Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-31T14:17:07.648Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  18 June 2021

J. R. Dorfman
Affiliation:
University of Maryland, College Park
Henk van Beijeren
Affiliation:
Universiteit Utrecht, The Netherlands
T. R. Kirkpatrick
Affiliation:
University of Maryland, College Park
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahams, E.. Fifty Years of Anderson Localization. World Scientific Publishing Co., Singapore, 2010.Google Scholar
Abrikosov, A. A., Gorkov, L. P., and Dzyaloshinski, I. E.. Methods of Quantum Field Theory in Statistical Physics. Prentice Hall Saddle River, 1963.Google Scholar
Akkermans, E. and Montambaux, G.. Mesoscopic Physics of Electrons and Photons. Cambridge University Press, Cambridge, reissue ed., 2011.Google Scholar
al Khawaja, U. and Stoof, H. T. C.. Kinetic theory of collective excitations and damping in Bose-Einstein condensed gases. Phys. Rev. A, 62:053602, 2002.Google Scholar
Albers, J. and Oppenheim, I.. Density expansion of quantum transport coefficients and other response functions. Physica, 59:161, 1972.Google Scholar
Albers, J. and Oppenheim, I.. Logarithmic terms in the density expansion of quantum transport coefficients and other response functions. Physica, 59:187, 1972.Google Scholar
Alder, B. J.. Molecular dynamics simulations. In G. Ciccotti and W. G. Hoover, eds., Molecular Dynamics Simulations of Statistical Mechanical Systems, page 66, North-Holland Publishing Co., Amsterdam 1986.Google Scholar
Alder, B. J., Gass, D. M., and Wainwright, T. E.. Studies in molecular dynamics. VIII. The transport coefficients for a hard sphere fluid. J. Chem. Phys., 53:3813, 1970.Google Scholar
Alder, B. J. and Wainwright, T. E.. Velocity autocorrelations for hard spheres. Phys. Rev. Lett., 18:988, 1967.Google Scholar
Alder, B. J. and Wainwright, T. E.. Decay of the velocity autocorrelation function. Phys. Rev. A, 1:18, 1970.Google Scholar
Aminov, A., Kafri, Y., and Kardar, M.. Fluctuation-induced forces in non-equilibrium diffusive dynamics. Phys. Rev. Lett., 114:230602, 2015.Google Scholar
Anderson, H. C. and Chandler, D.. Optimized cluster expansions for classical fluids. I. General theory and variational formulation of the mean spherical model and hard sphere Percus-Yevick equations. J. Chem. Phys., 57:1918, 1972.Google Scholar
Anderson, M. H., Ensher, J. R., Matthews, M. R., Weiman, C. E., and Cornell, E. A.. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science, 269:198, 1995.CrossRefGoogle Scholar
Araki, S. and Tremaine, S.. The dynamics of dense particle disks. Icarus, 65:83, 1986.Google Scholar
Arkeryd, L. and Maslova, N.. On diffuse reflection at the boundary for the Boltzmann and related equations. J. Stat. Phys., 77:1051, 1994.Google Scholar
Arnold, P., Moore, G., and Tomášik, B.. Tc for homogeneous dilute Bose gases: A second-order result. Phys. Rev. A., 65:013606, 2001.Google Scholar
Baldassarri, A., Marconi, U. M. B., and Puglisi, A.. Velocity fluctuations in cooling granular gases. In Pöschel, T. and Brilliantov, N. V., eds., Granular Gas Dynamics, volume 624 of Lecture Notes in Physics, page 95. Springer-Verlag, Berlin, 2003.Google Scholar
Balescu, R.. Statistical Mechanics of Charged Particles. Interscience Press, Hoboken 1963.Google Scholar
Balescu, R.. Statistical Dynamics: Matter Out of Equilibrium. Imperial College Press, London 1997.CrossRefGoogle Scholar
