature, 347, 159162.Google Scholar
Johnson, B. C., Ciesla, F. J., Dullemond, C. P., and Melosh, H. H. (2018) Formation of chondrules by planetesimal collisions. In Chondrules, Records of Protoplanetary Disk Processes, Russell, S. S., Connolly, H. C. Jr., and Krot, A. N., editors, pp. 343360, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Jontoff-Hutter, D. (2019) The compositional diversity of low-mass exoplanets. Annual Reviews of Earth & Planetary Sciences, 47, 141171.Google Scholar
Kargel, J. S., and Lewis, J. S. (1993) The composition and early evolution of Earth. Icarus, 105, 125.Google Scholar
Kleine, T., and Walker, R. J. (2017) Tungsten isotopes in planets. Annual Reviews of Earth & Planetary Science, 45, 389417.Google Scholar
Kleine, T., Mezger, K., Palme, H., et al. (2005) Early core formation in asteroids and late accretion of chondrite parent bodies: Evidence from 182Hf-182W in CAIs, metal-rich chondrites and iron meteorites. Geochimica et Cosmochimica Acta, 69, 58055818.Google Scholar
Kleine, T., Budde, G., Burkhardt, C., et al. (2020) The non-carbonaceous – carbonaceous meteorite dichotomy. Space Science Reviews, 216, 55, doi.org/10.1007/s11214–020-00675-w.Google Scholar
Krot, A. N., Amelin, Y., Cassen, P., and Meibom, A. (2005) Young chondrules in CV chondrites from a giant impact in the early solar system. Nature, 436, 989992.Google Scholar
Krot, A. N., Nagashima, K., Libourel, G., and Miller, K. (2018) Multiple mechanisms of transient heating events in the protoplanetary disk. In Chondrules, Records of Protoplanetary Disk Processes, Russell, S. S., Connolly, H. C. Jr., and Krot, A. N., editors, pp. 1156, Cambridge University Press, Cambridge.Google Scholar
Kruijer, T. S., Burkhardt, C., Budde, G., and Kleine, T. (2017) Age of Jupiter inferred from distinct genetics and formation times of meteorites. Proceedings of the National Academy of Sciences, USA, 114, 67126716.CrossRefGoogle ScholarPubMed
Kruijer, T. S., Kleine, T., and Borg, L. R. (2020) The great isotopic dichotomy of the early solar system. Nature Astronomy, 4, 3240.Google Scholar
Lambrechts, M., and Johansen, A. (2012) Growth of gas-giant cores by pebble accretion. Astronomy & Astrophysics, 544, A32.Google Scholar
Lee, T., Papanastassiou, D. A., and Wasserburg, G. J. (1977) Aluminum-26 in the early solar system: Fossil or fuel? Astrophysical Journal Letters, 211, L107L110.Google Scholar
Levy, E. H. (1988) Energetics of chondrule formation. In Meteorites and the Early Solar System, Kerridge, J. F., and Matthews, M. S., editors, pp. 697711, University of Arizona Press, Tucson.Google Scholar
Lewis, R. S., Tang, M., Wacker, J. F., et al. (1987) Interstellar diamonds in meteorites. Nature, 326, 160162.Google Scholar
Liffman, K., and Brown, M. (1995) The motion and size sorting of particles ejected from a protostellar accretion disk. Icarus, 116, 275290.Google Scholar
Lissauer, J. J., and de Pater, I. (2013) Fundamental Planetary Science: Physics, Chemistry and Habitability. Cambridge University Press, Cambridge, 583 pp.Google Scholar
Lodders, K. (2010) Atmospheric chemistry of the gas giant planets. Geochemical News, 142, geochemsoc.org/publications/geochemicalnews/gn142.Google Scholar
Lodders, K., and Fegley, B. F. (1998) The Planetary Scientist’s Companion. Oxford University Press, New York, 371 pp.Google Scholar
Love, S. G., Keil, K., and Scott, E. R. D. (1995) Electrical discharge heating of chondrules in the solar nebula. Icarus, 115, 97108.Google Scholar
Lunine, J. I. (2014) Giant planets. In Treatise in Geochemistry, 2nd edition, Vol. 2: Planets, Asteroids, Comets and the Solar System, Davis, A. M., editor, pp. 301311, Elsevier, Amsterdam.Google Scholar
MacPherson, G. J., Simon, S. B., Davis, A. M., et al. (2005) Calcium-aluminum-rich inclusions; Major unanswered questions. In Chondrites and the Protoplanetary Disk, ASP Conference Series, 341, Krot, A. N., Scott, E. R. D., and Reipurth, A., editors, pp. 225250, Astronomical Society of the Pacific, San Francisco.Google Scholar
Manser, C. J., Gansicke, B. T., Eggl, S., et al. (2019) A planetesimal orbiting within the debris disk around a white dwarf star. Science, 364, 6669.Google Scholar
Marcy, G. W., Weiss, L. M., Petigura, E. K., et al. (2014) Occurrence and core-envelope structure of 1-4x Earth-size planets around Sun-like stars. Proceedings of the National Academy of Sciences USA, 111, 655660.Google Scholar
