Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-30T02:41:26.528Z Has data issue: false hasContentIssue false

Part V - Materials Analysis

Published online by Cambridge University Press:  19 December 2019

Michael P. Richards
Affiliation:
Simon Fraser University, British Columbia
Kate Britton
Affiliation:
University of Aberdeen
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Archaeological Science
An Introduction
, pp. 333 - 404
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Amiran, R. 1970. Ancient Pottery of the Holy Land: From Its Beginnings in the Neolithic Period to the End of the Iron Age. New Brunswick, NJ: Rutgers University Press.Google Scholar
Arnold, D. E. 1985. Ceramic Theory and Cultural Process. Cambridge: Cambridge University Press.Google Scholar
Arnold, D. E. 2008. Social Change and the Evolution of Ceramic Production and Distribution in a Maya Community. Boulder, CO: University Press of Colorado.Google Scholar
Bar-Yosef, O., Vandermeersch, B., Arensburg, B., Belfer-Cohen, A., Goldberg, P., Laville, H., Meignen, L., Rak, Y., Speth, J. D., Tchernov, E., Tillier, A.-M. and Weiner, S. 1992. The excavations in Kebara Cave, Mt. Carmel. Current Anthropology 33(5):497550.Google Scholar
Degryse, P. and Braekmans, D. 2014. Elemental and isotopic analysis of ancient ceramics and glass. In: `Cerling, T. (ed.) Treatise of Geochemistry, Vol. 14: Treatise on Geochemistry in Archaeology and Anthropology, pp. 191207. Amsterdam: Elsevier.Google Scholar
Edwards, I. and Jacobs, L. 1986. Experiments with stone pottery wheel bearings – notes on the use of rotation in the production of ancient pottery. Newsletter. Department of Pottery Technology (University of Leiden) 4:4955.Google Scholar
Gibson, A. and Woods, A. 1997. Prehistoric Pottery for the Archaeologist. London: Leicester University Press.Google Scholar
Guzowska, M., Kuleff, I., Pernicka, E. and Satir, M. 2003. On the origin of Coarse Wares of Troia VII. In: `Wagner, G. A., `Pernicka, E. and `Uerpmann, H. P. (ed.) Troia and the Troad, Scientific Approaches, pp. 233249. Berlin-New York: Springer.CrossRefGoogle Scholar
Henrickson, R. C. 1994. Continuity and discontinuity in the ceramic tradition of Gordion during the Iron Age. In: `Çilingiroğlu, A. and `French, D. H. (ed.) Anatolian Iron Ages 3, pp. 95129. British Institute of Archaeology at Ankara Monograph 16, London.Google Scholar
Hodder, I. 1986. Reading the Past: Current Approaches to Interpretation in Archaeology. Cambridge: Cambridge University Press.Google Scholar
Josephs, R. L. 2005. Applying micromorphological terminology to ceramic petrology. Geoarchaeology 20(8):861865.Google Scholar
Klein, C. and Hurlbut, C. S. 1998. Manual of Mineralogy. Chichester: John Wiley and Sons.Google Scholar
Knacke-Loy, O., Satir, M. and Pernicka, E. 1995. Zur Herkunftsbestimmung der bronzezeitlichen Keramik von Troia: Chemische und isotopengeochemische (Nd, Sr, Pb) Unterschungen. Studia Troica 5:145175.Google Scholar
Li, B. P., Zhao, J. X., Greig, A., Collerson, K. D., Feng, Y. X., Sun, X. M., Guo, M. S. and Zhuo, Z. X. 2006. Characterisation of Chinese Tang sancai from Gongxian and Yaozhou kilns using ICP-MS trace element and TIMS Sr-Nd isotopic analysis. Journal of Archaeological Science 33:5662.Google Scholar
MacKenzie, W. S. and Adams, A. E. 1994. A Colour Atlas of Rocks and Minerals in Thin Section. London: Manson Publishing.Google Scholar
Mason, B. and Moore, C. B. 1982. Principles of Geochemistry. New York: John Wiley and Sons.Google Scholar
Mommsen, H. 2001. Provenance determination of pottery by trace element analysis: Problems, solutions and applications. Journal of Radioanalytical and Nuclear Chemistry 247:657662.CrossRefGoogle Scholar
Mommsen, H., Kreuser, A. and Weber, J. 1988. A method for grouping pottery by chemical composition. Archaeometry 30:4757.Google Scholar
Oliveira, L., Burns, A., Bissalputra, T. and Yang, K. C. 1983. The use of an ultra-low viscosity medium (VCD/HXSA) in the rapid embedding of plant cells for electron microscopy. Journal of Microscopy 132:195202.Google Scholar
Orton, C., Tyers, P. and Vince, A. 1993. Pottery in Archaeology: Cambridge Manuals in Archaeology. Cambridge: Cambridge University Press.Google Scholar
Peacock, D. P. S. 1970. The scientific analysis of ancient ceramics: A review. World Archaeology 1:375–89.CrossRefGoogle Scholar
Peacock, D. P. S. 1977. Pottery and Early Commerce. Characterization and Trade in Roman and Later Ceramics. London: Academic Press.Google Scholar
Pollard, A. M. and Heron, C. 2008. Archaeological Chemistry. Cambridge: The Royal Society of Chemistry.Google Scholar
Reedy, C. L. 2008. Thin-Section Petrography of Stone and Ceramic Cultural Material. London: Archetype Publications Ltd.Google Scholar
Rehren, Th. 2003. Crucibles as reaction vessels in ancient metallurgy. In: `Craddock, P. and `Lang, J. (Eds.) Mining and Metal Production through the Ages, pp. 207215. London: British Museum Press.Google Scholar
Renson, V., Coenaerts, J., Nys, K., Mattielli, N., Åström, P., and Claeys, P. 2007. Provenance determination of pottery from Hala Sultan Tekke using lead isotopic analysis: Preliminary results. In: `Åström, P. and `Nys, K. (eds.) Hala Sultan Tekke 12. Tomb 24, Stone Anchors, Faunal Remains and Pottery Provenance, pp. 5360. Studies in Mediterranean Archaeology 45(12). Sävedalen: Paul Åströms förlag.Google Scholar
Renson, V., Coenaerts, J., Nys, K., Mattielli, N., Vanhaecke, F., Fagels, N. and Claeys, P. 2011. Lead isotopic analysis for the identification of Late Bronze Age pottery from Hala Sultan Tekke (Cyprus). Archaeometry 53:3757.Google Scholar
Rice, P. 1987. Pottery Analysis. A Sourcebook. Chicago: University of Chicago Press.Google Scholar
