Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-03T21:24:59.881Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  08 September 2023

Roger H. S. Carpenter
Affiliation:
Gonville and Caius College, Cambridge
Imran Noorani
Affiliation:
University College London
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
LATER
The Neurophysiology of Decision-Making
, pp. 158 - 175
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aantaa, E., Riekkinen, P. J. and Frey, H. J. (1973). “Electronystagmographic findings in multiple sclerosis.” Acta Otolaryngologica 75: 15.CrossRefGoogle ScholarPubMed
Abadi, R. V., Broomhead, D. S., Clement, R. A., Whittle, J. P. and Worfolk, R. (1997). “Dynamical systems analysis: a new method of analysing congenital nystagmus waveforms.” Experimental Brain Research 117: 355361.CrossRefGoogle ScholarPubMed
Adams, M. W. J., Wood, D. and Carpenter, R. H. S. (2000). “Expectation acuity: the spatial specificity of the effect of prior probability on saccadic latency.” Journal of Physiology 527(P): 140141.Google Scholar
Aizawa, H., Amo, R. and Okamoto, H. (2011). “Phylogeny and ontogeny of the habenular structure.” Frontiers in Neuroscience 5: 27.CrossRefGoogle ScholarPubMed
Ali, F. R., Michell, A. W., Barker, R. A. and Carpenter, R. H. S. (2006). “The use of quantitative oculometry in the assessment of Huntington’s disease.” Experimental Brain Research 169: 237245.CrossRefGoogle ScholarPubMed
Anderson, A. J. and Carpenter, R. H. S. (2004). “Dynamics of probability prediction in a saccadic latency task.” Journal of Physiology: 555P D554.Google Scholar
Anderson, A. J. and Carpenter, R. H. S. (2006). “Changes in expectation consequent on experience, modelled by a simple, forgetful neural circuit.” Journal of Vision 6: 822835.CrossRefGoogle ScholarPubMed
Anderson, A. J. and Carpenter, R. H. S. (2010). “Saccadic latency in deterministic environments: getting back on track after the unexpected happens.” Journal of Vision 10:14: 12.CrossRefGoogle ScholarPubMed
Anderson, A. J., Yadav, H. and Carpenter, R. H. S. (2008). “Directional prediction by the saccadic system.” Current Biology 18: 614618.CrossRefGoogle ScholarPubMed
Anderson, J. A. (1993). The BSB model: a simple nonlinear autoassociative neural network. Associative Neural Networks: Theory and Implementation. Hassoun, M. H., ed. Oxford, Oxford University Press: 77103.Google Scholar
Antoniades, C., Ettinger, U., Gaymard, B., et al. (2013). “An internationally standardized antisaccade protocol for clinical use.” Vision Research 84: 15.CrossRefGoogle Scholar
Antoniades, C. A., Altham, P. M. E., Mason, S. L., Barker, R. A. and Carpenter, R. H. S. (2007). “Saccadometry: a new tool for evaluating pre-symptomatic Huntington patients.” Neuroreport 18: 11331136.CrossRefGoogle Scholar
Antoniades, C. A., Bak, T. H., Carpenter, R. H. S., Hodges, J. H. and Barker, R. A. (2007). “The diagnostic potential of saccadometry in progressive supranuclear palsy.” Biomarkers in Medicine 1: 487490.CrossRefGoogle ScholarPubMed
Antoniades, C. A., Buttery, P., FitzGerald, J. F., et al. (2012). “Deep brain stimulation: eye movements reveal anomalous effects of electrode placement and stimulation.” PLoS ONE 7: e32830.CrossRefGoogle ScholarPubMed
Antoniades, C. A. and Carpenter, R. H. S. (2012). “Making neurology quantitative.” Neuroreport 23: 572575.CrossRefGoogle ScholarPubMed
Antoniades, C. A., Carpenter, R. H. S. and Temel, Y. (2012). “Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: similar improvements in saccadic and manual responses.” Neuroreport 23: 179183.CrossRefGoogle ScholarPubMed
Antoniades, C. A., Xu, Z., Carpenter, R. H. and Barker, R. A. (2013). “The relationship between abnormalities of saccadic and manual response times in Parkinson’s disease.” Journal of Parkinson’s Disease 3: 557563.CrossRefGoogle ScholarPubMed
Antoniades, C. A., Zheyu, X., Mason, S. L., Carpenter, R. H. S. and Barker, R. A. (2010). “Huntington’s disease: changes in saccades and hand-tapping over three years.” Journal of Neurology 257: 18901898.CrossRefGoogle Scholar
Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J. and Robbins, T. W. (2003). “Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans.” Nature Neuroscience 6: 115116.CrossRefGoogle ScholarPubMed
Aron, A. R., Sahakian, B. J. and Robbins, T. W. (2003). “Distractibility during selection for action: differential deficits in Huntington s disease and following frontal lobe damage.” Neuropsychologia 41: 11371147.CrossRefGoogle ScholarPubMed
Aron, A. R., Schlagheeken, F., Fletcher, P. C., et al. (2002). “Inhibition of subliminally primed responses is mediated by the caudate and thalamus: evidence from functional MRI and Huntington’s disease.” Brain 126: 713723.CrossRefGoogle Scholar
Asimov, I. (1984). New Guide to Science. New York, Basic Books.Google Scholar
Asrress, K. N. and Carpenter, R. H. S. (2001). “Saccadic countermanding: a comparison of central and peripheral stop signals.” Vision Research 41: 26452651.CrossRefGoogle ScholarPubMed
Audley, R. J. (1960). “A stochastic model for individual choice behaviour.” Psychological Review 67: 115.CrossRefGoogle Scholar
Avila, A. and Lin, S.-C. (2014). “Motivational salience signal in the basal forebrain is coupled with faster and more precise decision speed.” PLOS Biology 12(3): 113.CrossRefGoogle ScholarPubMed
Babbage, Charles. (1989) “Letter to Sir David Brewster, LLD., on the subject of Mr. Babbage’s Calculating Engines.” The Works of Charles Babbage. Campbell-Kelly, M., ed. London, Pickering and Chatto: 77.Google Scholar
Bacon, F. (1605). The Advancement of Learning. London, Pickering.Google Scholar
Balfour, A. J. (1914). Theism and Humanism. New York, Hodder and Stoughton.Google Scholar
Baraclough, D. J., Conroy, M. I. and Lee, D. (2004). “Prefrontal cortex and decision making in a mixed-strategy game.” Nature Neuroscience 7: 404410.CrossRefGoogle Scholar
Barlow, H. (1990). “Conditions for versatile learning, Helmholtz’s unconscious inference, and the task of perception.” Vision Research 30: 15611571.CrossRefGoogle ScholarPubMed
Barlow, H. and Tripathy, S. P. (1997). “Correspondence noise and signal pooling in the detection of coherent visual motion.” Journal of Neuroscience 17: 79547966.CrossRefGoogle ScholarPubMed
Barlow, H. B. (1957). “Increment thresholds at low intensities considered as signal/noise discriminations.” Journal of Physiology 136: 469488.CrossRefGoogle ScholarPubMed
Barlow, H. B. (1980). “The absolute efficiency of perceptual decisions.” Philosophical Transactions of the Royal Society 290: 7182.Google ScholarPubMed
Barlow, H. B., Derrington, A. M., Harris, L. R. and Lennie, P. (1977). “The effects of remote stimulation on the responses of cat retinal ganglion cells.” Journal of Physiology 269: 177194.CrossRefGoogle ScholarPubMed
Bartlett, F. C. (1932). Remembering: A Study in Experimental and Social Psychology. Cambridge, Cambridge University Press.Google Scholar
Bass, T. (1991). The Newtonian Casino. London, Penguin Press.Google Scholar
Basso, M. A. and Wurtz, R. H. (1998). “Modulation of neuronal activity in superior colliculus by changes in target probability.” Journal of Neuroscience 18(18): 75197534.CrossRefGoogle ScholarPubMed
Bayes, T. (1763). “Essay toward solving a problem in the doctrine of chances.” Philosophical Transactions of the Royal Society 53: 370418.Google Scholar
Beck, J. M., Ma, W. J., Kiani, R., et al. (2008). “Probabilistic population codes for Bayesian decision making.” Neuron 60: 11421152.CrossRefGoogle ScholarPubMed
Becker, W. and Jürgens, R. (1975). Saccadic reactions to double-step stimuli: evidence for model feedback and continuous information uptake. Basic Mechanisms of Ocular Motility and Their Clinical Implications. Lennerstrand, G. and Bach-y-Rita, P., eds. Oxford, Pergamon: 519524.Google Scholar
Becker, W. and Jürgens, R. (1979). “An analysis of the saccadic system by means of double-step stimuli.” Vision Research 19: 967983.CrossRefGoogle ScholarPubMed
Beintema, J., van Loon, E. M., Hooge, I. T. C. and van der Berg, A. (2003). “Saccadic decision-rate distributions reveal competitive process.” Journal of Vision 3: 72a.CrossRefGoogle Scholar
Berg, H. C. and Brown, D. A. (1972). “Chemotaxis in Escherichia coli analysed by three-dimensional tracking.” Nature 239: 500504.CrossRefGoogle ScholarPubMed
Bianco, I. H. and Wilson, S. W. (2009). “The habenular nuclei: a conserved asymmetric relay station in the vertebrate brain.” Philosophical Transaction of the Royal Society B 364: 10051020.CrossRefGoogle ScholarPubMed
Bloch, M. A. M. (1885). “Expériences sur la vision.” Comptes rendus des séances de la Société de Biologie et de ses filiales 2: 493495.Google Scholar
Boring, E. G. (1929). A History of Experimental Psychology. New York, Century.Google Scholar
Boucher, L., Palmieri, T. J., Logan, G. D. and Schall, J. D. (2007). “Inhibitory control in mind and brain: an interactive race model of countermanding saccades.” Psychological Review 114: 376397.CrossRefGoogle Scholar