Marty, B., Altwegg, K., Balsiger, H., et al. (2017) Xenon isotopes in 67P/Churyumov-Gerasimenko show that comets contributed to Earth’s atmosphere. Science, 356, 10691073.Google Scholar
Mazevet, S., Musella, R., and Guyot, F. (2019) The fate of planetary cores in giant and ice-giant planets. Astronomy & Astrophysics, 631, L4.Google Scholar
McCulloch, M. T., and Wasserburg, G. J. (1978a) Barium and neodymium isotopic anomalies in the Allende meteorite. Astrophysical Journal Letters, 220 , L15L19.Google Scholar
McCulloch, M. T., and Wasserburg, G. J. (1978b) More anomalies from the Allende meteorite: Samarium. Geophysical Research Letters, 5, 599602.Google Scholar
McKeegan, K. D., Chaussidon, M., and Robert, F. (2000) Incorporation of short-lived 10Be in a calcium-aluminum-rich inclusion from the Allende meteorite. Science, 289, 13341337.Google Scholar
McKeegan, K. D., Kallio, A. P. A., Heber, V. S., et al. (2011) The oxygen isotopic composition of the Sun inferred from captured solar wind. Science, 332, 15281532.Google Scholar
McSween, H. Y., Moersch, J. E., Burr, D. M., et al. (2019) Planetary Geoscience. Cambridge University Press, Cambridge, 334 pp.Google Scholar
Minton, D. A., and Malhotra, R. (2011) Secular resonance sweeping of the main asteroid belt during planet migration. Astrophysical Journal, 732, 5364.Google Scholar
Morbidelli, A., Chambers, J., Lunine, J. I., et al. (2000) Source regions and timescales for the delivery of water to the Earth. Meteoritics & Planetary Science, 35, 13091320.Google Scholar
Morbidelli, A., and Raymond, S. N. (2016) Challenges in planet formation. Journal of Geophysical Research, Planets, 121, 19621980.Google Scholar
Morbidelli, A., Lunine, J. I., O’Brien, D. P., et al. (2012) Building terrestrial planets. Annual Reviews of Earth & Planetary Sciences, 40, 251275.Google Scholar
Morbidelli, A., Lambrechts, M., Jacobson, S., and Bitsch, B. (2015) The great dichotomy of the solar system: Small terrestrial embryos and massive giant planet cores. Icarus, 258, 418429.Google Scholar
Morris, M. A., and Boley, A. C. (2018) Formation of chondrules by shock waves. In Chondrules, Records of Protoplanetary Disk Processes, Russell, S. S., Connolly, H. C. Jr., and Krot, A. N., editors, pp. 375399, Cambridge University Press, Cambridge.Google Scholar
Nakano, H., Hirakawa, H., Natsubara, Y., et al. (2020) Precometary organic matter: A hidden reservoir of water inside the snow line. Scientific Reports, 10, doi:10.1038/s41598–020-64815-6.Google Scholar
O’Brien, D. P., Izidoro, A., Jacobson, S. A., et al. (2018) The delivery of water during terrestrial planet formation. Space Science Reviews, 214, 47, doi.org/10.1007/s11214–018-0475-8.Google Scholar
Ogliore, R. C., Huss, G. R., and Nagashima, K. (2011) Ratio estimation in SIMS analysis. Nuclear Instruments & Methods in Physics Research B, 269, 19101918.Google Scholar
Ouellette, N., Desch, S. J., Hester, J. J., and Leshin, L. A. (2005) A nearby supernova injected short-lived radionuclides into our protoplanetary disk. In Chondrites and the Protoplanetary Disk, ASP Conference Series, 341, Krot, A. N., Scott, E. R. D., and Reipurth, A., editors, pp. 527538, Astronomical Society of the Pacific, San Francisco.Google Scholar
Paardekooper, S-J., and Johansen, A. (2018) Giant planet formation and migration. Space Science Reviews, 214, 38, doi.org/10.1007/s11214–018-0472-y.Google Scholar
Peslier, A. H., Schonbacher, M., Busemann, H., and Karato, S.-I. (2017) Water in the Earth’s interior: Distribution and origin. Space Science Reviews, 212, 743810.Google Scholar
Piani, L., Marroucchi, Y., Rigaudier, T., et al. (2020) Earth’s water may have been inherited from material similar to enstatite chondrite meteorites. Science, 369, 11101113.Google Scholar
Reynolds, J. H., and Turner, G. (1964) Rare gases in the chondrite Renazzo. Journal of Geophysical Research, 69, 32633281.Google Scholar
Righter, K. (2011) Prediction of metal-silicate partition coefficients for siderophile elements: An update and assessment of PT conditions for metal-silicate equilibrium during accretion of the Earth. Earth & Planetary Science Letters, 304, 158167.Google Scholar
Righter, K., Drake, M. J., and Scott, E. R. D. (2006) Compositional relationships between meteorites and terrestrial planets. In Meteorites and the Early Solar System II, Lauretta, D. S., and McSween, H. Y., editors, pp. 803828, University of Arizona Press, Tucson.CrossRefGoogle Scholar
