Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-19T19:47:18.344Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  14 January 2022

Emily Riehl
Affiliation:
The Johns Hopkins University, Maryland
Dominic Verity
Affiliation:
Macquarie University, Sydney
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adámek, J., and Rosický, J. 1994. Locally Presentable and Accessible Categories. Cambridge University Press.CrossRefGoogle Scholar
Anel, M., and Lejay, D. 2018. Exponentiable higher toposes. arXiv:1802.10425.Google Scholar
Antolín Camarena, O. 2016. A whirlwind tour of the world of (∞, 1)-categories. Page 1562 of: Bárcenas, N., Galaz-García, F., and Rocha, M. M. (eds), Mexican Mathematicians Abroad: Recent Contributions. Contemporary Mathematics, vol. 657. American Mathematical Society.CrossRefGoogle Scholar
Ara, D. 2014. Higher quasi-categories vs higher Rezk spaces. J. K-Theory, 14(3), 701749.Google Scholar
Ayala, D., and Francis, J. 2020. Fibrations of ∞-categories. High. Struct., 4(1), 168265.Google Scholar
Barwick, C. 2005. (∞, n)-Cat as a closed model category. Ph.D. thesis, University of Pennsylvania.Google Scholar
Barwick, C., Glasman, S., and Nardin, D. 2018. Dualizing cartesian and cocartesian fibrations. Theory Appl. Categ., 33(4), 6794.Google Scholar
Beke, T. 2001. Sheafifiable homotopy model categories. Math. Proc. Cambridge Philos. Soc., 129(03), 447475.CrossRefGoogle Scholar
Bénabou, J. 1967. Introduction to Bicategories. Page 1–77 of: Reports of the Midwest Category Seminar. Lecture Notes in Math., no. 47. Springer-Verlag.Google Scholar
Bénabou, J. 1973. Les distributeurs. Tech. rept. Université Catholique de Louvain, Institut de Mathématique Pure et Appliqué.Google Scholar
Berger, C. 2007. Iterated wreath product of the simplex category and iterated loop spaces. Adv. Math., 213(1), 230270.Google Scholar
Berger, C., and Moerdijk, I. 2008. On an extension of the notion of Reedy category. Mathe. Z., 269, 128.Google Scholar
Bergner, J. E. 2007a. A characterization of fibrant Segal categories. Proc. Amer. Math. Soc., 135(12), 40314037.Google Scholar
Bergner, J. E. 2007b. Three models for the homotopy theory of homotopy theories. Topology, 46(4), 397436.CrossRefGoogle Scholar
Bergner, J. E. 2018. An Introduction to (∞, 1)-Categories. Cambridge University Press.Google Scholar
Bergner, J. E., and Rezk, C. 2013. Reedy categories and the Θ-construction. Mathe. Z., 274(1–2), 499514.Google Scholar
Betti, R., Carboni, A., Street, R., and Walters, R. 1983. Variation through enrichment. J. Pure Appl. Algebra, 29, 109127.Google Scholar
Bird, G. J., Kelly, G. M., Power, A. J., and Street, R. H. 1989. Flexible Limits for 2-Categories. J. Pure Appl. Algebra, 61(1), 127.Google Scholar
Blanc, G. 1978. Équivalence naturelle et formules logiques en théorie des catégories. Archiv math. Logik, 19, 131137.Google Scholar
Blumberg, A., and Mandell, M. 2011. Algebraic K-theory and abstract homotopy theory. Adv. Math., 226, 37603812.Google Scholar
Boardman, J. M., and Vogt, R. 1973. Homotopy Invariant Algebraic Structures on Topological Spaces. Lecture Notes in Mathematics, vol. 347. Springer-Verlag.Google Scholar
Bourke, J., Lack, S., and Vokřínek, L. 2020. Adjoint functor theorems for homo-topically enriched categories. arXiv:2006.07843.Google Scholar
Brown, K. S. 1973. Abstract homotopy theory and generalized sheaf cohomology. Trans. Amer. Math. Soc., 186, 419458.Google Scholar
Burroni, A. 1971. T-catégories (catégories dans un triple). Cah. Topol. Géom. Différ. Catég., 12, 215321.Google Scholar
Cartmell, J. 1986. Generalised algebraic theories and contextual categories. Ann. Pure Appl. Logic, 32, 209243.Google Scholar
Cheng, E., Gurski, N., and Riehl, E. 2014. Cyclic multicategories, multivariable adjunctions and mates. J. K-Theory, 13, 337396.Google Scholar