Rye, O. S. 1981. Pottery Technology. Principles and Reconstruction. Washington: Taraxacum.Google Scholar
Tite, M. and Kilikoglou, V. 2002. Do we understand cooking pots and is there an ideal cooking pot? In: `Kilikoglou, V., `Hein, A. and `Maniatis, Y. (eds.) Modern Trends in Scientific Studies on Ancient Ceramics, pp. 18. BAR International Series 1011. Oxford: Archaeopress.Google Scholar
Tite, M., Kilikoglou, V. and Vekinis, G. 2001. Strength, toughnes and thermal shock resistance of ancient ceramics, and their influence on technological choice. Archaeometry 43:301324.Google Scholar
Vaughan, S. J. 1995. Ceramic petrology and petrography in the Aegean? American Journal of Archaeology 99(1):115117.Google Scholar
Vandiver, P. B., Soffer, O., Klima, B. and Svoboda, J. 1989. The origins of ceramic technology at Dolni Věstonice, Czechoslovakia. Science 246:10021008.CrossRefGoogle ScholarPubMed
Velde, B. and Druc, I. C. 1999. Archaeological Ceramic Materials. Berlin: Springer-Verlag.Google Scholar
Whitbread, I. K. 1995. Greek Transport Amphorae: A Petrological and Archaeological Study. Fitch Laboratory Occasional Paper 4. Athens: British School at Athens.Google Scholar

References

Babalola, A. B., McIntosh, S. K., Dussubieux, L. and Rehren, Th. 2017. Ife-Ife and Igbo Olokun in the history of glass in West Africa. Antiquity 91:732750.CrossRefGoogle Scholar
Barkoudah, J. and Henderson, J. 2006. Plant ashes from Syria and the manufacture of glass: Ethnographic and scientific aspects. Journal of Glass Studies 48:297321.Google Scholar
Bertini, M., Verveniotou, E., Lowe, M. and Miller, C. G. 2016. Laser ablation inductively coupled plasma mass spectrometry investigation of late 19th century Blaschka marine invertebrate glass models. Journal of Archaeological Science: Reports 6:506517.Google Scholar
Brill, R. H. 1970a. The chemical interpretation of the texts. In: `Oppenheim, A. L., `Brill, R. H., `Barag, D. and Von `Saldern, A. (eds.) Glass and Glass-Making in Ancient Mesopotamia, pp 105128. Corning, NY: Corning Museum of Glass.Google Scholar
Brill, R. H. 1970b. Lead and oxygen isotopes in ancient objects. Philosophical Transactions of the Royal Society, London 269:143164.Google Scholar
Brill, R. H. 1992. Chemical analyses of some glasses from Frattesina. Journal of Glass Studies 34 :1122.Google Scholar
Brill, R. H., Barnes, I. L. and Adams, B. 1974. Lead isotopes in some ancient Egyptian objects. In: `Bishay, A. (ed.) Recent Advances in the Science and Technology of Materials, pp. 927. New York, NY: Springer.Google Scholar
Brill, R. H., Tong, S. S. C. and Dohrenwend, D. 1991. Chemical analyses of some early Chinese glasses. In: `Brill, R. H. and `Martin, J. H. (eds.) Scientific Research in Early Chinese Glass, pp. 3158. Corning, NY: Corning Museum of Glass.Google Scholar
Caley, E. R. 1962. Analysis of Ancient Glass. Corning, NY: Corning Museum of Glass.Google Scholar
Cox, G. A. and Gillies, K. J. S. 1986. The X-ray fluorescence analysis of Medieval durable blue soda glass from York Minster. Archaeometry 28 :5768.CrossRefGoogle Scholar
Degryse, P., Boyce, A., Erb-Satullo, N., Eremin, K., Kirk, S., Scott, R., Shortland, A. J., Schneider, J. and Walton, M. 2010a. Isotopic discriminants between Late Bronze Age glasses from Egypt and the Near East. Archaeometry 52:380388.Google Scholar
Degryse, P., Freestone, I. C., Schneider, J. and Jennings, S. 2010b. Technology and provenance study of Levantine plant ash glass using Sr-Nd isotope analysis. In: `Drauschke, J. and `Keller, D. (eds.) Glass in Byzantium: Production, Usage, Analyses, pp. 8391. Mainz: Römisch-Germanisches Zentralmuseum.Google Scholar
Degryse, P. and Shortland, A. J. 2009. Trace elements in provenancing raw materials for Roman glass production. Geologica Belgica 12 :135143.Google Scholar
Doremus, R. H. 1994. Glass Science. New York, NY: John Wiley.Google Scholar
Dussubieux, L., Gratuze, B. and Blet-Lemarqand, M. 2010. Mineral soda alumina glass: occurence and meaning. Journal of Archaeological Science 37:16461655.Google Scholar
Dussubieux, L., Kusimba, C. M., Gogte, V., Kusimba, S. B. and Oka, R. 2008. The trading of ancient glass beads: New analytical data from South Asian and East African soda-alumina glass beads. Archaeometry 50:797821.Google Scholar
Forbes, R. J. 1957. Glass. In: `Forbes, R. J. (ed.) Studies in Ancient Technology. Leiden: Brill.Google Scholar
Francis, P. Jr 1991. Beadmaking at Arikamedu and beyond. World Archaeology 23:2843.Google Scholar
Freestone, I. C. 1987. Composition and microstructure of early red glasses. In: `Bimson, M. and `Freestone, I. C. (eds.) Early Vitreous Materials, pp. 173191. London: British Museum Occasional Papers 56.Google Scholar
Freestone, I. C. 2002. The relationship between enamelling on ceramic and on glass in the Islamic World. Archaeometry 44:251255.Google Scholar
Freestone, I. C., Greenwood, R. and Gorin-Rosen, Y. 2002a. Byzantine and early Islamic glassmaking in the Eastern Mediterranean: Production and distribution of primary glass. In: `Kordas, G. (ed.) Hyalos-Vitrum-Glass. History, Technology and Conservation of Glass and Vitreous Materials in the Hellenic World, 1st International Conference, pp. 167174. Athens: Glasnet Publications.Google Scholar
Freestone, I. C., Leslie, K. A., Thirwall, M. and Gorin-Rosen, Y. 2003b. Strontium isotopes in the investigation of early glass production: Byzantine and early Islamic glass from the Near East. Archaeometry 45:1932.Google Scholar
Freestone, I., Ponting, M. and Hughes, M. J. 2002b. The origins of Byzantine glass from Maroni Petrera, Cyprus. Archaeometry 44:257272.Google Scholar