Rugel, B., Faestermann, T., Knie, K., et al. (2009) New measurements of the 60Fe half-life. Physical Review Letters, 103, 072502.CrossRefGoogle ScholarPubMed
Sanders, I. S., and Scott, E. R D. (2018) Making chondrules by splashing molten planetesimals: The dirty impact plume model. In Chondrules, Records of Protoplanetary Disk Processes, Russell, S., Connolly, H. C. Jr., and Krot, A. N., editors, pp. 361374, Cambridge University Press, Cambridge.Google Scholar
Sarafian, A. R., Nielsen, S. G., Marschall, H. R., et al. (2014) Early accretion of water in the inner solar system from a carbonaceous chondrite-like source. Science, 346, 623626.Google Scholar
Saxena, S. K., and Hrubiak, R. (2014) Mapping the nebular condensates and the chemical composition of the terrestrial planets. Earth & Planetary Science Letters, 393, 113110.Google Scholar
Scott, E. R. D., Krot, A. D., and Sanders, I. S. (2018) Isotopic dichotomy among meteorites and its bearing on the protoplanetary disk. Astrophysical Journal, 854, 164176.Google Scholar
Shu, F. H., Shang, H., and Lee, T. (1996) Toward an astrophysical theory of chondrites. Science, 271, 15451552.Google Scholar
Shu, F. H., Shang, H., Gounelle, M., et al. (2001) The origin of chondrules and refractory inclusions in chondritic meteorites. Astrophysical Journal, 548, 10291050.Google Scholar
Spiegel, D. S., Fortney, J. J., and Sotin, C. (2014) Structure of exoplanets. Proceedings of the National Academy of Sciences, USA, 111, 622627.CrossRefGoogle ScholarPubMed
Tachibana, S., and Huss, G. R. (2003) The initial abundance of 60Fe in the solar system. Astrophysical Journal Letters, 588, L41L44.Google Scholar
Taylor, S. R., and McLennan, S. M. (1995) The geochemical evolution of continental crust. Reviews of Geophysics, 33, 241265.CrossRefGoogle Scholar
Taylor, S. R., and McLennan, S. M. (2009) Planetary Crusts: Their Composition, Origin and Evolution. Cambridge University Press, Cambridge, 378 pp.Google Scholar
Telus, M., Huss, G. R., Ogliore, R. C., et al. (2016) Mobility of iron and nickel at low temperatures: Implications for 60Fe-60Ni systematics of chondrules from unequilibrated ordinary chondrites. Geochimica et Cosmochimica Acta, 178, 87105.Google Scholar
Tera, F., Papanastassiou, D. A., and Wasserberg, G. J. (1974) Isotopic evidence for a terminal lunar cataclysm. Earth & Planetary Science, 22, 121.CrossRefGoogle Scholar
Tobin, J., Sheehan, P. D., Megeath, S. T., et al. (2020) The VLA/ALMA Nascent Disk and Multiplicity (VANDAM) Survey of Orion protostars. II. A statistical characterization of class 0 and class 1 protostellar disks. Astrophysical Journal, 890, doi.org/10.3847/1538-4357/ab659e.Google Scholar
Tolstikhin, I., and Kramers, J. (2008) The Evolution of Matter from the Big Bang to the Present Day Earth. Cambridge University Press, Cambridge, 521 pp.Google Scholar
Toplis, M. J., Mizzon, H., Monnereau, M., et al. (2013) Chondritic models of 4 Vesta: implications for geochemical and geophysical properties. Meteoritics & Planetary Science, 48, 23002315.Google Scholar
Tsiganis, K., Gomes, R., Morbidelli, A., and Levison, H. F. (2005) Origin of the orbital architecture of the giant planets of the solar system. Nature, 435, 459461.Google Scholar
Wadhwa, M., Srinivasan, G., and Carlson, R. W. (2006) Timescales of planetesimal differentiation in the early solar system. In Meteorites and the Early Solar System II, Lauretta, D. S., and McSween, H. Y., editors, pp. 715732, University of Arizona Press, Tucson.Google Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., et al. (2011) Sculpting the inner solar system by gas-driven orbital migration of Jupiter. Nature, 475, 206209.Google Scholar
Wänke, H. (1981) Constitution of terrestrial planets. Philosophical Transactions of the Royal Society of London, A325, 545557.Google Scholar
Warren, P. H. (2011) Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites. Earth & Planetary Science Letters, 311, 93100.Google Scholar
Wasserburg, G. J., Lee, T., and Papanastassiou, D. A. (1977) Correlated O and Mg isotopic anomalies in Allende inclusions II: Magnesium. Geophysical Research Letters, 4, 299302.Google Scholar
Yang, L., and Ciesla, F. J. (2012) The effects of disk building on the distributions of refractory materials in the solar nebula. Meteoritics & Planetary Science, 47, 99119.CrossRefGoogle Scholar