Ballentine, L. E.. Quantum Mechanics: A Modern Development. World Scientific Publishing Co., Singapore, 1998.Google Scholar
Banasiak, J. and Lachowicz, M.. Methods of Small Parameter in Mathematical Biology. Springer, Berlin 2014.CrossRefGoogle Scholar
Barajas, L., Garcia-Colin, L. S., and Pina, E.. On the Enskog theory for a binary mixture of dissimilar rigid spheres. J. Stat. Phys., 7:161, 1973.CrossRefGoogle Scholar
Barber, M. N., Blatt, J. M., and Opie, A. H.. On the extension of the Boltzmann equation to include pair correlations. J. Stat. Phys., 13:379, 1975.Google Scholar
Bardos, C., Golse, F., and Sone, Y.. Half-space problems for the Boltzmann equation: A survey. J. Stat. Phys., 124:275, 2006.Google Scholar
Barrat, A., Trizac, E., and Ernst., M. H. Granular gases: Dynamics and collective effects. J. Phys.: Condensed Matter, 17:S2429, 2005.Google Scholar
Bartis, J. T. and Oppenheim, I.. Transport coefficients of moderately dense gases: A direct summation procedure. Physica, 74:1, 1974.CrossRefGoogle Scholar
Bedeaux, D. and Mazur, P.. Renormalization of the diffusion coefficient in a fluctuating fluid. I: Physica, 73:431, 1974.CrossRefGoogle Scholar
Bedeaux, D., Kjelstrup, S., and Sengers, J. V., eds. Non-equilibrium Thermodynamics with Applications. RSC Publishing, Cambridge 2015.Google Scholar
Belitz, D. and Kirkpatrick, T. R.. The Anderson–Mott transition. Rev. Mod. Phys., 66:261, 1994.Google Scholar
Belitz, D., Kirkpatrick, T. R., and Vojta, T.. How generic scale invariance influences quantum and classical phase transitions. Rev. Mod. Phys., 77:579, 2005.Google Scholar
Bellomo, N., Knopoff, D., and Soler, J.. On the difficult interplay between life, “complexity”, and mathematical sciences. Mathematical Models and Methods in Applied Sciences, 23:1861, 2013.Google Scholar
Bellomo, N., Knopoff, D. A., and Terna, P.. Special issue “kinetic theory and swarming tools to modeling complex systems—symmetry problems in the science of living systems”—editorial and research perspectives. Symmetry, 12:456, 2020.Google Scholar
Bellomo, N. and Lachowicz, M.. Kinetic equations for dense gases: A review of physical and mathematical results. Int. J. Mod. Phys. B, 01:1193, 1987.CrossRefGoogle Scholar
Bellomo, N., Lachowicz, M., Polewczak, J., and Toscani, G.. Mathematical Topics in Nonlinear Kinetic Theory. II. The Enskog Equation. World Scientific Publishing Co., Singapore, 1991.Google Scholar
Bellomo, N., Li, N. K., and Maini, P. K.. On the foundations of cancer modelling:selected topics, speculations, and perspectives. Mathematical Models and Methods in Applied Sciences, 18:593, 2008.CrossRefGoogle Scholar
Ben-Naim, E. and Krapivsky, P. L.. The inelastic Maxwell model. In Pöschel, T. and Brilliantov, N. V., eds., Granular Gas Dynamics, number 624 in Lecture Notes in Physics, page 65. Springer-Verlag, Berlin, 2003.Google Scholar
Benzi, R., Succi, S., and Vergassola, M.. The lattice Boltzmann equation: Theory and applications. Phys. Reports, 222:145, 1992.Google Scholar
Berne, B. J. and Pecora, R.. Dynamic Theory of Light Scattering. Dover Publishing Co., New York, 2000.Google Scholar
Berry, M.. Regular and irregular motion. In MacKay, R. S. and Meiss, J. D., eds., Hamiltonian Dynamical Systems. Adam Hilger, London 1987.Google Scholar
Bhatnagar, P. L., Gross, E. P., and Krook, M.. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev., 94:511, 1954.Google Scholar
Biben, T., Martin, Ph. A., and Piasecki, J.. Stationary state of thermostated inelastic hard spheres. Physica A, 310:308, 2002.Google Scholar