Freestone, I. C., Stapleton, C. P. and Rigby, V. 2003a. The production of red glass and enamel in the Late Iron Age, Roman and Byzantine periods. In: `Entwistle, C. (ed.) Through a Glass Brightly — Studies in Byzantine and Medieval Art and Archaeology Presented to David Buckton, pp. 142154. Oxford: Oxbow Books.Google Scholar
Gan, F. X. 2005. Evolution of the chemical composition and the origin of making technology of Chinese ancient glass. In: `Gan, F.X. (ed.) Development of Chinese Ancient Glass, pp. 220240. Shanghai Scientific and Technical Publishers (in Chinese).Google Scholar
Gratuze, B. 1999. Obsidian characterisation by laser ablation ICPMS and its application to prehistoric trade in the Mediterranean and the Near East. Journal of Archaeological Science 26:869891.CrossRefGoogle Scholar
Gratuze, B. 2013. Glass characterisation using laser ablation inductively coupled plasma mass spectrometry methods. In: `Janssens, K. (ed.) Modern Methods for Analysing Archaeological and Historical Glass, pp. 201234. Chichester: John Wiley and Sons.Google Scholar
Hancock, R., Aufreiter, S., Kenyon, I. and Latta, M. 1999. White glass beads from the Auger Site, southern Ontario, Canada. Journal of Archaeological Science 26:907912.Google Scholar
Henderson, J. 1985. The raw materials of early glass production. Oxford Journal of Archaeology 4:267291.Google Scholar
Henderson, J. 1988a. Electron microprobe analysis of mixed alkali glasses. Archaeometry 30:7791.Google Scholar
Henderson, J. 1988b. Glass production and Bronze Age Europe. Antiquity 62:435451.CrossRefGoogle Scholar
Jackson, C. M. 2005. Making colourless glass in the Roman Period. Archaeometry 47:763780.Google Scholar
Jackson, C. M., Booth, C. A. and Smedley, J. W. 2005. Glass by design? Recipes and compositional data. Archaeometry 47:781795.Google Scholar
Lankton, J., Dussubieux, L. and Rehren, Th. 2008. A study of mid-first millennium CE southeast Aian specialized glass beadmaking traditions. In: `Bacus, E., `Glover, I. and `Sharrock, P. (eds.) Interpreting Southeast Asia’s Past, pp. 335356. Chicago, IL: University of Chicago Press.Google Scholar
Lankton, J., Ige, A. and Rehren, Th. 2006. Early primary glass production in southern Nigeria. Journal of African Archaeology 4:111138.Google Scholar
Lilyquist, C. and Brill, R. H. 1993. Studies in Ancient Egyptian Glass. New York, NY: Metropolitan Museum of Art.Google Scholar
Mason, R. B. and Tite, M. S. 1997. The beginnings of tin opacification in pottery glazes. Archaeometry 39:4158.Google Scholar
Merkel, S. and Rehren, Th. 2007. Parting layers, ash trays and Ramesside glassmaking: An experimental study. In: `Pusch, E. and `Rehren, Th. (eds.) Hochtemperatur-Technologie in der Ramses-Stadt, Rubinglass für den Pharao, pp. 201221. Hildesheim: Gerstenberg Verlag.Google Scholar
Molera, J., Vendrall-Saz, M., Garcia-Valles, M. and Pradell, T. 1997. Technology and colour development of Hispano-Moresque lead-glazed pottery. Archaeometry 39:2339.CrossRefGoogle Scholar
Nicholson, P. T. 2007. Brilliant Things for Akhenaten. London: Egypt Exploration Society.Google Scholar
Oppenheim, L., Brill, R., Barag, D. and von Saldern, A. 1970. Glass and Glassmaking in Ancient Mesopotamia. Corning, NY: Corning Museum of Glass.Google Scholar
Paul, A. 1990. The Chemistry of Glasses. London: Chapman and Hall.Google Scholar
Polikreti, K., Murphy, M. A., Kantarelou, V. and Karydas, A. G. 2011. XRF analysis of glass beads from the Mycenean palace of Nestor at Pylos, Peloponnesus, Greece: New insight into the LBA glass trade. Journal of Archaeological Science 38:28892896.Google Scholar
Pusch, E. and Rehren, Th. 2007. Hochtemperatur-Technologie in der Ramses-Stadt, Rubinglas für den Pharao. Teil 1, Text, Teil 2, Katalog. Hildesheim: Gerstenberg Verlag.Google Scholar
Putzgruber, E., Verità, M., Uhlir, K., Frühmann, B., Grießer, M. and Krist, G. 2012. Scientific investigation and study of the sixteenth-century glass jewellery collection of Archduke Ferdinand II. Studies in Conservation 57 (Supplement 1):217226.CrossRefGoogle Scholar
Rehren, Th. 1997. Ramesside glass colouring crucibles. Archaeometry 39:355368.CrossRefGoogle Scholar
Rehren, Th. 2014. Glass production and consumption between Egypt, Mesopotamia and the Aegean. In: `Pfälzner, P., `Niehr, H., `Pernicka, E., `Lange, S. and `Köster, T. (eds.) Contextualising Grave Inventories in the Ancient Near East (Qatna Studien Supplementa 3), pp. 217223. Wiesbaden: Harrassowitz.Google Scholar
Rehren, Th. and Freestone, I. C. 2015. Ancient glass: From kaleidoscope to crystal ball. Journal of Archaeological Science 56:233241.Google Scholar
Rehren, Th. and Pusch, E. 2005. Late Bronze Age Egyptian glass production at Qantir-Piramesses. Science 308:17561759.CrossRefGoogle Scholar
Rehren, Th., Spencer, L. and Triantafyllidis, P. 2005. The primary production of glass at Hellenistic Rhodes. In: `Cool, H. (ed.) Annales du 16e Congres de l’Association Internationale pour l’Histoire du Verre, pp. 3943. Nottingham: AIHV.Google Scholar
Ruckstuhl, B. and Shortland, A. J. 2004. Glassperlen. In: `Bauer, I. (ed.) Die spätbronzezeitlichen Ufersiedlungen von Zug-Sumpf. Band 3: Die Funde der Grabungen 1923–37, pp. 306314. Zug, Switzerland: Kantonales Museum für Urgeschichte.Google Scholar
Sayre, E. V. and Smith, R. W. 1961. Compositional categories of ancient glass. Science 133:18241826.Google Scholar
Sayre, E. V. and Smith, R. W. 1967. Some materials of glass manufacturing in antiquity. In: `Levey, M. (ed.) Archaeological Chemistry, pp. 279311. Philadelphia, PA: University of Pennsylvania Press.Google Scholar
Sayre, E. V. and Smith, R. W. 1974. Analytical studies in ancient Egyptian glass. In: `Bishay, A. (ed.) Recent Advances in the Science and Technology of Materials, pp. 4770. New York, NY: Springer.Google Scholar