Yoshizaki, T., and McDonough, W. F. (2020) The composition of Mars. Geochimica et Cosmochimica Acta, 273, 137162.Google Scholar

Other References

Agee, C. B., and Walker, D. (1988) Mass balance and phase density constraints on early differentiation of chondritic mantle. Earth & Planetary Science Letters, 90, 144156.CrossRefGoogle Scholar
Albarède, F. (2009) Late accretion of volatiles to Earth. Nature, 461, 12271233.CrossRefGoogle Scholar
Alexander, C. M. O’D., McKeegan, K. D., and Altweg, K. (2018) Water reservoirs in small planetary bodies: Meteorites, asteroids, and comets. Space Science Reviews, 214 , 36.Google Scholar
Andrews, S. (2018) Focus on DSHAP results. Astrophysical Journal Letters, 869, L41L50 (introduction to a series of 10 papers).Google Scholar
Avice, G., and Marty, B. (2014) The iodine-plutonium-xenon age of the Moon-Earth system revisited. Philosophical Transactions of the Royal Society A, 372, 20130260.CrossRefGoogle ScholarPubMed
Barshay, S. S., and Lewis, J. S. (1976) Chemistry of primitive solar material. Annual Reviews of Astronomy & Astrophysics, 14, 8194.CrossRefGoogle Scholar
Basaltic Volcanism Study Project (1981) Basaltic Volcanism on the Terrestrial Planets. Pergamon Press, New York, 1286 pp.Google Scholar
Batalha, N. M. (2014) Exploring exoplanet populations with NASA’S Kepler mission. Proceedings of the National Academy of Sciences, USA, 111, 647654.Google Scholar
Black, D. C., and Pepin, R. O. (1969) Trapped neon in meteorites, II. Earth & Planetary Science Letters, 6, 395405.Google Scholar
Bogard, D. D. (1995) Impact ages of meteorites: A synthesis. Meteoritics, 30, 244268.Google Scholar
Boss, A. P. (2004) Convective cooling of protoplanetary disks and rapid giant planet formation. Astrophysical Journal, 610, 456463.Google Scholar
Bottke, W. F., Nesvorny, D., Grimm, R. E., et al. (2006) Iron meteorites as remnants of planetesimals formed in the terrestrial planet region. Nature, 439, 821824.CrossRefGoogle ScholarPubMed
Bottke, W. F, and Norman, M. D. (2017) The Late Heavy Bombardment. Annual Reviews of Earth & Planetary Sciences, 45, 619647.CrossRefGoogle Scholar
Brown, S. M., and Elkins-Tanton, L. T. (2009) Compositions of Mercury’s earliest crust from magma ocean models. Earth & Planetary Science Letters, 286, 446455.Google Scholar
Burkhardt, C., Dauphas, N., Hans, U., et al. (2019) Elemental and isotopic variability in solar system materials by mixing and processing of primordial disk reservoirs. Geochimica et Cosmochimica Acta, 261, 145170.Google Scholar
Cameron, A. G. W. (1962) The formation of the sun and planets. Icarus, 1, 1369.Google Scholar
Cameron, A. G. W. (1978) Physics of the primitive solar accretion disk. Moon & Planets, 18, 540.CrossRefGoogle Scholar
Cameron, A. G. W., and Truran, J. W. (1977) The supernova trigger for formation of the solar system. Icarus, 30, 447461.Google Scholar
Cano, E. J., Sharp, Z. D., and Shearer, C. K. (2020) Distinct oxygen isotope compositions of the Earth and Moon. Nature Geoscience, 13, 270274.Google Scholar
Carlson, R. W., Garnero, E., Harrison, T. M., et al. (2014) How did early Earth become our modern world? Annual Reviews of Earth & Planetary Sciences, 42, 151178.CrossRefGoogle Scholar
Chabot, N. L., Draper, D. S., and Agee, C. B. (2005) Conditions of core formation in the Earth: Constraints from nickel and cobalt partitioning. Geochimica et Cosmochimica Acta, 69, 21412151.Google Scholar
Ciesla, F. J. (2007) Outward transport of high-temperature materials around the midplane of the solar nebula. Science, 318, 613615.Google Scholar
Clayton, R. N., Grossman, L., and Mayeda, T. K. (1973) A component of primitive nuclear composition in carbonaceous meteorites. Science, 182, 485487.Google Scholar
Clayton, R. N., Onuma, N., Grossman, L., and Mayeda, T. K. (1977) Distribution of the pre-solar component in Allende and other carbonaceous chondrites. Earth & Planetary Science Letters, 34, 209224.Google Scholar
Cohen, B. A., Swindle, T. D., and Kring, D. A. (2005) Geochemical and 40Ar/39Ar geochronology of impact-melt clasts in feldspathic lunar meteorites: Implications for lunar bombardment history. Meteoritics & Planetary Science, 40, 755777.CrossRefGoogle Scholar
Connolly, H. C. Jr., and Jones, R. H. (2016) Chondrules: The canonical and noncanonical views. Journal of Geophysical Research, Planets, 121, 18851899.CrossRefGoogle Scholar