Bray, D. (2009). Wetware: A Computer in Every Living Cell. New Haven, Yale University Press.Google Scholar
Bray, T. J. P. and Carpenter, R. H. S. (2015). “Saccadic foraging: reduced reaction time to informative targets.” European Journal of Neuroscience 41: 908913.CrossRefGoogle ScholarPubMed
Brockman, D. and Geisel, T. (1999). “Are human scanpaths Lévy flights?” Ninth International Conference on Artificial Neural Networks: ICANN 99 (Conf. Publ. No. 470). Edinburgh: 263–268, vol. 1.Google Scholar
Brockman, D. and Geisel, T. (2000). “The ecology of gaze shifts.” Neurocomputing 32: 643650.CrossRefGoogle Scholar
Brodersen, K. H., Penny, W. D., Harrison, L. M., et al. (2008). “Integrated Bayesian models of learning and decision making for saccadic eye movements.” Neural Networks 21: 12471260.CrossRefGoogle ScholarPubMed
Broerse, A., Crawford, T. J. and den Boer, J. A. (2001). “Parsing cognition in schizophrenia using saccadic eye movements: a selective overview.” Neuropsychologia 39: 742756.CrossRefGoogle ScholarPubMed
Brown, H. D. and Heathcote, A. (2008). “The simplest complete model of choice response time: linear ballistic accumulation.” Cognitive Psychology 57: 153178.CrossRefGoogle ScholarPubMed
Brown, J. W. (2014). “The tale of the neuroscientists and the computer: why mechanistic theory matters.” Frontiers in Neuroscience 8: 13.CrossRefGoogle ScholarPubMed
Brown, P., Chen, C. C., Wang, S., et al. (2006). “Involvement of human basal ganglia in offline feedback control of voluntary movement.” Current Biology 16: 21292134.CrossRefGoogle ScholarPubMed
Burrell, J. R., Carpenter, R. H. S., Hodges, J. R. and Kiernan, M. C. (2013). “Early saccades in amyotrophic lateral sclerosis.” Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration 14: 294301.CrossRefGoogle ScholarPubMed
Burrell, J. R., Hornberger, M., Carpenter, R. H. S., Kiernan, M. C. and Hodges, J. R. (2012). “Saccadic abnormalities in frontotemporal dementia.” Neurology 78: 18161823.CrossRefGoogle ScholarPubMed
Camalier, C. R., Gotier, A., Murthy, A., et al. (2007). “Dynamics of saccade target selection: race model analysis of double step and search step saccade production in human and macaque.” Vision Research 47: 21872211.CrossRefGoogle ScholarPubMed
Campbell, F. W. and Kulikowski, J. J. (1972). “The visual evoked potential as a function of contrast of a grating pattern.” Journal of Physiology 222: 345356.CrossRefGoogle ScholarPubMed
Carpenter, R. (2000). “The neural control of looking.” Current Biology 10(8): R291–293.CrossRefGoogle ScholarPubMed
Carpenter, R. and Noorani, I. (2017). “Movement suppression: brain mechanisms for stopping and stillness.” Philosophical Transaction of the Royal Society B: Biological Sciences 372(1718).CrossRefGoogle ScholarPubMed
Carpenter, R. and Reddi, B. (2012). Neurophysiology: A Conceptual Approach. London, Hodder.CrossRefGoogle Scholar
Carpenter, R. H. S. (1981). Oculomotor procrastination. Eye Movements: Cognition and Visual Perception. Fisher, D. F., Monty, R. A. and Senders, J. W., eds. Hillsdale, Lawrence Erlbaum: 237246.Google Scholar
Carpenter, R. H. S. (1988). Movements of the Eyes. London, Pion.Google Scholar
Carpenter, R. H. S., ed. (1992a). Eye Movements. Vol. 8, Vision and Visual Dysfunction. London, Macmillan.Google Scholar
Carpenter, R. H. S. (1992b). The visual origins of ocular motility. Eye Movements. Vol. 8, Vision and Visual Dysfunction. Carpenter, R. H. S., ed. London, Macmillan: 110.Google Scholar
Carpenter, R. H. S. (1993). “The distribution of quick phase intervals in optokinetic nystagmus.” Ophthalmic Research 25: 9193.CrossRefGoogle ScholarPubMed
Carpenter, R. H. S. (1994). Express optokinetic nystagmus. Contemporary Ocular Motor and Vestibular Research. Fuchs, A. F., Brandt, T., Büttner, U. and Zee, D., eds. Stuttgart, Georg Thieme: 185187.Google Scholar
Carpenter, R. H. S. (1994). “Frontal cortex: choosing where to look.” Current Biology 4: 341343.CrossRefGoogle ScholarPubMed
Carpenter, R. H. S. (1994). “SPIC: a PC-based system for rapid measurement of saccadic responses.” Journal of Physiology (Proceedings) 480: 4P.Google Scholar
Carpenter, R. H. S. (2001). “Express saccades: is bimodality a result of the order of stimulus presentation?Vision Research 41: 11451151.CrossRefGoogle ScholarPubMed
Carpenter, R. H. S. (2004). “The saccadic system: a neurological microcosm.” Advances in Clinical Neuroscience and Rehabilitation 4: 68.Google Scholar
Carpenter, R. H. S. (2004). “Supplementary eye field: keeping an eye on eye movement.” Current Biology 14: R416–418.CrossRefGoogle ScholarPubMed
Carpenter, R. H. S. (2012). “Analysing the detail of saccadic reaction time distributions.” Biocybernetics and Biological Engineering 32: 4963.CrossRefGoogle Scholar
Carpenter, R. H. S. and Kinsler, V. (1995). “Saccadic eye movements while reading music.” Vision Research 35: 14471458.Google Scholar
Carpenter, R. H. S. and McDonald, S. A. (2006). “LATER predicts saccade latency distributions in reading.” Experimental Brain Research 177: 176183.CrossRefGoogle ScholarPubMed
Carpenter, R. H. S. and Reddi, B. A. J. (2001). “Deciding between the deciders: two models of reaction time may happily coexist.” Nature Neuroscience 4: 337.CrossRefGoogle Scholar
Carpenter, R. H. S., Reddi, B. A. J. and Anderson, A. J. (2009). “A simple two-stage model predicts response time distributions.” Journal of Physiology 587: 40514062.CrossRefGoogle ScholarPubMed
Carpenter, R. H. S. and Robson, J. G., eds. (1998). Vision Research: A Practical Guide to Laboratory Methods. Oxford, Oxford University Press.CrossRefGoogle Scholar
Carpenter, R. H. S. and Williams, M. L. L. (1995). “Neural computation of log likelihood in the control of saccadic eye movements.” Nature 377: 5962.CrossRefGoogle ScholarPubMed
Chandna, A., Chandrasekharan, D. P., Ramesh, A. V. and Carpenter, R. H. S. (2012). “Altered interictal saccadic reaction time in migraine: a cross-sectional study.” Cephalalgia 32: 473480.CrossRefGoogle ScholarPubMed
Chocholle, R. (1940). “Variation des temps de réactions auditifs en fonction de l’intensité à diverses fréquences.” L’année psychologique 41: 65124.CrossRefGoogle Scholar
Christie, L. S. and Luce, R. D. (1956). “Decision structure and time relations in simple choice behaviour.” Bulletin of Mathematical Biophysics 18: 89112.CrossRefGoogle Scholar
Condy, C., Rivaud-Péchoux, S., Ostendorf, F., Ploner, C.-J. and Gaymard, B. (2004). “Neural substrate of antisaccades.” Neurology 63: 15711578.CrossRefGoogle ScholarPubMed
Cournot, A. (1843). Exposition de la théorie des chances et des probabilités. Paris.Google Scholar
Craik, K. J. W. (1952). The Nature of Explanation. Cambridge, Cambridge University Press.Google Scholar
Crawford, T. J. (1996). “Transient motion of visual texture delays saccadic eye movements.” Acta Psychologica 92: 251262.CrossRefGoogle ScholarPubMed
Croone, W. (1667). De ratione motus musculorum. Amstelodami, Apud Casparum CommelinumGoogle Scholar
Crosby, E. C. and Henderson, J. W. (1948). “The mammalian midbrain and isthmus regions: II. Fibre connections of the superior colliculus. B. Pathways concerned in automatic eye movements.” Journal of Comparative Neurology 88: 5391.CrossRefGoogle Scholar
Cunniffe, N., Munby, H., Chan, S., et al. (2015). “Using saccades to diagnose covert hepatic encephalopathy.” Metabolic Brain Disease 30: 821828.CrossRefGoogle ScholarPubMed
Cutsuridis, V., Kumari, V. and Ettinger, U. (2014). “Antisaccade performance in schizophrenia: a neural model of decision making in the superior colliculus.” Frontiers in Neuroscience 8: 13.CrossRefGoogle ScholarPubMed
Cutsuridis, V., Smyrnis, N., Evdokimidis, I. and Perantonis, S. (2007). “A neural model of decision-making by the superior colicullus in an antisaccade task.” Neural Networks 20: 690704.CrossRefGoogle Scholar
Cynader, M. and Berman, N. (1972). “Receptive-field organization of monkey superior colliculus.” Journal of Neurophysiology 35: 187201.CrossRefGoogle ScholarPubMed
da Vinci, L. (1998). Notebook, quoted in Vecce, Carlo, Leonardo. Rome, Salerno.Google Scholar
Dale, A. (1991). A History of Inverse Probability. New York, Springer.CrossRefGoogle Scholar
Dawson, C., Murphy, E., Maritz, C., et al. (2011). “Dietary treatment of phenylketonuria: the effect of phenylalanine on reaction time.” Journal of Inherited Metabolic Disease 34: 449454.CrossRefGoogle ScholarPubMed
de Finetti, B. (1937). “La prévision: ses lois logiques, ses sources subjectives.” Annales de l’Institut Henri Poincaré 7: 1.Google Scholar
Dempster, A. P. (1968). “A generalization of Bayesian inference.” Journal of the Royal Statistical Society Series B 30: 205247.Google Scholar
Deneve, S. (2008). “Bayesian spiking neurons I: inference.” Neural Computation 20: 91117.CrossRefGoogle ScholarPubMed
Deneve, S. (2008). “Bayesian spiking neurons II: learning.” Neural Computation 20: 118145.CrossRefGoogle ScholarPubMed
Descartes, R. (1656). Discours de la méthode. Leiden.Google Scholar