Cisinski, D. C. 2006. Les préfaisceaux comme modèles des types d’homotopie. Astérisque, vol. 308. Soc. Math. France.Google Scholar
Cisinski, D. C. 2019. Higher Categories and Homotopical Algebra. Cambridge Studies in Advanced Mathematics, vol. 180. Cambridge University Press.Google Scholar
Cordier, J. M. 1982. Sur la notion de diagramme homotopiquement cohérent. Cah. Topol. Géom. Différ. Catég., 23, 93112.Google Scholar
Cordier, J. M., and Porter, T. 1986. Vogt’s theorem on categories of homotopy coherent diagrams. Math. Proc. Cambridge Philos. Soc., 100, 6590.Google Scholar
Cruttwell, G. S. H. 2008. Normed Spaces and the Change of Base for Enriched Categories. Ph.D. thesis, Dalhousie University.Google Scholar
Cruttwell, G. S. H., and Shulman, M. A. 2010. A unified framework for generalized multicategories. Theory Appl. Categ., 24(21), 580655.Google Scholar
Day, B. 1970. On closed categories of functors. Page 1–38 of: Reports of the Midwest Category Seminar IV. Lecture Notes in Mathematics, vol. 137. Springer-Verlag.Google Scholar
de Brito, P. B. 2018. Segal objects and the Grothendieck construction. Page 1944 of: Ausoni, C., Hess, K., Johnson, B., Moerdijk, I., and Scherer, J. (eds), An Alpine Bouquet of Algebraic Topology. Contemporary Mathematics, vol. 708. American Mathematical Society.Google Scholar
Dugger, D. 2001. Replacing model categories with simplicial ones. Trans. Amer. Math. Soc., 353(12), 50035028.Google Scholar
Dugger, D., and Spivak, D. I. 2011. Mapping spaces in quasi-categories. Algebr. Geom. Topol., 11, 263325.Google Scholar
Dwyer, W. G., and Kan, D. M. 1980. Simplicial localizations of categories. J. Pure Appl. Algebra, 17, 267284.Google Scholar
Dwyer, W. G., Kan, D. M., and Smith, J. H. 1989. Homotopy commutative diagrams and their realizations. J. Pure Appl. Algebra, 57, 524.CrossRefGoogle Scholar
Dwyer, W. G., Hirschhorn, P. S., Kan, D. M., and Smith, J. H. 2004. Homotopy Limit Functors on Model Categories and Homotopical Categories. Mathematical Surveys and Monographs, vol. 113. American Mathematical Society.Google Scholar
Ehlers, P. J., and Porter, T. 2000. Joins for (augmented) simplicial sets. J. Pure Appl. Algebra, 145, 3744.Google Scholar
Eilenberg, S., and Kelly, G. M. 1966. Closed categories. Page 421562 of: Proceedings of the Conference on Categorical Algebra (La Jolla 1965). Springer-Verlag.Google Scholar
Eilenberg, S., and Mac Lane, S. 1945. General theory of natural equivalences. Trans. Amer. Math. Soc., 58, 231294.Google Scholar
Freyd, P. J. 1976. Properties invariant within equivalence types of categories. Page 5561 of: Heller, A., and Tierney, M. (eds), Algebra, Topology and Category Theories. Academic Press.Google Scholar
Gabriel, P., and Zisman, M. 1967. Calculus of Fractions and Homotopy Theory. Ergebnisse der Math., no. 35. Springer-Verlag.Google Scholar
Gambino, N. 2010. Weighted limits in simplicial homotopy theory. J. Pure Appl. Algebra, 214(7), 11931199.CrossRefGoogle Scholar
Gepner, D., Haugseng, R., and Kock, J. 2021. ∞-operads as analytic monads. International Mathematics Research Notices.Google Scholar
Grandis, M., and Paré, R. 2004. Adjoint for double categories. Cah. Topol. Géom. Différ. Catég., 45(3), 193240.Google Scholar
Gray, J. W. 1966. Fibred and cofibred categories. Page 2183 of: Eilenberg, S., Harrison, D. K., Röhrl, H., and MacLane, S. (eds), Proceedings of the Conference on Categorical Algebra (La Jolla 1965). Springer-Verlag.Google Scholar
Groth, M. 2016. Characterizations of abstract stable homotopy theories. arXiv:1602.07632.Google Scholar
Guillou, B., and May, J. P. 2011. Enriched model categories and presheaf categories. arXiv:1110.3567.Google Scholar