Bixon, M. and Zwanzig, R. W.. Boltzmann–Langevin equation and hydrodynamic fluctuations. Phys. Rev., 187:267, 1969.Google Scholar
Blawzdziewicz, J. and Stell, G.. Local H theorem for a kinetic variational theory. J. Stat. Phys., 56:821, 1989.Google Scholar
Bobylev, A. V.. Fourier transform method in the theory of the Boltzmann equation for Maxwellian molecules. Soviet Physics Doklady, 20:820, 1976.Google Scholar
Bobylev, A. V.. Exact solutions of the nonlinear Boltzmann equation and the theory of relaxation of a Maxwellian gas. Theor. and Math. Physics, 60:820, 1984.Google Scholar
Bobylev, A. V., Carrtillo, J. A., and Gamba, I. M.. On some properties of kinetic and hydrodynamic equations for inelastic interactions. J. Stat. Phys., 98:743, 2000.Google Scholar
Bobylev, A. V., Cercignani, C., and Gamba, I. M.. Generalized kinetic Maxwell models of granular gases. In Capriz, G., Mariano, P. M., and Giovine, P., eds., Mathematic Models of Granular Matter, volume 1937 of Lecture Notes in Mathematics, page 23. Springer-Verlag, Berlin, 2008.Google Scholar
Bobylev, A. V., Maaø, F. A., Hansen, A., and Hauge, E. H.. There is more to be learned from the Lorentz model. J. Stat. Phys., 87:1205, 1997.Google Scholar
Bocquet, L.. From a stochastic to a microscopic approach to Brownian motion. Acta Phys. Polon., 29:1551, 1998.Google Scholar
Bocquet, L., Hansen, J.-P., and Piasecki, J.. On the Brownian motion of a massive sphere suspended in a hard sphere fluid II: Molecular dynamics estimates of the friction coefficient. J. Stat. Phys., 76:527, 1994.Google Scholar
Bocquet, L. and Piasecki, J.. Microscopic derivation of non-Markovian thermalization of a Brownian particle. J. Stat. Phys., 87:1005, 1997.Google Scholar
Bocquet, L., Piasecki, J., and Hansen, J.-P.. On the Brownian motion of a massive sphere suspended in a hard sphere fluid I: Multiple time-scale analysis and microscopic expression for the friction coefficient. J. Stat. Phys., 76:505, 1994.Google Scholar
Bodrova, A. S. and Brilliantov, N. V.. Granular gas of viscoelastic particles in a homogeneous cooling state. Physica A, 388:3315, 2009.Google Scholar
Bogoliubov, N. N.. On the theory of superfluidity. Jour. Phys. (USSR), 11:23, 1947.Google Scholar
Bogoliubov, N. N.. Problems of a dynamical theory in statistical physics. In Studies in Statistical Mechanics, 1, 5. de Boer, J. and Uhlenbeck, G. E., eds. North Holland Publishing Co., Amsterdam 1962.Google Scholar
Boldrighini, C., Bunimovich, L. A., and Sinai, Ya. G.. On the Boltzmann equation for the Lorentz gas. J. Stat. Phys., 32:477, 1983.Google Scholar
Boltzmann, L.. Lectures on Gas Theory. Dover Publishing Co., Mineola 1995. Translation by S. Brush.Google Scholar
Boon, J.-P.. Statistical mechanics and hydrodynamics of lattice gas automata: An overview. Physica D, 47:3, 1991.Google Scholar
Boon, J.-P. and Yip, S.. Molecular Hydrodynamics. Dover Publishing Co., Mineola 1991.Google Scholar
Brando, M., Belitz, D., Grosche, F. M., and Kirkpatrick, T. R.. Metallic quantum ferromagnets. Rev. Mod. Phys., 88:025006, 2016.Google Scholar
Bretsznajder, S.. Prediction of Transport and Other Properties of Fluids, volume 11 of International Series of Monographs in Chemical Engineering. Pergamon, New York, 1971.Google Scholar
Brey, J. J.. Long time behavior of the Burnett transport coefficients. J. Chem. Phys., 79:4385, 1983.Google Scholar