Dodge, R. (1900). “Visual perception during eye movement.” Psychological Review 7: 454465.CrossRefGoogle Scholar
Dodge, R. (1905). “The illusion of clear vision during eye movement.” Psychological Bulletin 2: 193199.CrossRefGoogle Scholar
Dodge, R. and Cline, T. S. (1901). “The angle velocity of eye movements.” Psychological Review 8: 145157.CrossRefGoogle Scholar
Dolmenech, P. and Dreher, J.-C. (2010). “Decision threshold modulation in the human brain.” Journal of Neuroscience 30: 1430514317.CrossRefGoogle Scholar
Dryden, J. (1687). The Hind and the Panther: A Poem, in Three Parts. London, Jacob Tonson.Google Scholar
Edwards, A. W. F. (1972). Likelihood. Cambridge, Cambridge University Press.Google Scholar
Edwards, A. W. F. (1974). “The history of likelihood.” International Statistics Review 42: 915.CrossRefGoogle Scholar
Edwards, A. W. F. (1992). Likelihood. Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Edwards, A. W. F. (2000). “Fisher information and the fundamental theorem of natural selection.” Istituto Lombardo Rendiconti Scienze B134: 317.Google Scholar
Ejima, Y. and Ohtani, Y. (1987). “Simple reaction time to sinusoidal grating and perceptual integration time: contributions of perceptual and response processes.” Vision Research 27: 269276.CrossRefGoogle ScholarPubMed
Emeric, E. E., Brown, J. W., Boucher, L., et al. (2007). “Influence of history on saccade countermanding performance by humans and macaque monkeys.” Vision Research 47: 3549.CrossRefGoogle ScholarPubMed
Epelboim, J., Booth, J. R. and Steinman, R. M. (1994). “Reading unspaced text: implications for theories of reading eye movements.” Vision Research 34: 17351766.CrossRefGoogle ScholarPubMed
Evarts, E. V., Kimura, M., Wurtz, R. H. and Hikosaka, O. (1984). “Behavioural correlates of activity in basal ganglia neurons.” Trends in Neuroscience 77: 449453.Google Scholar
Everitt, B. J. and Robbins, T. W. (1997). “Central cholinergic systems and cognition.” Annual Review of Psychology 48: 649684.CrossRefGoogle ScholarPubMed
Evinger, C. and Fuchs, A. F. (1978). “Saccadic, smooth pursuit and optokinetic eye movements of the trained cat.” Journal of Physiology 285: 209229.CrossRefGoogle ScholarPubMed
Fatt, P. and Katz, B. (1950). “Some observations on biological noise.” Nature 166: 597598.CrossRefGoogle ScholarPubMed
Fechner, G. T. (1860). Elemente der Psychophysik. Leipzig, Breithopf and Härtel.Google Scholar
Fecteau, J. H. and Munoz, D. P. (2003). “Exploring the consequences of the previous trial.” Nature Reviews in Neuroscience 4: 19.CrossRefGoogle ScholarPubMed
Fecteau, J. H. and Munoz, D. P. (2007). “Warning signals influence motor processing.” Journal of Neurophysiology 97: 16001609.CrossRefGoogle ScholarPubMed
Ferraina, S., Paré, M. and Wurtz, R. H. (2002). “Comparison of cortico-cortico and cortico-collicular signals for generation of saccadic eye movements.” Journal of Neurophysiology 87: 845858.CrossRefGoogle Scholar
Ferrier, D. (1886). The Functions of the Brain. 2nd ed. London, Smith Elder: xxiii + 498.Google Scholar
Fischer, B. and Boch, R. (1983). “Saccadic eye movements after extremely short reaction times in the monkey.” Brain Research 260: 2126.CrossRefGoogle ScholarPubMed
Fischer, B. and Boch, R. (1984). Express saccades of the monkey: a new type of visually guided rapid eye movement after extremely short reaction times. Theoretical and Applied Aspects of Eye Movement Research. Gale, A. G. and Johnston, F., eds. Amsterdam, Elsevier: 403408.Google Scholar
Fischer, B., Geleck, S. and Huber, W. (1995). “The three-loop model: a neural network for the generation of saccadic reaction times.” Biological Cybernetics 72: 185196.CrossRefGoogle Scholar
Fischer, B. and Krüger, J. (1974). “The shift-effect in the cat’s lateral geniculate nucleus.” Experimental Brain Research 21: 225227.CrossRefGoogle Scholar
Fischer, B. and Ramsperger, E. (1984). “Human express saccades: extremely short reaction times of goal directed eye movements.” Experimental Brain Research 57: 191195.CrossRefGoogle ScholarPubMed
Fischer, B. and Weber, H. (1993). “Express saccades and visual attention.” Behaviour and Brain Research 16: 553610.Google Scholar
Fischer, B., Weber, H., Biscaldi, M., et al. (1993). “Separate populations of visually guided saccades in humans: reaction times and amplitudes.” Experimental Brain Research 92: 528541.CrossRefGoogle ScholarPubMed
Fisher, R. A. (1921). “On the ‘Probable Error’ of a coefficient of correlation.” Metron 1(Part 4): 332.Google Scholar
Fisher, R. A. (1934). “Indeterminism and natural selection.” Philosophy of Science 1: 99117.CrossRefGoogle Scholar
Fisher, R. A. (1934). “Randomisation, and an old enigma of card play.” Mathematical Gazette 18: 294297.CrossRefGoogle Scholar
Fisher, R. A. (1935). “The logic of inductive inference.” Journal of the Royal Statistical Society 98: 3954.CrossRefGoogle Scholar
Fisher, R. A. (1950). Creative Aspects of Natural Law. Cambridge, Cambridge University Press.Google Scholar
Flourens, J. (1911). Encyclopædia Britannica. 11th ed. Cambridge, Cambridge University Press.Google Scholar
Fuchs, A. F. (1967). “Saccadic and smooth pursuit eye movements in the monkey.” Journal of Physiology 191: 609631.CrossRefGoogle ScholarPubMed
Furneaux, S. and Land, M. F. (1999). “The effects of skill on the eye-hand span during musical sight reading.” Proceedings of the Royal Society B 266: 14351440.CrossRefGoogle ScholarPubMed
Gauss, C. F. (1809). Theoria motvs corporvm coelestivm in sectionibvs conicis Solem ambientivm. Hamburg, Friderick Perthes.Google Scholar
Genest, W., Hammond, R. and Carpenter, R. H. S. (2016). “The random dot tachistogram: a novel task that elucidates the functional architecture of decision.” Nature Scientific Reports 6: 30787.CrossRefGoogle ScholarPubMed
Ghosh, B. C. P., Carpenter, R. H. S. and Rowe, J. B. (2013). “A longitudinal study of motor, oculomotor and cognitive function in progressive supranuclear palsy.” PLoS ONE 8.CrossRefGoogle ScholarPubMed
Gilden, D. L., Thornton, T. and Mallon, M. W. (1995). “1/f noise in human cognition.” Science 267: 18371839.CrossRefGoogle ScholarPubMed
Glimcher, P. W. (2008). The neurobiology of individual decision making, dualism, and legal accountability. Better than Conscious? Engel, C. and Singer, W., eds. Cambridge, MA, MIT Press: 319346.Google Scholar
Glimcher, P. W. and Rusticini, A. (2004). “Neuroeconomics: the consilience of brain and decision.” Science 306: 447451.CrossRefGoogle ScholarPubMed
Goard, M. and Dan, Y. (2009). “Basal forebrain activation enhances cortical coding of natural scenes.” Nature Neuroscience 12: 14441449.CrossRefGoogle ScholarPubMed
Gold, J. I. and Shadlen, M. N. (2007). “The neural basis of decision-making.” Annual Review of Neuroscience 30: 525574.CrossRefGoogle ScholarPubMed
Good, I. J. (1950). Probability and the Weighing of Evidence. London, Griffin.Google Scholar
Good, I. J. (1952). “Rational decisions.” Journal of the Royal Statistical Society Series B 14: 107114.Google Scholar
Good, I. J. (1955). “Some terminology and notation in information theory.” Proceedings of the Institute of Electrical Engineers C 103: 200204.Google Scholar
Good, I. J. (1959). “Kinds of probability.” Science 129: 443447.CrossRefGoogle ScholarPubMed
Good, I. J. (1968). “Corroboration, explanation, evolving probability, simplicity and a sharpened razor.” British Journal of the Philosophy of Science 19: 123143.CrossRefGoogle Scholar
Good, I. J. (1971). The probabilistic explication of information, evidence, surprise, causality, explanation and utility. Foundations of Statistical Inference. Godambe, V. P. and Sprott, D. A., eds. Toronto, Holt, Rinehart and Winston: 108141.Google Scholar
Good, I. J. (1975). “Explicativity, corroboration and the relative odds of hypotheses.” Synthese 30: 3973.CrossRefGoogle Scholar
Gottlieb, J. and Goldberg, M. E. (1999). “Activity of neurons in the lateral interparietal area of the monkey during an antisaccade task.” Nature Neuroscience 2: 906912.CrossRefGoogle Scholar
Gould, P. and White, R. (1974). Mental Maps. Harmondsworth, Penguin.CrossRefGoogle Scholar
Green, D. M. and Luce, R. D. (1971). “Detection of auditory signals presented at random.” Perception and Psychophysics 9: 257268.CrossRefGoogle Scholar
Green, D. M. and Swets, J. A. (1966). Signal Detection Theory and Psychophysics. New York, Wiley.Google Scholar
Gregory, R. L. (1956). An experimental treatment of vision as an information source and noisy channel. Information Theory. Cherry, C., ed. London, Butterworth: 287299.Google Scholar
Grice, G. R. (1968). “Stimulus intensity and response evocation.” Psychological Review 75: 359373.CrossRefGoogle ScholarPubMed
Grice, G. R., Nullmeyer, R. and Spiker, V. A. (1977). “Application of variable criterion theory to choice reaction time.” Perception and Psychophysics 22: 431449.CrossRefGoogle Scholar
Hacking, I. (1965). Logic of Statistical Inference. Cambridge, Cambridge University Press.Google Scholar
Hacking, I. (1975). The Emergence of Probability. Cambridge, Cambridge University Press.Google Scholar