Harpaz, Y. 2017. Introduction to stable ∞-categories. www.math.univ-paris13.fr/∼harpaz/stable_infinity_categories.pdf.Google Scholar
Hermida, C. 2000. Representable multicategories. Adv. Math., 151, 164225.Google Scholar
Hess, K., Kędziorek, M., Riehl, E., and Shipley, B. 2017. A necessary and sufficient condition for induced model structures. J. Topol., 20(2), 324369.Google Scholar
Hirschhorn, P. 2003. Model Categories and Their Localizations. Mathematical Surveys and Monographs, no. 99. American Mathematical Society.Google Scholar
Hirschowitz, A., and Simpson, C. 1998. Descente pour les n-champs. arXiv:math/9807049.Google Scholar
Hovey, M. 1999. Model Categories. Mathematical Surveys and Monographs, vol. 63. American Mathematical Society.Google Scholar
Johnson, N., and Yau, D. 2019. A bicategorical pasting theorem. arXiv:1910.01220.Google Scholar
Johnson, N., and Yau, D. 2021. 2-Dimensional Categories. Oxford University Press.Google Scholar
Joyal, A. 1997. Disks, duality and Θ-categories. ncatlab.org/nlab/files/JoyalTheta-Categories.pdf.Google Scholar
Joyal, A. 2002. Quasi-categories and Kan complexes. J. Pure Appl. Algebra, 175, 207222.Google Scholar
Joyal, A. 2008a. Notes on quasi-categories. www.math.uchicago.edu/∼may/IMA/Joyal.pdf.Google Scholar
Joyal, A. 2008b. The Theory of Quasi-Categories and its Applications. Quadern 45 vol II. Centre de Recerca Matemàtica Barcelona.Google Scholar
Joyal, A., and Tierney, M. 2007. Quasi-categories vs Segal spaces. Page 277325 of: Davydov, A. (ed), Categories in Algebra, Geometry and Mathematical Physics (StreetFest). Contemp. Math., vol. 431. American Mathematical Society.Google Scholar
Kazhdan, D., and Varshavsky, Y. 2014. Yoneda lemma for complete Segal spaces. Funct Anal Its Appl, 48(2), 81106.Google Scholar
Kelly, G.M̃. 1964. On Mac Lane’s conditions for coherence of natural associativities, commutativities, etc. J. Algebra, 1, 397402.Google Scholar
Kelly, G. M. 1989. Elementary observations on 2-categorical limits. Bull. Aust. Math. Soc., 49, 301317.Google Scholar
Kelly, G. M. 2005. Basic concepts of enriched category theory. Repr. Theory Appl. Categ., 10.Google Scholar
Kelly, G. M., and Mac Lane, S. 1971. Coherence in Closed Categories. J. Pure Appl. Algebra, 1(1), 97140.Google Scholar
Kelly, G. M., and Street, R. H. 1974. Review of the Elements of 2-Categories. Lecture Notes in Mathematics, vol. 420. Springer-Verlag. Page 75103.Google Scholar
Lack, S. 2002. A Quillen model structure for 2-categories. J. K-Theory, 26(2), 171205.Google Scholar
Lack, S. 2007. Homotopy-theoretic aspects of 2-monads. J. Homotopy Relat. Struct., 2(2), 229260.Google Scholar
Lack, Stephen. 2010. A 2-Categories Companion. In: May, J. P., and Baez, J. C. (eds), Towards Higher Categories. The IMA Volumes in Mathematics and its Applications, vol. 152. Springer.Google Scholar
Lawvere, F. W. 2005. An elementary theory of the category of sets (long version) with commentary. Repr. Theory Appl. Categ., 11, 135.Google Scholar
Leinster, T. 2002. Generalized enrichment of categories. J. Pure Appl. Algebra, 168, 391406.Google Scholar
Leinster, T. 2004. Higher Operads, Higher Categories. London Mathematical Society Lecture Note Series, vol. 298. Cambridge University Press.Google Scholar
Lurie, J. 2006 (May). Stable Infinity Categories. arXiv:math/0608228.Google Scholar
Lurie, J. 2009a. Higher Topos Theory. Annals of Mathematical Studies, vol. 170. Princeton University Press.Google Scholar
Lurie, J. 2009b. (∞, 2)-Categories and the Goodwillie Calculus I. arXiv:0905.0462.Google Scholar
Lurie, J. 2017 (September). Higher Algebra. www.math.ias.edu/∼lurie/papers/HA.pdf.Google Scholar
Mac Lane, S. 1998. Categories for the Working Mathematician. Second edn. Graduate Texts in Mathematics. Springer-Verlag.Google Scholar