Brey, J. J. and Ruiz-Montero, M. J.. Power-law decay of the velocity autocorrelation function of a granular fluid in the homogeneous cooling state. Phys Rev. E, 91:012202, 2015.Google Scholar
Brey, J.J.. On non-linear fluctuations from statistical mechanics. In Garrido, L., editor, Systems far from Equilibrium, page 244. Springer Verlag, Berlin 1980.Google Scholar
Brey, J. J., Dufty, J. W., Kim, C. S., and Santos, A.. Hydrodynamics for granular flow at low density. Phys. Rev. E, 58:4638, 1998.Google Scholar
Brilliantov, N. V. and Pöschel, T.. Kinetic Theory of Granular Gases. Oxford University Press, Oxford, 2004.Google Scholar
Brinser, G. B. and Condiff, D. W.. Kinetic theory of moderately dense gases-additional computations of the triple collision contributions to the transport coefficients for the rigid sphere model. J. Chem. Phys., 59:2754, 1973.Google Scholar
Brito, R. and Ernst, M. H.. Extension of Haff’s cooling law in granular flows. Europhysics Letters, 43:497, 1998.Google Scholar
Bruin, C.. Logarithmic terms in the diffusion coefficient for the Lorentz gas. Phys. Rev. Lett., 29:1670, 1972.Google Scholar
Bruin, C.. A computer experiment on diffusion in the Lorentz gas. Physica, 72:261, 1974.Google Scholar
Brush, S.. Kinetic Theory, volumes 1–3. Pergamon Press, Oxford 1972.Google Scholar
Brush, S.. The Kind of Motion We Call Heat. North-Holland Publishing Co., Amsterdam 1976.Google Scholar
Brush, S. G., Everitt, C. W. F, and Garber, E., eds. Maxwell on Saturn’s Rings. MIT Press, Cambridge, MA, 1983.Google Scholar
Buckner, J. K. and Ferziger, J. H.. Linearized boundary value problem for a gas and sound propagation. Phys. Fluids, 9:2315, 1966.Google Scholar
Burgers, J. M.. The Nonlinear Diffusion Equation: Asymptotic Solutions and Statistical Problems. D. Riedel Publishing Co., Dordrecht, 1974.Google Scholar
Carleman, T.. Problèmes Mathématiques dans la Théorie Cinétique des Gaz. Almquist and Wiksell, Stockholm, 1957.Google Scholar
Caron-Huot, S. and Saremi, O.. Hydrodynamic long-time tails from anti-de Sitter space. J. High Energ. Phys., 13:473001, 2010.Google Scholar
Carusoto, I.. Viewpoint: Sorting superfluidity from Bose-Einstein condensation in atomic gases. Physics, 3:5, 2010.Google Scholar
Cercignani, C.. Mathematical Methods in Kinetic Theory. Plenum Press, New York 1969.Google Scholar
Cercignani, C.. Comments on “Stokes’ problems in kinetic theory”. Phys. Fluids, 15:957, 1972.CrossRefGoogle Scholar
Cercignani, C.. Theory and Applications of the Boltzmann Equation. Elsevier Science Publishers, Amsterdam 1975.Google Scholar
Cercignani, C.. Solution of the Boltzmann equation. In Lebowitz, J. L. and Montroll, E. W., eds., Nonequilibrium Phenomena. I: The Boltzmann Equation, page 121. North-Holland Publishing Co., Amsterdam, 1983.Google Scholar
Cercignani, C.. The Boltzmann Equation and Its Applications. Number 67 in Applied Mathematical Sciences. Springer-Verlag, Berlin, 1988.Google Scholar
Cercignani, C.. Rarefied Gas Dynamics: From Basic Concepts to Actual Calculations, volume 21 of Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge 2000.Google Scholar
Cercignani, C., Illner, R., and Pulvirenti, M.. The Mathematical Theory of Dilute Gases. Number 106 in Applied Mathematical Sciences. Springer-Verlag, Berlin, 1994.CrossRefGoogle Scholar
Chandrasekhar, S.. Stochastic problems in physics and astronomy. Rev. Mod. Phys., 15:1, 1943.Google Scholar
Wang Chang, C. S. and Uhlenbeck, G. E.. The kinetic theory of gases. In de Boer, J. and Uhlenbeck, G. E., eds., Studies in Statistical Mechanics, 5, 1. North Holland Publishing Co., Amsterdam, 1970.Google Scholar