Hallett, P. E. and Adams, B. D. (1980). “The predictability of saccadic latency in a novel voluntary oculomotor task.” Vision Research 20: 329339.CrossRefGoogle Scholar
Halliday, J. and Carpenter, R. H. S. (2010). “The effect of cognitive distraction on saccadic latency.” Perception 39: 4150.CrossRefGoogle ScholarPubMed
Handford, M. (1987). Where’s Wally. London, Walker.Google Scholar
Hanes, D. P. and Carpenter, R. H. S. (1999). “Countermanding saccades in humans.” Vision Research 39: 27772791.CrossRefGoogle ScholarPubMed
Hanes, D. P. and Schall, J. D. (1995). “Countermanding saccades in macaque.” Visual Neuroscience 12: 929937.CrossRefGoogle ScholarPubMed
Hanes, D. P. and Schall, J. D. (1996). “Neural control of voluntary movement initiation.” Science 274: 427430.CrossRefGoogle ScholarPubMed
Hänzi, S., Copley, H. and Carpenter, R. H. S. (2011). “Saccadic latency and information foraging.” Journal of Physiology Proceedings 23: PC299.Google Scholar
Harris, C. (1989). “The ethology of saccades: a non-cognitive model.” Biological Cybernetics 60: 401410.CrossRefGoogle ScholarPubMed
Hebb, D. O. (1949). Organization of Behaviour. London, Wiley.Google Scholar
Helmholtz, H. v. (1867). Handbuch der physiologischen Optik. Hamburg, Voss.Google Scholar
Henmon, V. A. C. and Wells, F. L. (1914). “Concerning individual differences in reaction times.” Psychological Review 27: 153156.CrossRefGoogle Scholar
Hershey, L. A., Whicker, L., Abel, L. A., et al. (1983). “Saccadic latency measurements in dementia.” Archives of Neurology 40: 592593.CrossRefGoogle ScholarPubMed
Hick, W. E. (1952). “On the rate of gain of information.” Quarterly Journal of Experimental Psychology 4: 1126.CrossRefGoogle Scholar
Hikosaka, O., Takikawa, Y. and Kawagoe, R. (2000). “Role of the basal ganglia in the control of purposive saccadic eye movements.” Psychological Review 80: 953978.Google ScholarPubMed
Hikosaka, O. and Wurtz, R. H. (1983a). “Visual and oculomotor functions of monkey substantia nigra pars reticulata. I. Relation of visual and auditory responses to saccades.” Journal of Neurophysiology 49: 12301253.CrossRefGoogle ScholarPubMed
Hikosaka, O. and Wurtz, R. H. (1983b). “Visual and oculomotor functions of monkey substantia nigra pars reticulata. II. Visual responses related to fixation of gaze.” Journal of Neurophysiology 49: 12541267.CrossRefGoogle ScholarPubMed
Hikosaka, O. and Wurtz, R. H. (1983c). “Visual and oculomotor functions of monkey substantia nigra pars reticulata III. Memory-contingent visual and saccadic responses.” Journal of Neurophysiology 49: 12681284.CrossRefGoogle Scholar
Hikosaka, O. and Wurtz, R. H. (1983d). “Visual and oculomotor functions of monkey substantia nigra pars reticulata. IV. Relation of substantia nigra to superior colliculus.” Journal of Neurophysiology 49: 12851301.CrossRefGoogle ScholarPubMed
Hildreth, J. D. (1973). “Bloch’s Law and a temporal integration model.” Perception and Psychophysics 14: 421432.CrossRefGoogle Scholar
Hohle, R. H. (1965). “Inferred components of reaction times as functions of foreperiod duration.” Journal of Experimental Psychology 69: 382386.CrossRefGoogle ScholarPubMed
Holmes, G. (1936). “Looking and seeing.” Irish Journal of Medical Science 11: 565576.CrossRefGoogle Scholar
Howie, D. (2002). Interpreting Probability. Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Hughlings Jackson, J. (1884). “On the evolution and the dissolution of the nervous system.” British Medical Journal 1 (1213): 591593.CrossRefGoogle Scholar
Hughlings Jackson, J. (1932). Selected Writings. London, Hodder and Stoughton.Google Scholar
Hume, D. (1739). A Treatise of Human Nature. London, Noon.Google Scholar
Hutton, S. B. and Ettinger, U. (2006). “The antisaccade task as a research tool in psychopathology: a critical review.” Psychophysiology 43: 302313.CrossRefGoogle ScholarPubMed
Hutton, S. B., Joyce, E. M., Barnes, T. R. and Kennard, C. (2002). “Saccadic distractibility in first-episode schizophrenia.” Neuropsychologia 40: 17291736.CrossRefGoogle ScholarPubMed
Hyman, R. (1953). “Stimulus information as a determinant of reaction time.” Journal of Experimental Psychology 45: 188196.CrossRefGoogle ScholarPubMed
James, W. (1890). Principles of Psychology. New York, Henry Holt.Google Scholar
Javal, E. (1879). “Essai sur la physiologie de la lecture.” Annales d’oculometrie 82: 242253.Google Scholar
Jeffrey, R. (1965). The Logic of Decision. New York, McGraw-Hill.Google Scholar
Jeffreys, H. (1931). Scientific Inference. Cambridge, Cambridge University Press.Google Scholar
Jeffreys, H. (1936). “Further significance tests.” Proceedings of the Cambridge Philosophical Society 32: 416445.CrossRefGoogle Scholar
Jeffreys, H. (1939). Theory of Probability. Oxford, Clarendon Press.Google Scholar
Jenkins, T. N. (1926). “Facilitation and inhibition.” Archives of Psychology 14(86): 156.Google Scholar
Johnson, H. M. (1918). “The influence of the distribution of brightness over the visual field on the time required for discriminative responses to visual stimuli.” Psychobiology 1: 459494.CrossRefGoogle Scholar
Joyce, J. (1922). Ulysses. Paris, Shakespeare and Co.Google Scholar
Just, M. A. and Carpenter, P. A. (1980). “A theory of reading: from eye fixations to comprehension.” Psychological Review 87: 329354.CrossRefGoogle ScholarPubMed
Kaas, J., ed. (2009). Evolutionary Neuroscience. Oxford, Academic Press.Google Scholar
Kalesnykas, R. P. and Hallett, P. E. (1987). “The differentiation of visually guided and anticipatory saccades in gap and overlap paradigms.” Experimental Brain Research 68: 115121.CrossRefGoogle ScholarPubMed
Kendall, M. G. (1961). A Course in the Geometry of n Dimensions. London, Griffin.Google Scholar
Kendall, M. G. and Stuart, A. (1968). The Advanced Theory of Statistics. London, Griffin.CrossRefGoogle Scholar
Keynes, J. M. (1921). A Treatise on Probability. London, Macmillan.Google Scholar
Khan, O., Taylor, S. J., Jones, J. G., et al. (1999). “Effects of low-dose isoflurane on saccade eye movement generation.” Anaesthesia 54: 142145.CrossRefGoogle ScholarPubMed
Khoo, M. C. K. (2000). Physiological Control Systems: Analysis: Simulation and Estimation. New York, IEEE Press.Google Scholar
Kiani, R. and Shadlen, M. N. (2009). “Representation of confidence associated with a decision by neurons in the parietal cortex.” Science 324: 759763.CrossRefGoogle ScholarPubMed
Kiesow, F. (1904). “Über die einfachen Reaktionszeiten der taktilen Belastungsempfindung.” Zeitschrift für Psychologie 35: 849.Google Scholar
Kintsch, W. (1963). “A response time model for choice behaviour.” Psychometrika 28: 2732.CrossRefGoogle Scholar
Kolmogorov, A. (1941). “Confidence limits for an unknown distribution function.” Annals of Mathematical Statistics 23: 525540.Google Scholar
Kornhuber, H. H. and Deecke, L. (1965). “Hirnpotentialänderungen beim Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale.” Pflügers Archiv 284: 117.CrossRefGoogle Scholar
Krauzlis, R. and Dill, N. (2002). “Neural correlates of target choice for pursuit and saccades in the primate superior colliculus.” Neuron 35(2): 355363.CrossRefGoogle ScholarPubMed
Krismer, F., Roos, J. C. P., Schranz, M., et al. (2010). “Saccadic latency in hepatic encephalopathy: a pilot study.” Metabolic Brain Disease 25: 285295.CrossRefGoogle ScholarPubMed
Kubie, L. S. (1954). Psychiatric and psychoanalytic considerations of the problem of consciousness. Brain Mechanisms and Consciousness. Adrian, E. D., Bretler, F., Jasper, H. H. and Delafresnaye, J. F., eds. Oxford, Blackwell: 444469.Google Scholar
La Berge, D. L. (1962). “A recruitment theory of simple behaviour.” Psychometrika 27: 375396.CrossRefGoogle Scholar
La Berge, D. L. and Tweedy, J. R. (1964). “Presentation probability and choice time.” Journal of Experimental Psychology 68: 477481.CrossRefGoogle Scholar
Laming, D. (1968). Information Theory of Choice Reaction Times. New York, Academic.Google Scholar
Laming, D. (1973). Mathematical Psychology. London, Academic.Google Scholar
Land, M. F. (1995). The functions of eye movements in animals remote from man. Eye Movement Research: Mechanisms, Processes and Applications. Findlay, J. M., Walker, R., Kentridge, R. W., eds. Amsterdam, Elsevier: 6376.CrossRefGoogle Scholar
Land, M. F. and McLeod, P. (2000). “From eye movements to actions: how batsmen hit the ball.” Nature Neuroscience 3: 13401345.CrossRefGoogle ScholarPubMed
Land, M. F., Mennie, N. and Rusted, J. (1999). “The roles of vision and eye movements in the control of activities of daily living.” Perception 28: 13111328.CrossRefGoogle ScholarPubMed
Land, M. F. and Tatler, B. W. (2009). Looking and Acting. Oxford, Oxford University Press.Google Scholar
Laplace, P. S. (1812). Théorie analytique des probabilités. Paris, Courcier.Google Scholar
Latimer, K. W., Yates, J. L., Meister, M. L., Huk, A. C. and Pillow, J. W. (2015). “NEURONAL MODELING. Single-trial spike trains in parietal cortex reveal discrete steps during decision-making.” Science 349(6244): 184187.CrossRefGoogle ScholarPubMed