Makkai, M. 1995. First Order Logic with Dependent Sorts, with Applications to Category Theory. www.math.mcgill.ca/makkai/.Google Scholar
Makkai, M., and Paré, R. 1989. Accessible Categories: The Foundations of Categorical Model Theory. Contemp. Math., vol. 104. American Mathematical Society.Google Scholar
May, J. P., and Ponto, K. 2012. More concise algebraic topology: Localization, Completion, and Model Categories. Chicago Lectures in Mathematics. University of Chicago Press.Google Scholar
Mazel-Gee, A. 2016. Quillen adjunctions induce adjunctions of quasicategories. New York J. Math., 22, 5793.Google Scholar
Mazel-Gee, A. 2019. A user’s guide to co/cartesian fibrations. Graduate Journal of Mathematics, 4(1), 4253.Google Scholar
Myers, D. J. 2018. String Diagrams For Double Categories and Equipments. arXiv:1612.02762.Google Scholar
Nguyen, H. K., Raptis, G., and Schrade, C. 2020. Adjoint functor theorems for ∞-categories. J. Lond. Math. Soc., 101(2), 659681.Google Scholar
Ozornova, V., and Rovelli, M. 2020. Model structures for (∞, n)-categories on (pre)stratified simplicial sets and prestratified simplicial spaces. Algebr. Geom. Topol., 20, 15431600.Google Scholar
Pellissier, R. 2002. Catégories enrichies faibles. Ph.D. thesis, Université de Nice-Sophia Antipolis.Google Scholar
Power, A. J. 1990. A 2-categorical pasting theorem. J. Algebra, 129, 439445.CrossRefGoogle Scholar
Preller, A. 1985. A language for category theory in which natural equivalence implies elementary equivalence of models. Zeitschrift f. math. Logik und Grundlagen Math., 31, 227234.Google Scholar
Quillen, D. G. 1967. Homotopical Algebra. Lecture Notes in Mathematics, vol. 43. Springer-Verlag.Google Scholar
Radulescu-Banu, A. 2009. Cofibrations in homotopy theory. arXiv:math/0610009.Google Scholar
Rasekh, N. 2017a. Cartesian fibrations and representability. arXiv:1711.03670.Google Scholar
Rasekh, N. 2017b. Yoneda lemma for simplicial spaces. arXiv:1711.03160.Google Scholar
Rasekh, N. 2021a. Quasi-categories vs. Segal spaces: cartesian edition. J. Homotopy Relat. Struct.Google Scholar
Rasekh, Nima. 2021b. Cartesian fibrations of complete Segal spaces. arXiv:2102.05190.Google Scholar
Reedy, C. 1974. Homotopy theory of model categories. www-math.mit.edu/∼psh/reedy.pdf.Google Scholar
Rezk, C. 2001. A model for the homotopy theory of homotopy theory. Trans. Amer. Math. Soc., 353(3), 9731007.Google Scholar
Rezk, C. 2010. A cartesian presentation of weak n-categories. Geom. Topol., 14(1), 521571.Google Scholar
Rezk, C. 2019. Stuff about quasi-categories. faculty.math.illinois.edu/∼rezk/quasicats.pdf.Google Scholar
Riehl, E. 2014. Categorical Homotopy Theory. New Mathematical Monographs, vol. 24. Cambridge University Press.Google Scholar
Riehl, E. 2016. Category Theory in Context. Aurora Modern Math Originals. Dover Publications.Google Scholar
Riehl, E. 2017. Complicial sets, an overture. In: 2016 MATRIX Annals. MATRIX Book Series, no. 1–28. Springer.Google Scholar
Riehl, E., and Shulman, M. 2017. A type theory for synthetic ∞-categories. High. Struct., 1(1), 147224.Google Scholar
Riehl, E., and Verity, D. 2014. The theory and practice of Reedy categories. Theory Appl. Categ., 29(9), 256301.Google Scholar
Riehl, E., and Verity, D. 2015. The 2-category theory of quasi-categories. Adv. Math., 280, 549642.CrossRefGoogle Scholar
Riehl, E., and Verity, D. 2016. Homotopy coherent adjunctions and the formal theory of monads. Adv. Math., 286, 802888.Google Scholar
Riehl, E., and Verity, D. 2017. Fibrations and Yoneda’s lemma in an ∞-cosmos. J. Pure Appl. Algebra, 221(3), 499564.Google Scholar
Riehl, E., and Verity, D. 2018 . The comprehension construction. High. Struct., 2(1), 116190.Google Scholar