Crossley, S. D., Ash, R. D., Sunshine, J. M., et al. (2020) Sulfide-dominated partial melting pathways in brachinites. Meteoritics & Planetary Science, 55, 20212043.CrossRefGoogle Scholar
Cuzzi, J. N., and Weidenschilling, S. J. (2006) Particle-gas dynamics and primary accretion. In Meteorites and the Early Solar System II, Lauretta, D. S. and McSween, H. Y., editors, pp. 353381, University of Arizona Press, Tucson.CrossRefGoogle Scholar
Dauphas, N. (2017) The isotopic nature of the Earth’s accreting material through time. Nature, 541, 521524.Google Scholar
Desch, S. J., and Cuzzi, J. N. (2000) The generation of lightning in the solar nebula. Icarus, 143, 87105.Google Scholar
Desch, S. J., and Connolly, H. C. (2002) A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules. Meteoritics & Planetary Science, 37, 183207.CrossRefGoogle Scholar
Desch, S. J., Morris, M. A., Connolly, H. C., and Boss, A. P. (2010) A critical examination of the X-wind model of chondrule and CAI formation and radionuclide production. Astrophysical Journal, 725, 692711.Google Scholar
Delsemme, A. H. (1999) The deuterium enrichment observed in recent comets is consistent with the cometary origin of seawater. Planetary & Space Science, 47, 125131.Google Scholar
de Wit, J., Wakeford, H.R., Gillon, M., et al. (2016) A combined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1 b and c. Nature, 537, 6972.Google Scholar
Drake, M. J. (2005) Origin of water in the terrestrial planets. Meteoritics & Planetary Science, 40, 519527Google Scholar
Dyck, B., Wade, J., and Palin, R. (2021) The effect of core formation on surface composition and planetary habitability. Astrophysics Journal Letters, arxiv.org/pdf/2104.10612.pdf.Google Scholar
Fegley, B. F., and Cameron, A. G. W. (1987) A vaporization model for iron/silicate fractionation in the Mercury protoplanet. Earth & Planetary Science Letters, 82, 207222.Google Scholar
Goettel, K. A. (1988) Present bounds on the bulk composition of Mercury: Implications for planetary formation processes. In Mercury, Vilas, F., Chapman, C. R., and Matthews, M. S., editors, pp. 613621, University of Arizona Press, Tucson.Google Scholar
Gomes, R., Levison, H. F., Tsiganis, K., and Morbidelli, A. (2005) Origin of the cataclysmic late heavy bombardment period of the terrestrial planets. Nature, 435, 466469.Google Scholar
Gounelle, M., Shu, F. H., Shang, H., et al. (2001) Extinct radioactivities and protosolar cosmic-rays: Self-shielding and light elements. Astrophysical Journal, 548, 10511070.Google Scholar
Greenwood, R. C., Barrat, J.-A., Miller, M. F., et al. (2018) Oxygen isotopic evidence for accretion of Earth’s water before a high-energy Moon-forming giant impact. Science Advances, 4, eaao5928.Google Scholar
Grossman, J. N., Rubin, A. E., Nagahara, H., and King, E. A. (1988) Properties of chondrules. In Meteorites and the Early Solar System, Kerridge, J. M., and Mathews, M. S., editors, pp. 619659, University of Arizona, Tucson.Google Scholar
Halliday, A. N., and Wood, B. J. (2009) How did Earth accrete? Science, 325, 4445.CrossRefGoogle ScholarPubMed
He, M. Y., Ford, E. B, and Ragozzine, D. (2019) Architectures of exoplanetary systems – I. A clustered forward model for exoplanetary systems around Kepler’s FGK stars. Monthly Notices of the Royal Astronomical Society, 490, 45754605.Google Scholar
Helled, R., and Stevenson, D. (2017) The fuzziness of giant planets’ cores. Astrophysical Journal Letters, 840, L4.Google Scholar
Hopkins, M. D., and Mojzsis, S. J. (2015) A protracted timeline for lunar bombardment from mineral chemistry, Ti thermometry and U-Pb geochronology of Apollo 14 melt breccia zircons. Contributions to Mineralogy & Petrology, 169, 118.Google Scholar
Humayan, M., and Cassen, P. (2000) Processes determining the volatile abundances of the meteorites and terrestrial planets. In Origin of the Earth and Moon, Canup, R. M., and Righter, K., editors, pp. 323, University of Arizona Press, Tucson.CrossRefGoogle Scholar
Huss, G. R. (1988) The role of presolar dust in the formation of the solar system. Earth, Moon & Planets, 40, 165211.CrossRefGoogle Scholar
Huss, G. R. (1990) Ubiquitous interstellar diamond and silicon carbide in primitive chondrites: Abundances reflect metamorphism. Nature, 347, 159162.Google Scholar