Laurentius (A du Laurens), A. (1599). A Discourse of the Preservation of the Sight: of Melancholike Diseases; of Rheumes and of Old Age. London, Ralph Jackson.Google Scholar
Lauwereyns, J. (2010). The Anatomy of Bias: How Neural Circuits Weigh the Options. Cambridge, MA, MIT Press.CrossRefGoogle Scholar
Lauwereyns, J., Takikawa, Y., Kawagoe, R., et al. (2002). “Feature-based anticipation of cues that predict reward in monkey caudate nucleus.” Neuron 33: 316318.CrossRefGoogle ScholarPubMed
Lauwereyns, J., Watanabe, K., Loe, B. and Hikosaka, O. (2002). “A neural correlate of response bias in monkey caudate nucleus.” Nature 418: 413417.CrossRefGoogle ScholarPubMed
Lazebnik, Y. (2002). “Can a biologist fix a radio? – Or, what I learned while studying apoptosis.” Cancer Cell 2: 179181.CrossRefGoogle Scholar
Leach, J. C. D. and Carpenter, R. H. S. (2001). “Saccadic choice with asynchronous targets: evidence for independent randomisation.” Vision Research 41: 34373445.CrossRefGoogle ScholarPubMed
Lee, C. S. and Luce, R. D. (1956). “Decision structure and time relations in simple choice behaviour.” Bulletin of Mathematical Biophysics 18: 89112.Google Scholar
Lee, D. (2008). “Game theory and neural basis of social decision making.” Nature Neuroscience 11: 404409.CrossRefGoogle ScholarPubMed
Leigh, R. J. and Kennard, C. (2004). “Using saccades as a research tool in the clinical neurosciences.” Brain 127: 460477.CrossRefGoogle ScholarPubMed
Leigh, R. J. and Zee, D. S. (2015). The Neurology of Eye Movements. New York, Oxford University Press.CrossRefGoogle Scholar
Lenoir, M., Crevits, L., Goethals, M., et al. (2000a). “Saccadic eye movements and finger reaction times of table tennis players of different levels.” Neuro-ophthalmology 24: 335338.CrossRefGoogle Scholar
Lenoir, M., Crevits, L., Goethals, M., Wildenbeest, J. and Musch, E. (2000b). “Are better eye movements an advantage in ball games? A study of prosaccadic and antisaccadic eye movements.” Perceptual and Motor Skills 91: 546552.CrossRefGoogle Scholar
Leth-Steensen, C., Elbaz, Z. K. and Douglas, V. I. (2000). “Mean response times, variability, and skew in the responding of ADHD children: a response time distributional approach.” Acta Psychologica 104: 167190.CrossRefGoogle ScholarPubMed
Libet, B., Peall, D. K., Morledge, D. E., et al. (1991). “Control of the transition from sensory detection to sensory awareness in man by the duration of a thalamic stimulus.” Brain 114: 17311757.CrossRefGoogle Scholar
Libet, B., Wright, E. W., Feinstein, B. and Pearl, D. K. (1979). “Subjective referral of the timing for a conscious sensory experience. A functional role for the somatosensory specific projection system in man.” Brain 102: 193224.CrossRefGoogle ScholarPubMed
Libet, J. (1985). “Subjective antedating of a sensory experience and mind-brain theories: reply to Honderich (1984).” Journal of Theoretical Biology 114: 563.CrossRefGoogle ScholarPubMed
Lindley, D. V. (1956). “On a measure of the information provided by an experiment.” Annals of Mathematical Statistics 27: 9861005.CrossRefGoogle Scholar
Lindley, D. V. (2000). “The philosophy of statistics.” The Statistician 49: 293337.CrossRefGoogle Scholar
Llinas, R. (1974). “Motor aspects of cerebellar control.” The Physiologist 17: 1946.Google ScholarPubMed
Logan, G. D. and Cowan, W. B. (1984). “On the ability to inhibit thoughts and action: a theory of an act of control.” Psychological Review 91: 295327.CrossRefGoogle Scholar
Lucas, J. R. (1970). The Concept of Probability. Oxford, Clarendon.Google Scholar
Luce, R. D. (1959). Individual Choice Behaviour: A Theoretical Analysis. New York, Wiley.Google Scholar
Luce, R. D. (1960). Response latencies and probabilities. Mathematical Models in the Social Sciences. Arrow, K. J., Karlin, S. and Suppes, P., eds. Stanford, CA, Stanford University Press: 298311.Google Scholar
Luce, R. D. (1986). Response Times: Their Role in Inferring Elementary Mental Organization. London, Oxford University Press.Google Scholar
Ludwig, C. J. H., Gilchrist, I. D. and McSorley, E. (2005). “The remote distractor effect in saccade programming: channel interaction and lateral inhibition.” Vision Research 45: 11771190.CrossRefGoogle ScholarPubMed
Lynch, J. C., Mountcastle, V. B., Talbot, W. H. and Yin, T. C. T. (1977). “Parietal lobe mechanism for directed visual attention.” Journal of Neurophysiology 40: 362389.CrossRefGoogle ScholarPubMed
Mach, E. (1875). Grundlinien der Lehre von den Bewegungsempfindungen. Leipzig, W Engelmann.Google Scholar
Mach, E. (1886). Beiträge zur Analyse der Empfindungen. Jena, Fischer.Google Scholar
Mackay, M., Cerf, M. and Koch, C. (2012). “Evidence for two distinct mechanisms directing gaze in visual scenes.” Journal of Vision 12: 112.CrossRefGoogle Scholar
Makert, A. and Flechtner, M. (1989). “Saccadic reaction times in acute and remitted schizophrenia.” European Archives of Psychiatry and Neurological Science 239: 3338.CrossRefGoogle Scholar
Maxwell, J. C. and Nivin, W. D., eds. (1890). The Scientific Papers of James Clerk Maxwell. New York, Dover.Google Scholar
May, R. M. (1976). “Simple mathematical models with very complicated dynamics.” Nature 261: 459467.CrossRefGoogle ScholarPubMed
McDonald, S. A., Carpenter, R. H. S. and Shillcock, R. C. (2005). “An anatomically-constrained, stochastic model of eye movement control in reading.” Psychological Review 112: 814840.CrossRefGoogle ScholarPubMed
McDowell, J., Myles-Worsley, M., Coon, H., Byerley, W. and Clementz, B. (1999). “Measuring liability for schizophrenia using optimized antisaccade stimulus parameters.” Psychophysiology 36: 138141.CrossRefGoogle ScholarPubMed
McGill, W. J. (1963). Stochastic latency mechanisms. Handbook of Mathematical Psychology. Luce, R. D., Bush, R. R. and Galanter, E., eds. London, John Wiley: 309360.Google Scholar
McGill, W. J. and Gibbon, J. (1965). “The general gamma distribution and reaction time.” Journal of Mathematical Psychology 2: 118.CrossRefGoogle Scholar
McIlwain, J. T. (1966). “Some evidence concerning the physiological basis of the periphery effect in the cat’s retina.” Experimental Brain Research 1: 265271.CrossRefGoogle ScholarPubMed
Merleau-Ponty, M. (1945). Phénomènolgie de la perception. Paris, Gallimard.Google Scholar
Merrison, A. F. A. and Carpenter, R. H. S. (1994). “Co-variability of smooth and saccadic latencies in oculomotor pursuit.” Ophthalmic Research 26: 158162.CrossRefGoogle ScholarPubMed
Merrison, A. F. A. and Carpenter, R. H. S. (1995). “‘Express’ smooth pursuit.” Vision Research 35: 14591462.CrossRefGoogle ScholarPubMed
Meyniel, C., Rivaud-Péchoux, S., Damier, P. and Gaymard, B. (2005). “Saccade impairments in patients with fronto-temporal dementia.” Journal of Neurology, Neurosurgery and Psychiatry 76: 15811584.CrossRefGoogle ScholarPubMed
Michell, A. W., Xu, Z., Fritz, D., et al. (2006). “Saccadic latency distributions in Parkinson’s disease and the effects of L-dopa.” Experimental Brain Research 169: 237245.Google Scholar
Micko, H. C. (1969). “A psychological scale for reaction time measurement.” Acta Psychologica 30: 324335.CrossRefGoogle Scholar
Milstein, D. M. and Dorris, M. C. (2007). “The influence of expected value on saccadic preparation.” Journal of Neuroscience 27: 48104818.CrossRefGoogle ScholarPubMed
Missal, M. and Keller, E. L. (2002). “Common inhibitory mechanism for saccades and smooth-pursuit eye movements.” Journal of Neurophysiology 88: 18801892.CrossRefGoogle ScholarPubMed
Mollon, J. D. and Baker, M. R., eds. (1995). The Use of CRT Displays in Research on Colour Vision. Colour Vision Deficiencies.CrossRefGoogle Scholar
Mollon, J. D. and Perkins, A. J. (1996). “Errors of judgment at Greenwich in 1796.” Nature 380: 101102.CrossRefGoogle Scholar
Munoz, D. P., Armstrong, L. T., Hampton, K. A. and Moore, K. D. (2003). “Altered control of visual fixation and saccadic eye movements in attention-deficit hyperactivity disorder.” Journal of Neurophysiology 90: 503514.CrossRefGoogle ScholarPubMed
Munoz, D. P., Broughton, J. R., Goldring, J. E. and Armstrong, I. T. (1998). “Age-related performance of human subjects on saccadic eye movement tasks.” Experimental Brain Research 121: 391400.CrossRefGoogle ScholarPubMed
Munoz, D. P. and Istvan, P. S. (1998). “Lateral inhibitory interactions in the intermediate layers of the monkey superior colliculus.” Journal of Neurophysiology 79: 11931209.CrossRefGoogle ScholarPubMed
Munoz, D. P. and Wurtz, R. H. (1993a). “Fixation cells in monkey superior colliculus. 1. Characteristics of cell discharge.” Journal of Neurophysiology 70: 559575.CrossRefGoogle ScholarPubMed
Munoz, D. P. and Wurtz, R. H. (1993b). “Fixation cells in monkey superior colliculus. 2. Reversible activation and deactivation.” Journal of Neurophysiology 70: 576589.CrossRefGoogle ScholarPubMed
Munoz, D. P. and Wurtz, R. H. (1993c). “Superior colliculus and visual fixation.” Biomedical Research 14: 7579.Google Scholar