Riehl, E., and Verity, D. 2020a. On the construction of limits and colimits in ∞-categories. Theory Appl. Categ., 35(30), 11011158. arXiv:1808.09835.Google Scholar
Riehl, E., and Verity, D. 2020b. Recognizing quasi-categorical limits and colimits in homotopy coherent nerves. Appl. Categ. Struct., 28(4), 669716. arXiv:1808.09834.Google Scholar
Riehl, E., and Verity, D. 2021. Cartesian exponentiation and monadicity. arXiv:2101.09853.Google Scholar
Shah, Jay. 2018. Parametrized higher category theory and higher algebra: Exposé II - Indexed homotopy limits and colimits. arXiv:1809.05892.Google Scholar
Simpson, C. 2012. Homotopy Theory of Higher Categories. New Mathematical Monographs, no. 19. Cambridge University Press.Google Scholar
Street, R. H. 1974a. Elementary cosmoi I. Page 134–180 of: Category Seminar (Proc. Sem., Sydney, 1972/1973). Lecture Notes in Math., vol. 420. Springer.Google Scholar
Street, R. H. 1974b. Fibrations and Yoneda’s lemma in a 2-category. Page 104133. of: Category Seminar (Proc. Sem., Sydney, 1972/1973). Lecture Notes in Math., vol. Vol. 420. Springer.Google Scholar
Street, R. H. 1980. Fibrations in Bicategories. Cah. Topol. Géom. Différ. Catég., XXI-2, 111159.Google Scholar
Street, R. H. 1987a. The algebra of oriented simplexes. J. Pure Appl. Algebra, 49, 283335.Google Scholar
Street, R. H. 1987b. Correction to “Fibrations in bicategories”. Cah. Topol. Géom. Différ. Catég., 28(1), 5356.Google Scholar
Street, R. H. 2003. Weak omega-categories. Page 207213 of: Diagrammatic Morphisms and Applications. Contemp. Math., vol. 318. American Mathematical Society.Google Scholar
Street, R. H., and Walters, R. 1978. Yoneda structures on 2-categories. J. Algebra, 50, 350379.Google Scholar
Sulyma, Y. J. F. 2017. ∞-categorical monadicity and descent. New York Journal of Mathematics, 23, 749777.Google Scholar
The Univalent Foundations Program. 2013. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study: homotopytypetheory.org/book.Google Scholar
Ulmer, F. 1968. Properties of dense and relative adjoint functors. J. Algebra, 3, 7795.Google Scholar
Verdier, J. L. 1996. Des Catégories Dérivées des Catégories Abéliennes. Astérisque, 239, 1253+ix.Google Scholar
Verity, D. 2008a. Complicial Sets, Characterising the Simplicial Nerves of Strict ω-Categories. Mem. Amer. Math. Soc., 193(905).Google Scholar
Verity, D. 2008b. Weak complicial sets I, basic homotopy theory. Adv. Math., 219, 10811149.Google Scholar
Verity, D. 2011. Enriched Categories, Internal Categories and Change of Base. Repr. Theory Appl. Categ., 20, 1266.Google Scholar
Weber, M. 2007. Yoneda structures from 2-toposes. Appl. Categ. Structures, 15(3), 259323.Google Scholar
Wood, R. J. 1982. Abstract proarrows I. Cah. Topol. Géom. Différ. Catég., XXIII-3, 279290.Google Scholar
Zaganidis, D. 2017. Towards an (∞, 2)-category of Homotopy Coherent Monads in an ∞-cosmos. Ph.D. thesis, École Polytechnique Fédérale de Lausanne.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Emily Riehl, The Johns Hopkins University, Maryland, Dominic Verity, Macquarie University, Sydney
  • Book: Elements of ∞-Category Theory
  • Online publication: 14 January 2022
  • Chapter DOI: https://doi.org/10.1017/9781108936880.026
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Emily Riehl, The Johns Hopkins University, Maryland, Dominic Verity, Macquarie University, Sydney
  • Book: Elements of ∞-Category Theory
  • Online publication: 14 January 2022
  • Chapter DOI: https://doi.org/10.1017/9781108936880.026
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Emily Riehl, The Johns Hopkins University, Maryland, Dominic Verity, Macquarie University, Sydney
  • Book: Elements of ∞-Category Theory
  • Online publication: 14 January 2022
  • Chapter DOI: https://doi.org/10.1017/9781108936880.026
Available formats
×