Johnson, B. C., Ciesla, F. J., Dullemond, C. P., and Melosh, H. H. (2018) Formation of chondrules by planetesimal collisions. In Chondrules, Records of Protoplanetary Disk Processes, Russell, S. S., Connolly, H. C. Jr., and Krot, A. N., editors, pp. 343360, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Jontoff-Hutter, D. (2019) The compositional diversity of low-mass exoplanets. Annual Reviews of Earth & Planetary Sciences, 47, 141171.Google Scholar
Kargel, J. S., and Lewis, J. S. (1993) The composition and early evolution of Earth. Icarus, 105, 125.Google Scholar
Kleine, T., and Walker, R. J. (2017) Tungsten isotopes in planets. Annual Reviews of Earth & Planetary Science, 45, 389417.Google Scholar
Kleine, T., Mezger, K., Palme, H., et al. (2005) Early core formation in asteroids and late accretion of chondrite parent bodies: Evidence from 182Hf-182W in CAIs, metal-rich chondrites and iron meteorites. Geochimica et Cosmochimica Acta, 69, 58055818.Google Scholar
Kleine, T., Budde, G., Burkhardt, C., et al. (2020) The non-carbonaceous – carbonaceous meteorite dichotomy. Space Science Reviews, 216, 55, doi.org/10.1007/s11214–020-00675-w.Google Scholar
Krot, A. N., Amelin, Y., Cassen, P., and Meibom, A. (2005) Young chondrules in CV chondrites from a giant impact in the early solar system. Nature, 436, 989992.Google Scholar
Krot, A. N., Nagashima, K., Libourel, G., and Miller, K. (2018) Multiple mechanisms of transient heating events in the protoplanetary disk. In Chondrules, Records of Protoplanetary Disk Processes, Russell, S. S., Connolly, H. C. Jr., and Krot, A. N., editors, pp. 1156, Cambridge University Press, Cambridge.Google Scholar
Kruijer, T. S., Burkhardt, C., Budde, G., and Kleine, T. (2017) Age of Jupiter inferred from distinct genetics and formation times of meteorites. Proceedings of the National Academy of Sciences, USA, 114, 67126716.CrossRefGoogle ScholarPubMed
Kruijer, T. S., Kleine, T., and Borg, L. R. (2020) The great isotopic dichotomy of the early solar system. Nature Astronomy, 4, 3240.Google Scholar
Lambrechts, M., and Johansen, A. (2012) Growth of gas-giant cores by pebble accretion. Astronomy & Astrophysics, 544, A32.Google Scholar
Lee, T., Papanastassiou, D. A., and Wasserburg, G. J. (1977) Aluminum-26 in the early solar system: Fossil or fuel? Astrophysical Journal Letters, 211, L107L110.Google Scholar
Levy, E. H. (1988) Energetics of chondrule formation. In Meteorites and the Early Solar System, Kerridge, J. F., and Matthews, M. S., editors, pp. 697711, University of Arizona Press, Tucson.Google Scholar
Lewis, R. S., Tang, M., Wacker, J. F., et al. (1987) Interstellar diamonds in meteorites. Nature, 326, 160162.Google Scholar
Liffman, K., and Brown, M. (1995) The motion and size sorting of particles ejected from a protostellar accretion disk. Icarus, 116, 275290.Google Scholar
Lissauer, J. J., and de Pater, I. (2013) Fundamental Planetary Science: Physics, Chemistry and Habitability. Cambridge University Press, Cambridge, 583 pp.Google Scholar
Lodders, K. (2010) Atmospheric chemistry of the gas giant planets. Geochemical News, 142, geochemsoc.org/publications/geochemicalnews/gn142.Google Scholar
Lodders, K., and Fegley, B. F. (1998) The Planetary Scientist’s Companion. Oxford University Press, New York, 371 pp.Google Scholar
Love, S. G., Keil, K., and Scott, E. R. D. (1995) Electrical discharge heating of chondrules in the solar nebula. Icarus, 115, 97108.Google Scholar
Lunine, J. I. (2014) Giant planets. In Treatise in Geochemistry, 2nd edition, Vol. 2: Planets, Asteroids, Comets and the Solar System, Davis, A. M., editor, pp. 301311, Elsevier, Amsterdam.Google Scholar
MacPherson, G. J., Simon, S. B., Davis, A. M., et al. (2005) Calcium-aluminum-rich inclusions; Major unanswered questions. In Chondrites and the Protoplanetary Disk, ASP Conference Series, 341, Krot, A. N., Scott, E. R. D., and Reipurth, A., editors, pp. 225250, Astronomical Society of the Pacific, San Francisco.Google Scholar
Manser, C. J., Gansicke, B. T., Eggl, S., et al. (2019) A planetesimal orbiting within the debris disk around a white dwarf star. Science, 364, 6669.Google Scholar
Marcy, G. W., Weiss, L. M., Petigura, E. K., et al. (2014) Occurrence and core-envelope structure of 1-4x Earth-size planets around Sun-like stars. Proceedings of the National Academy of Sciences USA, 111, 655660.Google Scholar
Marty, B., Altwegg, K., Balsiger, H., et al. (2017) Xenon isotopes in 67P/Churyumov-Gerasimenko show that comets contributed to Earth’s atmosphere. Science, 356, 10691073.Google Scholar