Munoz, D. P. and Wurtz, R. H. (1995). “Saccade-related activity in monkey superior colliculus. I. Characteristics of burst and build-up cells.” Journal of Neurophysiology 73: 23132333.CrossRefGoogle Scholar
Nachev, P., Kennard, C. and Husain, M. (2008). “Functional role of the supplementary and pre-supplementary motor areas.” Nature Reviews in Neuroscience 9: 856869.CrossRefGoogle ScholarPubMed
Nagel, E. (1936). “The meaning of probability.” Journal of the American Statistical Association 31: 1030.CrossRefGoogle Scholar
Nakahara, H., Nakamura, K. and Hikosaka, O. (2006). “Extended LATER model can account for trial-by-trial variability of both pre- and post-processes.” Neural Networks 19: 10271046.CrossRefGoogle ScholarPubMed
Nettelbeck, T. (1980). Factors affecting reaction time: mental retardation, brain damage, and other psychopathologies. Reaction Times. Welford, A. T., ed. New York, Academic Press: 355401.Google Scholar
Nieuwenhuys, R. (1985). Chemoarchitecture of the Brain. Berlin, Springer Verlag.CrossRefGoogle Scholar
Noda, H., Asoh, R. and Shibaki, M. (1977). Floccular unit activity associated with eye movements and fixation. The Control of Gaze by Brainstem Neurons. Baker, R. and Berthoz, A., eds. New York, Elsevier: 371380.Google Scholar
Noorani, I. (2014). “LATER models of neural decision behavior in choice tasks.” Frontiers in Integrative Neuroscience 8: 67.CrossRefGoogle ScholarPubMed
Noorani, I. (2017). “Towards a unifying mechanism for cancelling movements.” Philosophical Transactions of the Royal Society B: Biological Sciences 372(1718).CrossRefGoogle ScholarPubMed
Noorani, I. and Carpenter, R. H. (2014). “Basal ganglia: racing to say no.” Trends in Neurosciences 37(9): 467469.CrossRefGoogle ScholarPubMed
Noorani, I. and Carpenter, R. H. (2014). “Re-starting a neural race: anti-saccade correction.” European Journal of Neuroscience 39(1): 159164.CrossRefGoogle ScholarPubMed
Noorani, I. and Carpenter, R. H. (2017). “Not moving: the fundamental but neglected motor function.” Philosophical Transactions of the Royal Society B: Biological Sciences 372(1718): 20160190.CrossRefGoogle ScholarPubMed
Noorani, I. and Carpenter, R. H. S. (2011). “Full reaction time distributions reveal the complexity of neural decision-making.” European Journal of Neuroscience 33: 19481951.CrossRefGoogle ScholarPubMed
Noorani, I. and Carpenter, R. H. S. (2013). “Antisaccades as decisions: LATER model predicts latency distributions and error responses.” European Journal of Neuroscience 37: 330338.CrossRefGoogle ScholarPubMed
Noorani, I. and Carpenter, R. H. S. (2015). “Ultra-fast initiation of a neural race by impending errors.” Journal of Physiology 593: 44714484.CrossRefGoogle Scholar
Noorani, I. and Carpenter, R. H. S. (2016). “The LATER model of reaction time and decision.” Neuroscience & Biobehavioral Reviews 64: 229251.CrossRefGoogle ScholarPubMed
Noorani, I., Gao, M. J., Pearson, B. C. and Carpenter, R. H. (2011). “Predicting the timing of wrong decisions with LATER.” Experimental Brain Research 209(4): 587598.CrossRefGoogle ScholarPubMed
Nouraei, S. A. R., de Pennington, N., Jones, J. G. and Carpenter, R. H. S. (2003). “Dose-related effect of sevoflurane sedation on the higher control of eye movements and decision-making.” British Journal of Anaesthesia 91: 175183.CrossRefGoogle ScholarPubMed
Nouraei, S. A. R., Roos, J. C. P., Walsh, S. R., et al. (2010). “Objective assessment of the hemisphere-specific neurological outcome of carotid endarterectomy: a quantitative saccadometric analysis.” Neurosurgery 67: 15341541.CrossRefGoogle ScholarPubMed
Ober, J. K., Przedpelska-Ober, E., Gryncewicz, W., et al. (2003). Hand-held system for ambulatory measurement of saccadic durations of neurological patients. Modelling and Measurement in Medicine. Gajda, J., ed. Warsaw, Komitet Biocybernityki i Inzyneierii Biomedycznej PAN: 187198.Google Scholar
O’Regan, J. K. (1984). How the eye scans isolated words. Theoretical and Applied Aspects of Eye Movement Research. Gale, A. G. and Johnston, F., eds. Amsterdam, Elsevier: 159168.Google Scholar
Oswal, A., Ogden, M. and Carpenter, R. H. S. (2007). “The time-course of stimulus expectation in a saccadic decision task.” Journal of Neurophysiology 97: 27222730.CrossRefGoogle Scholar
Otto, T. U. and Mamassian, P. (2012). “Noise and correlations in parallel perceptual decision making.” Current Biology 22: 16.CrossRefGoogle ScholarPubMed
Ozyurt, J., Colonius, H. and Arndt, P. (2003). “Countermanding saccades: evidence against independent processing of go and stop signals.” Perception and Psychophysics 65: 420428.CrossRefGoogle ScholarPubMed
Pacut, A. (1977). “Some properties of threshold models of reaction latency.” Biological Cybernetics 28: 6372.CrossRefGoogle Scholar
Pacut, A. (1980). “Mathematical modelling of reaction latency: the structure of the models and its motivation.” Acta Neurobiologiae Experimentalis 40: 199215.Google ScholarPubMed
Patterson, W. F. and Schall, J. D. (1997). “Supplementary eye field studied with the countermanding paradigm.” Society for Neuroscience Abstracts 23: 474.Google Scholar
Pavlov, I. (1927). Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex. London, Oxford University Press.Google Scholar
Pearson, B. C., Armitage, K. R., Horner, C. W. M. and Carpenter, R. H. S. (2007). “Saccadometry: the possible application of latency distribution measurement for monitoring concussion.” British Journal of Sports Medicine 41: 610612.CrossRefGoogle ScholarPubMed
Peirce, C. S. (1878). “The probability of induction.” Popular Science Monthly.Google Scholar
Peirce, C. S. (1923). Chance, Love and Logic. New York, Harcourt, Brace.Google Scholar
Peitsch, A., Hoffman, A., Armstrong, I., Pari, G. and Munoz, D. P. (2008). “Saccadic impairments in Huntington’s disease.” Experimental Brain Research 186: 457469.CrossRefGoogle Scholar
Perneczky, R., Ghosh, B. C., Hughes, L., et al. (2011). “Saccadic latency in Parkinson’s disease correlates with executive function and brain atrophy, but not motor severity.” Neurobiology of Disease 43: 7985.CrossRefGoogle Scholar
Pike, R. (1973). “Response latency models for signal detection.” Psychological Review 80: 5368.CrossRefGoogle ScholarPubMed
Pirenne, M. H. (1950). “Descartes and the body-mind problem in physiology.” The British Journal for the Philosophy of Science 1: 4359.CrossRefGoogle Scholar
Pirozzolo, F. J. and Hansch, E. C. (1981). “Oculomotor reaction time in dementia reflects degree of cerebral dysfunction.” Science 214: 349351.CrossRefGoogle ScholarPubMed
Platt, M. L. and Huettel, S. A. (2008). “Risky business: the neuroeconomics of decision making under uncertainty.” Nature Neuroscience 11: 398.CrossRefGoogle ScholarPubMed
Poincaré, H. (1908). Science et méthode. Paris, E. Flammarion.Google Scholar
Poisson, S. D. (1837). Recherches sur la probabilité des jugements. Paris, Bachelier.Google Scholar
Popper, K. R. (1959). The Logic of Scientific Discovery. London, Hutchinson.Google Scholar
Porterfield, W. (1737). “An essay concerning the motions of our eyes.” Edinburgh Medical Essays and Observations, 3: 160263.Google Scholar
Putukian, M., Echemendia, R. J. and Mackin, S. (2000). “The acute neuropsychological effects of heading in soccer: a pilot study.” Clinical Journal of Sports Medicine 10: 104109.CrossRefGoogle ScholarPubMed
Rashbass, C. (1961). “The relationship between saccadic and smooth tracking eye movements.” Journal of Physiology 159: 326338.CrossRefGoogle ScholarPubMed
Ratcliff, R. (1978). “A theory of memory retrieval.” Psychological Review 85: 59108.CrossRefGoogle Scholar
Ratcliff, R., Carpenter, R. H. S. and Reddi, B. A. J. (2001). “Putting noise into neurophysiological models of simple decision making.” Nature Neuroscience 4: 336337.CrossRefGoogle ScholarPubMed
Ratcliff, R., van Zandt, T. and McKoon, G. (1999). “Connectionist and diffusion models of reaction time.” Psychological Review 106: 261300.CrossRefGoogle ScholarPubMed
Rayner, K. and Fischer, M. H. (1996). “Mindless reading revisited: eye movements during reading and scanning are different.” Perception and Psychophysics 58: 734747.CrossRefGoogle ScholarPubMed
Rayner, K. and Pollatsek, A. (1989). The Psychology of Reading. Englewood Cliffs, Prentice-Hall.Google ScholarPubMed
Rayner, K. and Pollatsek, A. (2012). The Psychology of Reading. 2nd ed. Englewood Cliffs, Prentice-Hall.CrossRefGoogle Scholar
Reddi, B. and Carpenter, R. H. S. (2000). “The influence of urgency on decision time.” Nature Neuroscience 3: 827831.CrossRefGoogle ScholarPubMed
Reddi, B. A. J. (2001). “Decision making: the two stages of neuronal judgement.” Current Biology 11: 603606.CrossRefGoogle ScholarPubMed
Reddi, B. A. J., Asrress, K. N. and Carpenter, R. H. S. (2003). “Accuracy, information and response time in a saccadic decision task.” Journal of Neurophysiology 90: 35383546.CrossRefGoogle Scholar
Restle, F. (1961). Psychology of Judgement and Choice. New York, Wiley.Google Scholar