Scott, R. B., Shortland, A. J. and Power, M. 2012, The interpretation of compositional groupings in 17th century window glass from Christ Church Cathedral, Oxford. In: `Ignatiodou, D. and `Antonaras, A. (eds.) Annales du 18e Congrés de l’Association Internationale pour l’Histoire du Verre, pp. 425429. Thessaloniki: AIHV.Google Scholar
Shortland, A. J. 2002. The use and origin of antimonate colorants in early Egyptian glass. Archaeometry 44:517531.Google Scholar
Shortland, A. J. 2004. Evaporites of the Wadi Natrun: Seasonal and annual variation and its implication for ancient exploitation. Archaeometry 46:497516.CrossRefGoogle Scholar
Shortland, A. J. 2012. Lapis Lazuli from the Kiln: Glass and Glassmaking in the Late Bronze Age. Studies in Archaeological Science. Leuven: Leuven University Press.Google Scholar
Shortland, A. J., Nicholson, P. T. and Jackson, C. M. 2000. Lead isotopic analysis of 18th dynasty Egyptian eyepaints and lead antimonate colorants. Archaeometry 42:153159.Google Scholar
Shortland, A. J., Rogers, N. and Eremin, K. 2007. Trace element discriminants between Egyptian and Mesopotamian Late Bronze Age glasses. Journal of Archaeological Science 34:781789.CrossRefGoogle Scholar
Shugar, A. and Rehren, Th. 2002. Formation and composition of glass as a function of firing temperature. Glass Technology 43C:145150.Google Scholar
Silvestri, A., Molin, G. and Salviulo, G. 2005. Roman and Medieval glass from the Italian area: Bulk characterisation and relationships to production technologies. Archaeometry 47:797816.Google Scholar
Smirniou, M. and Rehren, Th. 2011. Direct evidence of primary glass production in Late Bronze Age Amarna, Egypt. Archaeometry 53:5880.Google Scholar
Tanimoto, S. and Rehren, Th. 2008. Interactions between silicate and salt melts in LBA glassmaking. Journal of Archaeological Science 35:25662573.Google Scholar
Tite, M. S. 1987. Characterisation of early vitreous materials. Archaeometry 29:2134.Google Scholar
Tite, M. S. and Bimson, M. 1986. Faience: an investigation of microstructures associated with the different methods of glazing. Archaeometry 28:6978.CrossRefGoogle Scholar
Tite, M. S., Pradell, T. and Shortland, A. J. 2008. Discovery, production and use of tin-based opacifiers in glasses, enamels and glazes from the Late Iron Age onwards: a reassessment. Archaeometry 50:6784.Google Scholar
Tite, M. S., Shortland, A. J. and Maniatis, Y. 2006. The composition of soda-rich and mixed alkali plant ashes used in the production of glass. Journal of Archaeological Science 33:12841292.Google Scholar
Turner, W. E. S. 1956a. Studies in ancient glasses and glass making processes. Part III. The chronology of glass making constituents. Journal of the Society of Glass Technology 40:3952.Google Scholar
Turner, W. E. S. 1956b. Studies in ancient glasses and glass making processes. Part V. Raw materials and melting processes. Journal of the Society of Glass Technology 40:277300.Google Scholar
Turner, W. E. S. 1956c. Studies in ancient glasses and glass making processes. Part IV. The chemical composition of ancient glasses. Journal of the Society of Glass Technology 40:162184.Google Scholar
Turner, W. E. S. and Rooksby, H. P. 1959. A study of opalising agents in ancient opal glasses throughout three thousand years. Glasstechnische Berichte 32K:1728.Google Scholar
Vandiver, P. 1982. Technological change in Egyptian faience. In: `Olin, J. S. and `Franklin, A. D. (eds.) Archaeological Ceramics, pp. 167180. Washington DC: Smithsonian Institution.Google Scholar
Vandiver, P. 1998. A review and the proposal of new criteria for the production technologies of Egyptian faience. In: `Colinart, S. and `Menu, M. (eds.) La couleur dans la peinture at l’émaillage de L’Égypte ancienne, pp. 121142. Ravello: Centro Universitario Europeo.Google Scholar
Verità, M. and Zecchin, S. 2009. Thousand years of Venetian glass: The evolution of chemical composition from the origins to the 18th century. In: `Janssens, K. H. A. (ed.) Annales du 17e Congrès de l’Association Internationale pour l’Histoire du Verre, pp. 602613. Antwerp: University Press Antwerp.Google Scholar
Walton, M.S., Shortland, A. J., Kirk, S. and Degryse, P. 2009. Evidence for the trade of Mesopotamian and Egyptian glass to Mycenean Greece. Journal of Archaeological Science 36:14961503.Google Scholar
Wedepohl, K. H. 1997. Chemical composition of medieval glass from excavations in West Germany. Glastechnische Berichte / Glass Science and Technology 70:246255.Google Scholar
Weyl, W. A. 1951. Coloured Glasses. Sheffield: Society of Glass Production.Google Scholar
Zachariasen, W. H. 1932. The atomic arrangement of glass. Journal of the American Chemical Society 54:38413851.Google Scholar

References

Affonso, M. T. C. and Pernicka, E. 1997. INAA analysis of late pre-pottery neolithic rings from Basta. In: `Gebel, H. G. K., `Kafafi, Z. and `Rollefson, G. O. (eds.) Prehistory of Jordan II. Perspectives from 1997, pp. 641650. Studies in Early Near Eastern Production, Subsistence, and Environment 4. Berlin: Ex Oriente.Google Scholar
Aldenderfer, M., Craig, N. M., Speakman, R. J. and Popelka-Filcoff, R. 2008. Four-thousand-year-old gold artifacts from the Lake Titicaca basin, southern Peru. Proceedings of the National Academy of Sciences 105:50025005.Google Scholar
Alipour, R. and Rehren, Th. 2014. Persian Pūlād Production: Chāhak Tradition. Journal of Islamic Archaeology 1:237267.Google Scholar
Allan, J. W. and Gilmour, B. J. 2000. Persian Steel: The Tanavoli Collection. Oxford: Oxford University Press.Google Scholar