Mazevet, S., Musella, R., and Guyot, F. (2019) The fate of planetary cores in giant and ice-giant planets. Astronomy & Astrophysics, 631, L4.Google Scholar
McCulloch, M. T., and Wasserburg, G. J. (1978a) Barium and neodymium isotopic anomalies in the Allende meteorite. Astrophysical Journal Letters, 220 , L15L19.Google Scholar
McCulloch, M. T., and Wasserburg, G. J. (1978b) More anomalies from the Allende meteorite: Samarium. Geophysical Research Letters, 5, 599602.Google Scholar
McKeegan, K. D., Chaussidon, M., and Robert, F. (2000) Incorporation of short-lived 10Be in a calcium-aluminum-rich inclusion from the Allende meteorite. Science, 289, 13341337.Google Scholar
McKeegan, K. D., Kallio, A. P. A., Heber, V. S., et al. (2011) The oxygen isotopic composition of the Sun inferred from captured solar wind. Science, 332, 15281532.Google Scholar
McSween, H. Y., Moersch, J. E., Burr, D. M., et al. (2019) Planetary Geoscience. Cambridge University Press, Cambridge, 334 pp.Google Scholar
Minton, D. A., and Malhotra, R. (2011) Secular resonance sweeping of the main asteroid belt during planet migration. Astrophysical Journal, 732, 5364.Google Scholar
Morbidelli, A., Chambers, J., Lunine, J. I., et al. (2000) Source regions and timescales for the delivery of water to the Earth. Meteoritics & Planetary Science, 35, 13091320.Google Scholar
Morbidelli, A., and Raymond, S. N. (2016) Challenges in planet formation. Journal of Geophysical Research, Planets, 121, 19621980.Google Scholar
Morbidelli, A., Lunine, J. I., O’Brien, D. P., et al. (2012) Building terrestrial planets. Annual Reviews of Earth & Planetary Sciences, 40, 251275.Google Scholar
Morbidelli, A., Lambrechts, M., Jacobson, S., and Bitsch, B. (2015) The great dichotomy of the solar system: Small terrestrial embryos and massive giant planet cores. Icarus, 258, 418429.Google Scholar
Morris, M. A., and Boley, A. C. (2018) Formation of chondrules by shock waves. In Chondrules, Records of Protoplanetary Disk Processes, Russell, S. S., Connolly, H. C. Jr., and Krot, A. N., editors, pp. 375399, Cambridge University Press, Cambridge.Google Scholar
Nakano, H., Hirakawa, H., Natsubara, Y., et al. (2020) Precometary organic matter: A hidden reservoir of water inside the snow line. Scientific Reports, 10, doi:10.1038/s41598–020-64815-6.Google Scholar
O’Brien, D. P., Izidoro, A., Jacobson, S. A., et al. (2018) The delivery of water during terrestrial planet formation. Space Science Reviews, 214, 47, doi.org/10.1007/s11214–018-0475-8.Google Scholar
Ogliore, R. C., Huss, G. R., and Nagashima, K. (2011) Ratio estimation in SIMS analysis. Nuclear Instruments & Methods in Physics Research B, 269, 19101918.Google Scholar
Ouellette, N., Desch, S. J., Hester, J. J., and Leshin, L. A. (2005) A nearby supernova injected short-lived radionuclides into our protoplanetary disk. In Chondrites and the Protoplanetary Disk, ASP Conference Series, 341, Krot, A. N., Scott, E. R. D., and Reipurth, A., editors, pp. 527538, Astronomical Society of the Pacific, San Francisco.Google Scholar
Paardekooper, S-J., and Johansen, A. (2018) Giant planet formation and migration. Space Science Reviews, 214, 38, doi.org/10.1007/s11214–018-0472-y.Google Scholar
Peslier, A. H., Schonbacher, M., Busemann, H., and Karato, S.-I. (2017) Water in the Earth’s interior: Distribution and origin. Space Science Reviews, 212, 743810.Google Scholar
Piani, L., Marroucchi, Y., Rigaudier, T., et al. (2020) Earth’s water may have been inherited from material similar to enstatite chondrite meteorites. Science, 369, 11101113.Google Scholar
Reynolds, J. H., and Turner, G. (1964) Rare gases in the chondrite Renazzo. Journal of Geophysical Research, 69, 32633281.Google Scholar
Righter, K. (2011) Prediction of metal-silicate partition coefficients for siderophile elements: An update and assessment of PT conditions for metal-silicate equilibrium during accretion of the Earth. Earth & Planetary Science Letters, 304, 158167.Google Scholar
Righter, K., Drake, M. J., and Scott, E. R. D. (2006) Compositional relationships between meteorites and terrestrial planets. In Meteorites and the Early Solar System II, Lauretta, D. S., and McSween, H. Y., editors, pp. 803828, University of Arizona Press, Tucson.CrossRefGoogle Scholar
Rugel, B., Faestermann, T., Knie, K., et al. (2009) New measurements of the 60Fe half-life. Physical Review Letters, 103, 072502.CrossRefGoogle ScholarPubMed