Reuter, B. and Kathmann, N. (2004). “Using saccade tasks as a tool to analyze executive dysfunctions in schizophrenia.” Acta Psychologica 115: 255269.CrossRefGoogle ScholarPubMed
Reynolds, A. M. (2007). “Free-flight odour tracking in Drosophila is consistent with an optimal scale-free search.” PLoS ONE 2: 4.CrossRefGoogle ScholarPubMed
Robbins, T. W. (1997). “Arousal systems and attentional processes.” Biological Psychology 45: 5771.CrossRefGoogle ScholarPubMed
Robbins, T. W. (2000). “Chemical neuromodulation of frontal executive functions in humans and other animals.” Experimental Brain Research 133: 130138.CrossRefGoogle ScholarPubMed
Robbins, T. W., Granon, S., Muir, J. L., et al. (1998). “Neural systems underlying arousal and attention.” Annals of the New York Academy of Sciences 846: 222237.CrossRefGoogle ScholarPubMed
Robert, M. P., Nachev, P. C., Hicks, S. L., et al. (2009). “Saccadometry of conditional rules in presymptomatic Huntington’s Disease.” Annals of the New York Academy of Sciences 1164: 444450.CrossRefGoogle ScholarPubMed
Robinson, D. A. (1972). “Eye movements evoked by collicular stimulation in the alert monkey.” Vision Research 12: 17951808.CrossRefGoogle ScholarPubMed
Robinson, D. A. (1981). “The use of control systems analysis in the neurophysiology of eye movements.” Annual Review of Neuroscience 4: 463503.CrossRefGoogle ScholarPubMed
Robinson, D. A., Gordon, J. L. and Gordon, S. E. (1986). “A model of the smooth pursuit eye movement system.” Biological Cybernetics 55: 4357.CrossRefGoogle Scholar
Roltman, J. D. and Shadlen, M. N. (2002). “Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task.” Journal of Neuroscience 22: 94759489.CrossRefGoogle Scholar
Roos, J., Lachmann, R., Cox, T. and Carpenter, R. (2006). “Saccadometry for estimating cerebral damage in storage diseases.” Acta Paediatrica 95: 141.Google Scholar
Roos, J. C. P., Calandrini, D. M. and Carpenter, R. H. S. (2005). “The relation between evoked and spontaneous saccadic latencies.” Annals of Neurology 58.Google Scholar
Roos, J. C. P., Calandrini, D. M. and Carpenter, R. H. S. (2008). “A single mechanism for the timing of spontaneous and evoked saccades.” Experimental Brain Research 187: 283293.CrossRefGoogle ScholarPubMed
Salinas, E. and Stanford, T. R. (2013). “The countermanding task revisited: fast stimulus detection is a key determinant of psychophysical performance.” Journal of Neuroscience 33: 56685685.CrossRefGoogle ScholarPubMed
Sarnat, H. B. and Netsky, M. G. (1974). Evolution of the Nervous System. Oxford, Oxford University Press.Google Scholar
Saville, D. J. and Wood, G. R. (1996). Statistical Methods: A Geometric Primer. New York, Springer.CrossRefGoogle Scholar
Schall, J. D. (2000). “Decision making: from sensory evidence to a motor command.” Current Biology 10: 404406.CrossRefGoogle ScholarPubMed
Schall, J. D. (2003). “On building a bridge between brain and behavior.” Annual Review of Psychology 55: 02.0102.28.Google Scholar
Schall, J. D. (2004). “On the role of the frontal eye fields in guiding attention and saccades.” Vision Research 44: 14531467.CrossRefGoogle ScholarPubMed
Schall, J. D. (2005). “Decision making.” Current Biology 15: R9R11.CrossRefGoogle ScholarPubMed
Schall, J. D. and Bichot, N. (1998). “Neural correlates of visual and motor processes.” Current Opinion in Neurobiology 8: 211217.CrossRefGoogle Scholar
Schall, J. D. and Hanes, D. P. (1993). “Neural basis of saccade target selection in frontal eye field during visual search.” Nature 366: 467469.CrossRefGoogle ScholarPubMed
Schall, J. D., Hanes, D. P., Thompson, K. G. and King, D. J. (1995). “Saccade target selection in frontal eye field of Macaque. I. Visual and premovement activation.” Journal of Neuroscience 15: 69056918.CrossRefGoogle ScholarPubMed
Schall, J. D., Palmieri, T. J. and Logan, G. D. (2017). “Models of inhibitory control.” Philosophical Transactions B of the Royal Society: Biological Sciences 372(1718): 20160193.CrossRefGoogle ScholarPubMed
Schall, J. D., Stuphorn, V. and Brown, J. W. (2002). “Monitoring and control of action by the frontal lobes.” Neuron 36: 309322.CrossRefGoogle ScholarPubMed
Schall, J. D. and Thompson, K. G. (1999). “Neural selection and control of visually guided eye movements.” Annual Review of Neuroscience 22: 241259.CrossRefGoogle ScholarPubMed
Schiller, P. H. and Koerner, F. (1971). “Discharge characteristics of single units in the superior colliculus of the alert Rhesus monkey.” Journal of Neurophysiology 34: 920936.CrossRefGoogle ScholarPubMed
Schiller, P. H. and Stryker, M. (1972). “Single-unit recording and stimulation in superior colliculus of the alert Rhesus monkey.” Journal of Neurophysiology 35: 915924.CrossRefGoogle ScholarPubMed
Schilling, W. (1921). “The effect of caffein and acetanilid on simple reaction time.” Psychological Review 28(1), 7279.CrossRefGoogle Scholar
Schmidt, R., Leventhal, D. K., Mallet, N., Chen, F. and Berke, J. D. (2013). “Canceling actions involves a race between basal ganglia pathways.” Nature Neuroscience 16: 11181124.CrossRefGoogle ScholarPubMed
Schmied, A., Benita, M., Conde, H. and Dormont, J. F. (1979). “Activity of ventrolateral thalamic neurons in relation to a simple reaction time task in the cat.” Experimental Brain Research 36: 285300.CrossRefGoogle ScholarPubMed
Schultz, W. (2000). “Multiple reward signals in the brain.” Nature Reviews in Neuroscience 1: 199207.CrossRefGoogle ScholarPubMed
Schultz, W. (2007). “Multiple dopamine functions at different time courses.” Annual Review of Neuroscience 30: 259288.CrossRefGoogle ScholarPubMed
Schultz, W. (2016). “Dopamine reward prediction error coding.” Dialogues in Clinical Neuroscience 18: 2332.CrossRefGoogle ScholarPubMed
Schultz, W. and Romo, R. (1992). “Role of primate basal ganglia in the internal generation of movements. I. Preparatory activity in the anterior striatumExperimental Brain Research 91: 363384.CrossRefGoogle ScholarPubMed
Schupp, W. and Schlier, C. (1972). “The dependence of simple reaction time on temporal patterns of stimuli.” Kybernetik 11: 105111.CrossRefGoogle ScholarPubMed
Shadlen, M. N. and Gold, J. I. (2004). The neurophysiology of decision-making as a window on cognition. The Cognitive Neurosciences. Gazzaniga, M. S., ed. Cambridge, MA, MIT Press: 12291241.Google Scholar
Shadlen, M. N. and Newsome, W. T. (1996). “Motion perception: seeing and deciding.” Proceedings of the National Academy of Sciences 93: 628633.CrossRefGoogle ScholarPubMed
Shafer, G. (1991). “Can the various meanings of probability be reconciled?University of Kansas, School of Business Working Paper 230.Google Scholar
Shakespeare, W. (1595). A Midsummer Night’s Dream. London, Thomas Fisher.Google Scholar
Shannon, C. E. and Weaver, W. (1949). The Mathematical Theory of Communication. Urbana, University of Illinois Press.Google Scholar
Shelton, L., Beccerra, L. and Borsook, D. (2012). “Unmasking the mysteries of the habenula in pain and analgesia.” Progress in Neurobiology 96: 208219.CrossRefGoogle ScholarPubMed
Sherrington, C. S. (1940). Man on his Nature. Cambridge, Cambridge University Press.Google Scholar
Simpson, J. and Weiner, E. (1989). The Oxford English Dictionary. Oxford, Clarendon Press.Google Scholar
Sinha, N., Brown, J. T. G. and Carpenter, R. H. S. (2006). “Task switching as a two-stage decision process.” Journal of Neurophysiology 95: 31463153.CrossRefGoogle ScholarPubMed
Smart, J. J. C. (955). “Metaphysics, logic and theology.” New Essays in Philosophical Theology. Flew, A. and MacIntyre, A., eds. London, SCM Press: 4260.Google Scholar
Smirnov, N. V. (1948). “Table for estimating the goodness of fit of empirical distributions.” Annals of Mathematics and Statistics 19: 279281.CrossRefGoogle Scholar
Smith, G. A. (1980). Models of choice reaction time. Reaction Times. Welford, A. T., ed. New York, Academic Press: 173214.Google Scholar
Smith, J. E., Zahn, C. A. and Cook, E. P. (2001). “The functional link between Area MT neural fluctuations and detection of a brief motion stimulus.” Journal of Neuroscience 31: 1345813468.CrossRefGoogle Scholar
Smith, K., Dickhaut, J., McCabe, K. and Pardo, J. V. (2002). “Neural substrates for choice under ambiguity, risk, gains and losses.” Management Science 48: 711718.CrossRefGoogle Scholar
Smyrnis, N. (2008). “Metric issues in the study of eye movements in psychiatry.” Brain and Cognition 68: 341358.CrossRefGoogle Scholar
Smythies, J. (2009). “Philosophy, perception and neuroscience.” Philosophy 38: 638651.Google ScholarPubMed
Sommerville, D. M. Y. (1958). An Introduction to the Geometry of N Dimensions. New York, Dover.Google Scholar
Spinoza, B. D. (1993). Ethics. London, Everyman.Originally published 1677.Google Scholar
St-Cyr, G. J. (1973). “Signal and noise in the human oculomotor system.” Vision Research 13: 19791991.CrossRefGoogle ScholarPubMed
Stam, C. J. (2005). “Nonlinear dynamical analysis of EEG and MEG: review of an emerging field.” Clinical Neurophysiology 116: 22662301.CrossRefGoogle ScholarPubMed
Stark, L. (1968). Neurological Control Systems. New York, Plenum.Google Scholar