Bar-Yosef Mayer, D. E. and Porat, N. 2008. Green stone beads at the dawn of agriculture. Proceedings of the National Academy of Sciences 105:85488551.Google Scholar
Beretta, M. 2009. The Alchemy of Glass – Counterfeit, Imitations, and Transmutation in Ancient Glassmaking. Sagamore Beach, MA: Watson Publishing.Google Scholar
Binford, L. R. 1962. Archaeology as anthropology. American Antiquity 28:217225.Google Scholar
Bourgarit, D. and Plateau, J. 2007. When aluminium was equal to gold: Can a ‘chemical’ aluminium be distinguished from an ‘electrolytic’ one? Historical Metallurgy 41:5776.Google Scholar
Brauns, M., Schwab, R., Gassmann, G., Wieland, G. and Pernicka, E. 2013. Provenance of Iron Age iron in southern Germany: A new approach. Journal of Archaeological Science 40:841849.Google Scholar
Chastain, M., Deymier-Black, A., Kelly, J., Brown, J. and Dunand, D. 2011. Metallurgical analysis of copper artifacts from Cahokia. Journal of Archaeological Science 38:17271736.Google Scholar
Cech, B. 2007. Spätmittelalterliche bis frühneuzeitliche Edelmetallgewinnung in den hohen Tauern, 2 vols. Monographies of the Römisch-Germanisches Zentralmuseum 70. Mainz.Google Scholar
Cessford, C. 2005. Absolute dating at Çatalhöyük. In: `Hodder, I. (ed.) Changing Materialities at Çatalhöyük: Reports from the 1995–99 Seasons, pp. 65100. Cambridge/London: McDonald Institute Monographs/British Institute at Ankara.Google Scholar
Conophagos, C. 1980. Le Laurium Antique et la technique grecque de la production de l’argent. Athens: Ekdotike Hellados.Google Scholar
Domanski, M. and Webb, J. A. 1992. Effect of heat treatment on siliceous rocks used in prehistoric lithic technology. Journal of Archaeological Science 19:601614.Google Scholar
Doonan, R. and Day, P. 2007. Mixed origins and the origins of mixing: alloys and provenance in the Early Bronze Age Aegean. In: `Day, P. and `Doonan, R. (eds.) Metallurgy in the Early Bronze Age Aegean, pp. 118. Sheffield Studies in Aegean Archaeology 7. Oxford: Oxbow Books.Google Scholar
Eckstein, K., Rehren, Th. and Hauptmann, A. 1994. Hochmittelalterliches Montanwesen im sächsischen Erzgebirge und seinem Vorland – Die Gewinnung von Blei und Silber. Der Anschnitt 46:122132.Google Scholar
Hunter, F. and Davis, M. 1994. Early Bronze Age lead – a unique necklace from southeast Scotland. Antiquity 68:824830.Google Scholar
Jambon, A. 2017. Bronze Age iron: meteoritic or not? A chemical strategy. Journal of Archaeological Science 88:4753.Google Scholar
Jovanović, B. 1982. Rudna Glava, najstarije rudarstvo bakra na centralnom Balkanu [Rudna Glava, the oldest copper metallurgy in the Central Balkans]. Beograd, Bor, Arheološki Institut, Muzej rudarstva i metalurgije.Google Scholar
Klemm, D. and Klemm, R. 1994. Chronologischer Abriss der antiken Goldgewinnung in der Ostwüste Ägyptens. Mitteilungen des Deutschen Archäologischen Instituts, Abteilung Kairo 50:189222.Google Scholar
Maldonado, B. and Rehren, Th. 2009. Early copper smelting at Itziparátzico, Mexico. Journal of Archaeological Science 36:19982006.Google Scholar
Marro, C., Bakhshaliyev, V. and Sanz, S. 2010. Archaeological investigations on the salt mine of Duzdagi (Nakhchivan, Azerbaijan). TÜBA-AR, Vol. 13, Ankara.Google Scholar
Martinón-Torres, M. and Rehren, Th. 2014. Technical ceramics. In: `Roberts, B. and `Thornton, C. (eds.) Archaeometallurgy in Global Perspective, pp. 107131. London: Springer.Google Scholar
Mei, J., Wang, P., Chen, K., Wang, L., Wang, Y. and Liu, Y. 2015. Archaeometallurgical studies in China: Some recent developments and challenging issues. Journal of Archaeological Science 56:221232.Google Scholar
Miller, H. 2007. Associations and ideologies in the locations of urban craft production at Harappa, Pakistan (Indus Civilization). Archeological Papers of the American Anthropological Association 17:3751.Google Scholar
Moorey, P. R. S. 1994. Ancient Mesopotamian Materials and Industries: The Archaeological Evidence. Oxford: Clarendon Press.Google Scholar
Neuninger, H., Pittioni, R. and Siegl, W. 1964. Frühkeramikzeitliche Kupfergewinnung in Anatolien. Archaeologia Austriaca 35:98110.Google Scholar
O’Brien, W. 2004. Ross Island: Mining, Metal and Society in Early Ireland. Galway: Department of Archaeology, National University of Ireland.Google Scholar
Pages, G., Dillmann, Ph., Fluzin, P. and Long, L. 2011. A study of the Roman iron bars of Saintes-Maries-de-la-Mer (Bouches-du-Rhône, France). A proposal for a comprehensive metallographic approach. Journal of Archaeological Science 38:12341252.Google Scholar
Pernicka, E. 2014. Provenance determination of archaeological metal objects. In: `Roberts, B. and `Thornton, C. (eds.) Archaeometallurgy in Global Perspective, pp. 239268. London: Springer.Google Scholar
Pernicka, E., Begemann, F., Schmitt-Strecker, S., Todorova, H. and Kuleff, I. 1997. Prehistoric copper in Bulgaria. Its composition and provenance. Eurasia Antiqua 3:41180.Google Scholar
Pigott, V. 1999. A heartland of metallurgy: Neolithic/Chalcolithic metallurgical origins on the Iranian Plateau. In: `Hauptmann, A., `Pernicka, E., `Rehren, Th. and `Yalcin, Ü. (eds.) The Beginnings of Metallurgy, pp. 109122. Der Anschnitt 9. Bochum: Deutsches Bergbau-Museum.Google Scholar
Pittioni, R. 1948. Recent researches on ancient copper-mining in Austria. Man 48:120122.Google Scholar
Radivojević, M., Rehren, Th., Farid, Sh., Pernicka, E., Camurcuoğlu, D. 2017. Repealing the Çatalhöyük extractive metallurgy: the green, the fire and the ‘slag’. Journal of Archaeological Science 86:101122.Google Scholar
Radivojević, M., Rehren, Th., Pernicka, E., Šljivar, D., Brauns, M. and Borić, D. 2010. On the origins of extractive metallurgy: New evidence from Europe. Journal of Archaeological Science 37:27752787.Google Scholar