Chapman, S.. On the law of distribution of velocities, and on the theory of viscosity and thermal conduction in a non-uniform simple monatomic gas. Phil. Trans. Roy. Soc. A, 216:279, 1916.Google Scholar
Chapman, S. and Cowling, T. G.. The Mathematical Theory of Nonuniform Gases. Cambridge University Press, Cambridge, 1970.Google Scholar
Charbonneau, P., Kurchan, J., Parisi, G., Urbani, P., and Zamponi, F.. Glass and jamming transitions: From exact results to finite-dimensional descriptions. In Ann. Rev. Cond. Mat. Phys., 8, 265. Annual Reviews, Inc., Palo Alto, 2017.Google Scholar
Charnoz, S., Dones, L., Esposito, L. W., Estrada, P. R., and Hedman, M.. Saturn from Cassini-Huygens, chapter 17, page 537. Springer Verlag, Berlin 2009.Google Scholar
Chernov, N. I., Eyink, G. L. J. L. Lebowitz, , and Sinai, Ya. G.. Steady state electric conductivity in the periodic Lorentz gas. Comm. Math. Phys., 154:569, 1993.CrossRefGoogle Scholar
Chernov, N. I., Lebowitz, J., and Sinai, Ya G.. Dynamics of a massive piston in an ideal gas. Russian Mathematical Surveys, 57:1045, 2002.Google Scholar
Child, M. S.. Molecular Collision Theory. Dover Publishing Co., Mineola, 2010.Google Scholar
Choh, S. T. and Uhlenbeck, G. E.. The kinetic theory of phenomena in dense gases. Technical report, University of Michigan, Ann Arbor 1958.Google Scholar
Cichocki, B. and Piasecki, J.. Microscopic approach to the Enskog theory of a homogeneous gas. J. Stat. Phys., 12:111, 1975.Google Scholar
Cockshott, W. P., Cottrell, A. F., Michaelson, G. J., Wright, I. P., and Yakovenko, V. M.. Classical Econophysics. Routledge Advances in Experimental and Computable Economics. Routledge, Milton Park, Abington 2011.Google Scholar
Cohen, E. G. D.. On the connection between various derivations of the Boltzmann equation. Physica, 27:1961, 1961.Google Scholar
Cohen, E. G. D.. Cluster expansions and the hierarchy. I: Non-equilibrium distribution functions. Physica, 28:1045, 1962.Google Scholar
Cohen, E. G. D.. Cluster expansions and the hierarchy. II: Equilibrium distribution functions. Physica, 28:1060, 1962.Google Scholar
Cohen, E. G. D.. On the generalization of the Boltzmann equation to general order in the density. Physica, 28:1925, 1962.Google Scholar
Cohen, E. G. D.. On the kinetic theory of dense gases. J. Math. Phys., 4:183, 1963.Google Scholar
Cohen, E. G. D.. The kinetic theory of dilute gases. In Hanley, H. J. M., ed., Transport Phenomena in Fluids, page 119. Marcel Dekker, New York, 1969.Google Scholar
Cohen, E. G. D.. Fifty years of kinetic theory. Physica A, 194:229, 1993.CrossRefGoogle Scholar
Cohen, E. G. D.. Transport coefficients and Lyapunov exponents. Physica A, 213:293, 1995.Google Scholar
Cohen, E. G. D.. Bogoliubov and kinetic theory: The Bogoliubov equations. Mathematical Models and Methods in the Exact Sciences, 7:909, 1997.Google Scholar
Cohen, E. G. D. and Berlin, T. H.. Note on the derivation of the Boltzmann equation from the Liouville equation. Physica, 26:717, 1960.Google Scholar
Cohen, E. G. D. and de Schepper, I.. Note on transport processes in dense colloidal suspensions. J. Stat. Phys., 63:241, 1991.Google Scholar
Coleman, B. D. and Truesdell, C.. On the reciprocal relations of Onsager. J. Chem. Phys., 33:28, 1960.Google Scholar
Cooper, A. L. and Hamel, B. B.. Asymptotic theory of the Boltzmann equation at large Knudsen number. Phys. Fluids, 16:35, 1973.Google Scholar