Stone, M. (1960). “Models for choice reaction time.” Psychometrika 25: 251260.CrossRefGoogle Scholar
Story, G. W. and Carpenter, R. H. S. (2009). “Dual LATER-unit model predicts saccadic reaction time distributions in gap, step and appearance tasks.” Experimental Brain Research 193: 287296.CrossRefGoogle ScholarPubMed
Stoyan, D., Kendall, W. S. and Mecke, J. (1995). Stochastic Geometry and Its Applications. New York, Wiley.Google Scholar
Tatler, B. W., Brockmole, J. R. and Carpenter, R. H. S. (2017). “LATEST: a model of saccadic decisions in space and time.” Psychological Review 124: 267300.CrossRefGoogle Scholar
Tatler, B. W. and Hutton, S. B. (2006). “Trial by trials effects in the antisaccade task.” Experimental Brain Research 179(3): 387396.CrossRefGoogle ScholarPubMed
Taylor, M. J., Carpenter, R. H. and Anderson, A. J. (2006). “A noisy transform predicts saccadic and manual reaction times to changes in contrast.” Journal of Physiology 573(Pt 3): 741751.CrossRefGoogle ScholarPubMed
Temel, Y., Visser-Vandewalle, V. and Carpenter, R. H. S. (2008). “Saccadic latency during electrical stimulation of the human subthalamic nucleus.” Current Biology 18: R412–414.CrossRefGoogle ScholarPubMed
Thakkar, K., Schall, J. D., Logan, G. D. and Park, S. (2015). “Response inhibition and response monitoring in a saccadic double-step task in schizophrenia.” Brain and Cognition 95: 9098.CrossRefGoogle Scholar
Thier, P. and Ilg, U. J. (2005). “The neural basis of smooth-pursuit eye movements.” Current Opinion in Neurobiology 15: 645652.CrossRefGoogle ScholarPubMed
Thompson, K. G., Bichot, N. P. and Schall, J. D. (1997). “Dissociation of visual discrimination from saccade programming in macaque frontal eye field.” Journal of Neurophysiology 77: 10461959.CrossRefGoogle ScholarPubMed
Thompson, K. G., Hanes, D. P., Bichot, N. P. and Schall, J. D. (1996). “Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search.” Journal of Neurophysiology 76: 40404055.CrossRefGoogle ScholarPubMed
Thomson, W. (1884). “Electrical units of measurement.” Popular Lectures and Addresses I: 73.Google Scholar
Thorpe, S., Fize, D. and Marlot, C. (1996). “Speed of processing in the human visual system.” Nature 381: 520552.CrossRefGoogle ScholarPubMed
Tolhurst, D. J. (1975). “Reaction times in the detection of gratings by human observers: a probabilistic mechanism.” Vision Research 15: 11431149.CrossRefGoogle ScholarPubMed
Tolstoy, L. (1869). War and Peace. The Russian Messenger.Google Scholar
Tyrrell, G. N. M. (1946). The Personality of Man. London, Penguin.Google Scholar
Usher, M., Cohen, J. D., Servan-Schreiber, D., Rajkowski, J. and Aston-Jones, G. (1999). “The role of locus coeruleus in the regulation of cognitive performance.” Science 283: 549554.CrossRefGoogle ScholarPubMed
van Biervliet, J. (1899). “Noyau d’origine du nerf oculo-moteur commun du lapin.” La cellule 16: 133.Google Scholar
van den Berg, A. V. and van Loon, E. M. (2005). “An invariant for timing of saccades during visual search.” Vision Research 45: 15431555.CrossRefGoogle ScholarPubMed
van Hemmen, L. J. (2009). “Editorial to volume 100 of Biological Cybernetics.” Biological Cybernetics 100: 13.CrossRefGoogle ScholarPubMed
Van Loon, E., Hooge, I. T. and Van den Berg, A. (2002). “The timing of sequences of saccades in visual search.” Proceedings of the Royal Society B 269: 15711579.CrossRefGoogle ScholarPubMed
Venn, J. (1876). The Logic of Chance. London, Macmillan.Google Scholar
Vickers, D. (1979). Decision Processes in Visual Perception. New York, Academic.Google Scholar
Vickers, D. (1980). Discrimination. Reaction Times. Welford, A. T., ed. New York, Academic: 2572.Google Scholar
von Neumann, J. and Morgenstern, O. (1947). Theory of Games and Economic Behaviour. Princeton, Princeton University Press.Google Scholar
Wagenmakers, E.-J., Farrell, S. and Ratcliff, R. (2004). “Estimation and interpretation of 1/f noise in human cognition.” Psychonomic Bulletin and Review 11: 579615.CrossRefGoogle ScholarPubMed
Wald, A. (1947). Sequential Analysis. New York, Wiley.Google Scholar
Wald, A. and Wolfowitz, J. (1948). “Optimum character of the sequential probability test.” Annals of Mathematics and Statistics 19: 326339.CrossRefGoogle Scholar
Walls, G. L. (1962). “The evolutionary history of eye movements.” Vision Research 2: 6980.CrossRefGoogle Scholar
Walsh, E. G. (1952). “Visual reaction time and the alpha-rhythm, an investigation of the scanning hypothesis.” Journal of Physiology 118: 500508.CrossRefGoogle ScholarPubMed
Walsh, S. R., Nouraei, S. A. R., Tang, T. Y., et al. (2010). “Remote ischemic preconditioning for cerebral and cardiac protection during carotid endarterectomy: results from a pilot randomized clinical trial.” Vascular and Endovascular Surgery 44: 434439.CrossRefGoogle ScholarPubMed
Walton, M. M. and Gandhi, N. J. (2006). “Behavioral evaluation of movement cancellation.” Journal of Neurophysiology 96: 20112024.CrossRefGoogle ScholarPubMed
Ware, J. S., Blount, P. R. and Carpenter, R. H. S. (2001). The Dynamics of Expectation: Rapid Effects of Probabilistic Cues on Saccadic Latency. Neural Control of Movement: 11th Annual Meeting, Seville.Google Scholar
Watson, A. B. (1979). “Probability summation over time.” Vision Research 19: 515522.CrossRefGoogle ScholarPubMed
Weatherford, R. (1982). Philosophical Foundations of Probability Theory. London, Routledge and Kegan Paul.Google Scholar
Weaver, W. (1948). “Probability, rarity, interest and surprise.” Scientific Monthly 67: 390392.Google ScholarPubMed
Weiss, Y. and Adelson, E. H. (1998). “Slow and smooth: a Bayesian theory for the combination of local motion signals in human vision.” MIT AI Laboratories Memo AI Memo 1624.Google Scholar
Welford, A. T. (1959). “Evidence of a single-channel decision mechanism limiting performance in a serial reaction task.” Quarterly Journal of Experimental Psychology 11: 193208.CrossRefGoogle Scholar
Welford, A. T., ed. (1980). Reaction Times. London, Academic Press.Google Scholar
Wells, G. R. (1913). “Influence of stimulus duration on reaction-time.” Psychological Review Monographs 15(5): 169.Google Scholar
Wheeless, L. L., Boynton, R. M. and Cohen, G. H. (1966). “Eye-movement responses to step and pulse-step stimuli.” Journal of the Optical Society of America 56: 956960.CrossRefGoogle ScholarPubMed
Wheeless, L. L., Cohen, G. H. and Boynton, R. M. (1967). “Luminance as a parameter of the eye-movement control system.” Journal of the Optical Society of America 57: 394400.CrossRefGoogle Scholar
White, C. T., Eason, R. G. and Bartlett, N. R. (1962). “Latency and duration of eye movements in the horizontal plane.” Journal of the Optical Society of America 52: 210213.CrossRefGoogle ScholarPubMed
Wickens, T. D. (1995). The Geometry of Multivariate Statistics. Mahwah, Lawrence Erlbaum.Google Scholar
Wiener, S. I., Paul, C. A. and Eichenbaum, H. (1989). “Spatial and behavioural correlates of hippocampal neuronal activity.” Journal of Neuroscience 9: 27372763.CrossRefGoogle ScholarPubMed
Wilde, O. (1894). “Phrases and philosophies for the use of the young.” The Chameleon. Oxford, Oxford University Press.Google Scholar
Wittmann, B. C., Daw, N. D., Seymour, B. and Dolan, R. J. (2008). “Striatal activity underlies novelty-based choice in humans.” Neuron 58: 967973.CrossRefGoogle ScholarPubMed
Wolf, C. (1865). “Recherches sur l’équation personelle dans les observations de passages, sa détermination absolue, ses lois et son origine.” Annales de l’Observatoire de Paris: Mémoires 8: 153.Google Scholar
Wundt, W. (1862). Beiträge zur Theorie der Sinneswahrnehmungen. Leipzig.Google Scholar
Wundt, W. (1887). Physiologischen Psychologie. Leipzig.Google Scholar
Wurtz, R. H. and Albano, J. E. (1980). “Visual-motor function of the primate superior colliculus.” Annual Review of Neuroscience 3: 189226.CrossRefGoogle ScholarPubMed
Wurtz, R. H. and Goldberg, M. E. (1972). “Activity of superior colliculus in behaving monkey: III. Cells discharging before eye movements.” Journal of Neurophysiology 35: 575586.CrossRefGoogle Scholar
Wurtz, R. H. and Goldberg, M. E., eds. (1989). The Neurobiology of Saccadic Eye Movements. Amsterdam, Elsevier.Google Scholar
Yang, T. and Shadlen, M. N. (2007). “Probabilistic reasoning by neurons.” Nature 447: 10751080.CrossRefGoogle ScholarPubMed
Yarbus, A. L. (1967). Eye Movements and Vision. New York, Plenum.CrossRefGoogle Scholar
Yerkes, R. M. (1903). “A study of the reactions and reaction times of the Medusa Gonionema Murbachii to photic stimuli.” American Journal of Physiology 9: 279307.CrossRefGoogle Scholar
Yerkes, R. M. (1904). “Variability of reaction-time.” Psychological Bulletin 1: 137146.CrossRefGoogle Scholar
Yoshimatsu, H. and Yamada, M. (1991). “High dimensional chaos of miniature eye movements.” Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society 13: 15131515.Google Scholar
Yu, A. J. and Dayan, P. (2005). “Uncertainty, neuromodulation, and attention.” Neuron 46: 681692.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×