Ramage, A. and Craddock, P. T. 1999. King Croesus’ Gold. Excavations at Sardis and the History of Gold Refining. British Museum Press in association with Archaeological Exploration of Sardis.Google Scholar
Rehren, Th. 2003. Crucibles as reaction vessels in ancient metallurgy. In: `Craddock, P. and `Lang, J. (eds.) Mining and Metal Production through the Ages, pp. 207215. London: British Museum.Google Scholar
Rehren, Th., Belgya, Th., Jambon, A., Káli, G., Kasztovszky, Zs., Kis, Z., Kovács, I., Maróti, B., Martinón-Torres, M., Miniaci, G., Pigott, V., Radivojević, M., Rosta, L., Szentmiklósi, L. and Szőkefalvi-Nagy, Z. 2013. 5,000 years old Egyptian iron beads made from hammered meteoritic iron. Journal of Archaeological Science 40:47854792.Google Scholar
Rehren, Th., Leshtakov, P. and Penkova, P. 2016. Reconstructing Chalcolithic copper smelting at Akladi cheiri, Chernomorets, Bulgaria. In: `Nikolov, V. and `Schier, W. (eds.) Der Schwarzmeerraum vom Neolithikum bis in die Früheisenzeit (6000–600 v.Chr.), pp. 205214. Rhaden/Westfalen: Leidorf.Google Scholar
Rehren, Th. and Pernicka, E. 2008. Coins, artefacts and isotopes: Archaeometallurgy and Archaeometry. Archaeometry 50:232248.Google Scholar
Rehren, Th. and Prange, M. 1998. Lead metal and patina: A comparison. In: `Rehren, Th., `Hauptmann, A. and `Muhly, J. (eds.) Metallurgica Antiqua, In Honour of Hans–Gert Bachmann and Robert Maddin, pp. 183196. Der Anschnitt 8. Bochum: Deutsches Bergbau-Museum.Google Scholar
Rehren, Th., Vanhove, D. and Mussche, H. 2002. Ores from the ore washeries in the Lavriotiki. Metalla (Bochum) 9:2746.Google Scholar
Renfrew, C. 1978. Varna and the social context of early metallurgy. Antiquity 52:199203.Google Scholar
Roberts, B. W. 2009. Production networks and consumer choice in the earliest metal of western Europe. Journal of World Prehistory 22:461481.Google Scholar
Roberts, B. W., Thornton, C. P. and Pigott, V. C. 2009. Development of metallurgy in Eurasia. Antiquity 83:10121022.CrossRefGoogle Scholar
Rostoker, W. and Bronson, B. 1990. Pre-industrial Iron – Its Technology and Ethnology. Archeomaterials Monograph 1. Philadelphia.Google Scholar
Rothenberg, B. 1988. The Egyptian Mining Temple at Timna: Researches in the Arabah, Vol. 1, London: The Institute for Archaeo-Metallurgical Studies.Google Scholar
Russell, M. 2000. Flint Mines in Neolithic Britain. Stroud: Tempus.Google Scholar
Salomon, H., Vignaud, C., Lahlil, S. and Menguy, N. 2015. Solutrean and Magdalenian ferruginous rocks heat-treatment: Accidental and/or deliberate action? Journal of Archaeological Science 55:100112.Google Scholar
Schultze, C., Stanish, C., Scott, D., Rehren, Th., Kuehner, S. and Feathers, J. 2009. Direct evidence of 1,900 years of indigenous silver production in the Lake Titicaca Basin of Southern Peru. Proceedings of the National Academy of Sciences 106:1728017283.Google Scholar
Schwab, R., Heger, D., Höppner, B. and Pernicka, E. 2006. The provenance of iron artefacts from Manching: A multi-technique approach. Archaeometry 48:433452.Google Scholar
Smith, S. C. 1981. On art, invention and technology. In: `Smith, S. C. (ed.) A Search for Structure, pp. 325331. Cambridge, MA: MIT Press.Google Scholar
Sperl, G. 1990. Zur Urgeschichte des Bleies. Zeitschrift für Metallkunde 81:799801.Google Scholar
Taylor, T. 1999. Envaluing metal: Theorizing the Eneolithic ‘hiatus’. In: `Young, S. M. M., `Pollard, A. M., `Budd, P. and `Ixer, R. A. (eds.) Metals in Antiquity, pp. 2232. BAR International Series 792. Oxford: Archaeopress.Google Scholar
Thornton, C. P. 2009. The emergence of complex metallurgy on the Iranian Plateau: Escaping the Levantine paradigm. Journal of World Prehistory 22:301327.Google Scholar
Thornton, C. P., Golden, J., Killick, D., Pigott, V. C., Rehren, Th. and Roberts, B. W. 2010. A Chalcolithic error: Rebuttal to Amzallag 2009. American Journal of Archaeology 114:305315.Google Scholar
Tite, M. and Bimson, M. 1989. Glazed steatite: An investigation of the methods of glazing used in ancient Egypt. World Archaeology 21:87100.Google Scholar
Veldhuijzen, A. H. and Rehren, Th. 2007. Slags and the city: Early iron production at Tell Hammeh, Jordan, and Tel Beth-Shemesh, Israel. In: La `Niece, S., `Hook, D. and `Craddock, P. (eds.) Metals and Mines: Studies in Archaeometallurgy, pp. 189201. London: Archetype.Google Scholar
Wagner, D. 2008. Science and civilisation in China. Vol. 5: Chemistry and chemical technology. Part 11: Ferrous metallurgy. Cambridge: Needham Research Institute.Google Scholar
Waldbaum, J. 1999. The coming of iron in the Eastern Mediterranean: Thirty years of archaeological and technological research. In: `Pigott, V. C. (ed.) The Archaeometallurgy of the Asian Old World, pp. 2757. MASCA Research Papers in Science and Archaeology 16. Philadelphia, PA: University of Pennsylvania.Google Scholar
Weisgerber, G. 2006. The mineral wealth of ancient Arabia and its use I: Copper mining and smelting at Feinan and Timna: Comparison and evaluation of techniques, production, and strategies. Arabian Archaeology and Epigraphy 17:130.Google Scholar
Weisgerber, G. and Hauptmann, A. 1988. Early copper mining and smelting in Palestine. In: `Maddin, R. (ed.) The Beginning of the Use of Metals and Alloys, pp. 5262. Cambridge, MA and London: The MIT Press.Google Scholar
Weller, O. 2002. The earliest rock salt exploitation in Europe: A salt mountain in the Spanish Neolithic. Antiquity 76:317318.Google Scholar
Wen, G. and Jing, Z. 1992. Chinese neolithic jade: A preliminary geoarchaeological study. Geoarchaeology 7:251275.Google Scholar