Sanders, I. S., and Scott, E. R D. (2018) Making chondrules by splashing molten planetesimals: The dirty impact plume model. In Chondrules, Records of Protoplanetary Disk Processes, Russell, S., Connolly, H. C. Jr., and Krot, A. N., editors, pp. 361374, Cambridge University Press, Cambridge.Google Scholar
Sarafian, A. R., Nielsen, S. G., Marschall, H. R., et al. (2014) Early accretion of water in the inner solar system from a carbonaceous chondrite-like source. Science, 346, 623626.Google Scholar
Saxena, S. K., and Hrubiak, R. (2014) Mapping the nebular condensates and the chemical composition of the terrestrial planets. Earth & Planetary Science Letters, 393, 113110.Google Scholar
Scott, E. R. D., Krot, A. D., and Sanders, I. S. (2018) Isotopic dichotomy among meteorites and its bearing on the protoplanetary disk. Astrophysical Journal, 854, 164176.Google Scholar
Shu, F. H., Shang, H., and Lee, T. (1996) Toward an astrophysical theory of chondrites. Science, 271, 15451552.Google Scholar
Shu, F. H., Shang, H., Gounelle, M., et al. (2001) The origin of chondrules and refractory inclusions in chondritic meteorites. Astrophysical Journal, 548, 10291050.Google Scholar
Spiegel, D. S., Fortney, J. J., and Sotin, C. (2014) Structure of exoplanets. Proceedings of the National Academy of Sciences, USA, 111, 622627.CrossRefGoogle ScholarPubMed
Tachibana, S., and Huss, G. R. (2003) The initial abundance of 60Fe in the solar system. Astrophysical Journal Letters, 588, L41L44.Google Scholar
Taylor, S. R., and McLennan, S. M. (1995) The geochemical evolution of continental crust. Reviews of Geophysics, 33, 241265.CrossRefGoogle Scholar
Taylor, S. R., and McLennan, S. M. (2009) Planetary Crusts: Their Composition, Origin and Evolution. Cambridge University Press, Cambridge, 378 pp.Google Scholar
Telus, M., Huss, G. R., Ogliore, R. C., et al. (2016) Mobility of iron and nickel at low temperatures: Implications for 60Fe-60Ni systematics of chondrules from unequilibrated ordinary chondrites. Geochimica et Cosmochimica Acta, 178, 87105.Google Scholar
Tera, F., Papanastassiou, D. A., and Wasserberg, G. J. (1974) Isotopic evidence for a terminal lunar cataclysm. Earth & Planetary Science, 22, 121.CrossRefGoogle Scholar
Tobin, J., Sheehan, P. D., Megeath, S. T., et al. (2020) The VLA/ALMA Nascent Disk and Multiplicity (VANDAM) Survey of Orion protostars. II. A statistical characterization of class 0 and class 1 protostellar disks. Astrophysical Journal, 890, doi.org/10.3847/1538-4357/ab659e.Google Scholar
Tolstikhin, I., and Kramers, J. (2008) The Evolution of Matter from the Big Bang to the Present Day Earth. Cambridge University Press, Cambridge, 521 pp.Google Scholar
Toplis, M. J., Mizzon, H., Monnereau, M., et al. (2013) Chondritic models of 4 Vesta: implications for geochemical and geophysical properties. Meteoritics & Planetary Science, 48, 23002315.Google Scholar
Tsiganis, K., Gomes, R., Morbidelli, A., and Levison, H. F. (2005) Origin of the orbital architecture of the giant planets of the solar system. Nature, 435, 459461.Google Scholar
Wadhwa, M., Srinivasan, G., and Carlson, R. W. (2006) Timescales of planetesimal differentiation in the early solar system. In Meteorites and the Early Solar System II, Lauretta, D. S., and McSween, H. Y., editors, pp. 715732, University of Arizona Press, Tucson.Google Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., et al. (2011) Sculpting the inner solar system by gas-driven orbital migration of Jupiter. Nature, 475, 206209.Google Scholar
Wänke, H. (1981) Constitution of terrestrial planets. Philosophical Transactions of the Royal Society of London, A325, 545557.Google Scholar
Warren, P. H. (2011) Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites. Earth & Planetary Science Letters, 311, 93100.Google Scholar
Wasserburg, G. J., Lee, T., and Papanastassiou, D. A. (1977) Correlated O and Mg isotopic anomalies in Allende inclusions II: Magnesium. Geophysical Research Letters, 4, 299302.Google Scholar
Yang, L., and Ciesla, F. J. (2012) The effects of disk building on the distributions of refractory materials in the solar nebula. Meteoritics & Planetary Science, 47, 99119.CrossRefGoogle Scholar
Yoshizaki, T., and McDonough, W. F. (2020) The composition of Mars. Geochimica et Cosmochimica Acta, 273, 137162.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×