Yalcin, Ü. and Pernicka, E. 1999. Frühneolithische Metallurgie von Asikli Höyük. In: `Hauptmann, A., `Pernicka, E., `Rehren, Th. and `Yalcin, Ü. (eds.) The Beginnings of Metallurgy, pp. 4554. Der Anschnitt 9. Bochum: Deutsches Bergbau-Museum.Google Scholar

References

Aitken, M. 1985. Thermoluminescence Dating. London: Academic Press.Google Scholar
Alperson-Afil, N., Richter, D., and Goren-Inbar, N. 2007. Phantom hearths and the use of fire at Gesher Benot Ya’aqov, Israel. PaleoAnthropology 2007:115.Google Scholar
Andrefsky, W. 2005. Lithics: Macroscopic Approaches to Analysis. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Archer, W., Gunz, P, van Niekerk, K. L., Henshilwood, C. S., and McPherron, S. P. 2015. Diachronic change within the Still Bay at Blombos Cave, South Africa. PLoS One 10(7):e0132428.Google Scholar
Bailey, R. M. in press. Luminescence dating. In: `Richards, M. P. and `Britton, K. (eds.) Archaeological Science. Cambridge: Cambridge University Press.Google Scholar
Bamforth, D. 1988. Investigating microwear polishes with blind tests: The Institute results in context. Journal of Archaeological Science 15:1123.Google Scholar
Bamforth, D., Burns, G., and Woodman, C. 1990. Ambiguous use traces and blind test results: New data. Journal of Archaeological Science 17:413430.Google Scholar
Banks, W. and Kay, M. 2003. High-resolution casts for lithic use-wear analysis. Lithic Technology 28:2734.Google Scholar
Bienenfeld, P. 1995. Duplicating archaeological microwear polishes with epoxy casts. Lithic Technology 20:2939.Google Scholar
Borradaile, G., Kissin, S., Stewart, J., Ross, W., and Werner, T. 1993. Magnetic and optical methods for detecting the heat treatment of chert. Journal of Archaeological Science 20:5766.Google Scholar
Brantingham, P., Olsen, J., Rech, J., and Krivoshapkin, A. 2000. Raw material quality and prepared core technologies in northeast Asia. Journal of Archaeological Science 27(3):255271.Google Scholar
Braun, D., Plummer, T., Ferraro, J., Ditchfield, P., and Bishop, L. 2009. Raw material quality and Oldowan hominin toolstone preferences: evidence from Kanjera South, Kenya. Journal of Archaeological Science 36(7):16051614.Google Scholar
Brown, K., Marean, C., Herries, A., Jacobs, Z., Tribolo, C., Braun, D., Roberts, D., Meyer, M., and Bernatchez, J. 2009. Fire as an engineering tool of early modern humans. Science 325(5942):859862.Google Scholar
Burroni, D., Donahue, R. E., Pollard, A. M., and Mussi, M. 2002. The surface alteration features of flint artefacts as a record of environmental processes. Journal of Archaeological Science 29(11):12771287.Google Scholar
Clarkson, C., Vinicius, L., and Lahr, M. 2006. Quantifying flake scar patterning on cores using 3D recording techniques. Journal of Archaeological Science 33(1):132142.Google Scholar
Cooper, J. and Qiu, F. 2006. Expediting and standardizing stone artifact refitting using a computerized suitability model. Journal of Archaeological Science 33(7):987998.Google Scholar
Cotterell, B. and Kamminga, J. 1979. The mechanics of flaking. In: `Hayden, B. (ed.) Lithic Use-Wear Analysis, pp. 97112, New York, NY: Academic Press.Google Scholar
Cotterell, B. and Kamminga, J. 1987. The formation of flakes. American Antiquity 52(4):675708.Google Scholar
Dibble, H. and Rezek, Z. 2009. Introducing a new experimental design for controlled studies of flake formation: Results for exterior platform angle, platform depth, angle of blow, velocity, and force. Journal of Archaeological Science 36(9):19451954.Google Scholar
Domanski, M. and Webb, J. 1992. Effect of heat treatment on siliceous rocks used in prehistoric lithic technology. Journal of Archaeological Science 19:601614.Google Scholar
Domanski, M. and Webb, J. 2007. A review of heat treatment research. Lithic Technology 32(2):153194.Google Scholar
Domanski, M., Webb, J., Glaisher, R., Gurba, J., Libera, J., and Zakościelna, A. 2009. Heat treatment of Polish flints. Journal of Archaeological Science 36(7):14001408.Google Scholar
Eren, M. I., Roos, C. I., Story, B. A., von Cramon-Taubadel, N., and Lycett, S. J. 2014. The role of raw material differences in stone tool shape variation: An experimental assessment. Journal of Archaeological Science 49:472487.Google Scholar
Evans, A. A. 2014. On the importance of blind testing in archaeological science: the example from lithic functional studies. Journal of Archaeological Science, 48:514.Google Scholar
Evans, A. A. and Donahue, R. E. 2005. The elemental chemistry of lithic microwear: An experiment. Journal of Archaeological Science 32(12):7331740.Google Scholar
González-Urquijo, J. E. and Ibáñez-Estévez, J. J. 2003. The quantification of use-wear polish using image analysis. First results. Journal of Archaeological Science 30(4):481489.Google Scholar
Grace, R. 1996. Review article use-wear analysis: The state of the art. Archaeometry 38(2):209229.Google Scholar
Ioviţă, R. 2009. Ontogenetic scaling and lithic systematics: Method and application. Journal of Archaeological Science 36(7):14471457.Google Scholar
Keeley, L. and Newcomer, M. 1977. Microwear analysis of experimental flint tools: a test case. Journal of Archaeological Science 4(1):2962.Google Scholar
Kooyman, B. 2000. Understanding Stone Tools and Archaeological Sites. Albuquerque, NM: University of New Mexico Press.Google Scholar
Levi-Sala, I. 1986. Use wear and post-depositional surface modification: A word of caution. Journal of Archaeological Science 13(3):229244.Google Scholar
Lin, S. C., Rezek, Z., Braun, D., and Dibble, H. L. 2013. On the utility and economization of unretouched flakes: The effects of exterior platform angle and platform depth. American Antiquity 78(4):724745.Google Scholar
Lycett, S., von Cramon-Taubadel, N., and Foley, R. 2006. A crossbeam co-ordinate caliper for the morphometric analysis of lithic nuclei: A description, test and empirical examples of application. Journal of Archaeological Science 33(6):847861.Google Scholar
Macdonald, D. A. 2014. The application of focus variation microscopy for lithic use-wear quantification. Journal of Archaeological Science 48:2633.Google Scholar
Magnani, M., Rezek, Z., Lin, S. C., Chan, A., and Dibble, H. L. 2014. Flake variation in relation to the application of force. Journal of Archaeological Science 46:3749.Google Scholar
Mercieca, A. and Hiscock, P. 2008. Experimental insights into alternative strategies of lithic heat treatment. Journal of Archaeological Science 35(9):26342639.Google Scholar
Newcomer, M., Grace, R., and Unger-Hamilton, R. 1986. Investigating microwear polishes with blind tests. Journal of Archaeological Science 13:203217.Google Scholar
Noll, M. 2000. Components of Acheulean lithic assemblage variability at Olorgesailie, Kenya. Doctoral thesis, University of Illinois at Urbana-Champaign, IL.Google Scholar
Odell, G. 2000. Stone tool research at the end of the millennium: Procurement and technology. Journal of Archaeological Research 8(4):269331.Google Scholar
Odell, G. 2001. Stone tool research at the end of the millennium: Classification, function, and behavior. Journal of Archaeological Research 9(1):45100.Google Scholar
Odell, G. 2004. Lithic Analysis. New York, NY: Plenum Pub Corp.Google Scholar
Odell, G. and Odell-Vereecken, F. 1980. Verifying the reliability of lithic use-wear assessments by’blind tests’: The low-power approach. Journal of Field Archaeology 7(1):87120.Google Scholar
Pretola, J. 2001. A feasibility study using silica polymorph ratios for sourcing chert and chalcedony lithic materials. Journal of Archaeological Science 28(7):721739.Google Scholar
Price, T., Chappell, S., and Ives, D. 1982. Thermal alteration in Mesolithic assemblages. Proceedings of the Prehistoric Society 48:467485.Google Scholar
Rezek, Z., Lin, S., Ioviţă, R., and Dibble, H. L. 2011. The relative effects of core surface morphology on flake shape and other attributes. Journal of Archaeological Science 38(6):13461359Google Scholar
Richter, D. 2007. Advantages and limitations of thermoluminescence dating of heated flint from Paleolithic sites. Geoarchaeology: An International Journal 22(6):671683.Google Scholar
Riel-Salvatore, J., Bae, M., McCartney, P., and Razdan, A. 2002. Palaeolithic archaeology and 3D visualization technology: recent developments. Antiquity 76(294):929930.Google Scholar
Rowney, M. and White, J. 1997. Detecting heat treatment on silcrete: Experiments with methods. Journal of Archaeological Science 24(7):649657.Google Scholar
Schmidt, P. 2011. Traitement Thermique Des Silicifications Sédimentaires: Un Nouveau Modèle Des Transformations Cristallographiques et Structurales de La Calcédoine Induites Par La Chauffe. Paris: Muséum national d’histoire naturelle. http://www.theses.fr/2011MNHN0008 (accessed July 9, 2019).Google Scholar
Schmidt, P., Léa, V., Sciau, Ph., and Fröhlich, F. 2013. Detecting and quantifying heat treatment of flint and other silica rocks: A new non-destructive method applied to heat-treated flint from the Neolithic Chassey culture, southern France. Archaeometry 55(5):794805.Google Scholar
Schmidt, P., Masse, S., Laurent, G., Slodczyk, A., Le Bourhis, E., Perrenoud, C., Livage, J., and Fröhlich, F. 2012. Crystallographic and structural transformations of sedimentary chalcedony in flint upon heat treatment. Journal of Archaeological Science 39(1):135–44.Google Scholar
Semenov, S. 1964. Prehistoric Technology. London: Cory, Adams and Mackay.Google Scholar
Shackley, M. 1998. Gamma rays, X-rays and stone tools: Some recent advances in archaeological geochemistry. Journal of Archaeological Science 25(3):259270.Google Scholar
Shackley, M. 2008. Archaeological petrology and the archaeometry of lithic materials. Archaeometry 50:194215.Google Scholar
Shea, J. and Klenck, J. 1993. An experimental investigation of the effects of trampling on the results of lithic microwear analysis. Journal of Archaeological Science 20:175194.Google Scholar
Speth, J. 1972. Mechanical basis of percussion flaking. American Antiquity 37(1):3460.Google Scholar
Stemp, W. James. 2014. A review of quantification of lithic use-wear using laser profilometry: A method based on metrology and fractal analysis. Journal of Archaeological Science 48:1525.Google Scholar
Stout, D., Quade, J., Semaw, S., Rogers, M., and Levin, N. 2005. Raw material selectivity of the earliest stone toolmakers at Gona, Afar, Ethiopia. Journal of Human Evolution 48(4):365380.Google Scholar
Unrath, G., Owen, L., Van Gijn, A., Moss, E., Plisson, H., and Vaughan, P. 1986. An evaluation of use-wear studies: A multi-analyst approach. In: `Owen, L. and `Unrath, G. (eds.) Technical Aspects of Microwear Studies on Stone Tools, pp. 117176. Early Man News. Tübingen: Institut für Urgeschichte.Google Scholar
Wadley, L. and Prinsloo, L. C. 2014. Experimental heat treatment of silcrete implies analogical reasoning in the Middle Stone Age. Journal of Human Evolution 70:4960.Google Scholar
Weiner, S., Brumfeld, V., Marder, O., and Barzilai, O. 2015. Heating of flint debitage from Upper Palaeolithic contexts at Manot Cave, Israel: Changes in atomic organization due to heating using infrared spectroscopy. Journal of Archaeological Science 54:4553.Google Scholar
Whittaker, J. 1994. Flintknapping. Austin, TX: University of Texas Press.Google Scholar
Yonekura, K. 2015. Rock properties and material selection for blade manufacture in Upper Paleolithic Japan. Lithic Technology 40(2):8593.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×