Cooper, N. R. and Hadzibabic, Z.. Measuring the superfluid fraction of an ultracold atomic gas. Phys. Rev. Lett., 104:030401, 2010.Google Scholar
Cornu, F. and Piasecki, J., Three-dimensional Lorentz model in a magnetic field: Exact and Chapman–Enskog solutions. Physica A, 370:591 2006.Google Scholar
Cukier, R. I. and Deutch, J. M.. Microscopic theory of Brownian motion: The multiple-time scale point of view. Phys. Rev., 177:240, 1969.Google Scholar
Cukier, R. I., Kapral, R., Lebenhaft, J. R., and Mehaffey, J. R.. On the microscopic origin of Stokes law. J. Chem. Phys., 73:5244, 1980.CrossRefGoogle Scholar
Dalfovo, F., Giorgini, S., Piteavskii, L. P., and Stringari, S.. Theory of Bose–Einstein condensation of trapped gases. Rev. Mod. Phys., 71:463, 1999.Google Scholar
Darrozés, J. S. and Guiraud, J. P.. Généralisation formelle du théorème H en presence de parois: Applications. Compt. Rend. Acad. Sci., A262:1368, 1966.Google Scholar
Davesne, D.. Transport coefficients for a hot pion gas. Phy. Rev. C, 53:3069, 1996.CrossRefGoogle ScholarPubMed
Davis, K. B., Mewes, M.-O., Andrews, M. R., van Druten, N. J. D. S. Durfee, D. M. Kern, , and Ketterle, W.. Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 75:3969, 1995.Google Scholar
de Gennes, P. G.. Liquid dynamics and inelastic scattering of neutrons. Physica, 25:825, 1959.CrossRefGoogle Scholar
de Gennes, P. G. and Prost, J.. The Physics of Liquid Crystals. Oxford University Press, Oxford 2nd ed., 1994.Google Scholar
de Groot, S. R. and Mazur, P.. Nonequilibrium Thermodynamics. North-Holland Publishing Co., Amsterdam, 1962.Google Scholar
Lopez de Haro, M. and Cohen, E. G. D.. The Enskog theory for mulitcomponent mixtures: III. Transport properties of dense binary mixtures with one tracer component. J. Chem. Phys., 80:408, 1984.CrossRefGoogle Scholar
Lopez de Haro, M., Cohen, E. G. D., and Kinkaid, J. M.. The Enskog theory for mulitcomponent mixtures: I. Linear transport theory. J. Chem. Phys., 78:2746, 1983.Google Scholar
de Schepper, I. M. and Cohen, E. G. D.. Very-short-wavelength collective modes in fluids. J. Stat. Phys., 27:223, 1982.Google Scholar
de Schepper, I. M., Cohen, E. G. D., and Kamgar-Parsi, B.. On the calculation of equilibrium time correlation functions in hard-sphere fluids. J. Stat. Phys., 54:273, 1989.Google Scholar
de Schepper, I. M. and Ernst, M. H.. Self-diffusion beyond Fick’s law. Physica A, 98:189, 1979.Google Scholar
de Schepper, I. M., Haffmans, A. F. E. M., and van Beijeren, H.. Comment on “Large long-time tails and shear waves in dense classical liquids”. Phys. Rev. Lett., 56:538, 1986.Google Scholar
de Schepper, I. M., van Beijeren, H., and Ernst, M. H.. The nonexistence of the linear diffusion equation beyond Fick’s law. Physica, 75:1, 1974.Google Scholar
de Schepper, I. M., Verkerk, P., van Well, A. A., and de Graaf, L. A.. Non-analytic dispersion relations in liquid argon. Phys. Lett. A, 104:29, 1984.Google Scholar
de Schpper, I. M., Verkerk, P., van Well, A. A., and de Graaf, L. A.. Short wavelength sound modes in liquid argon. Phys. Rev. Lett., 50:974, 1983.Google Scholar
de Soria, M. I. G., Maynar, P., and Trizac, E.. Linear hydrodynamics for driven granular gases. Phys. Rev. E, 87:022201, 2013.Google Scholar
de Wijn, A. and van Beijeren, H.. Goldstone modes in Lyapunov spectra of hard sphere systems. Phys. Rev. E, 70:016207, 2004.Google Scholar
de Wijn, A. and van Beijeren, H.. A radius of curvature approach to the Kolmogorov– Sinai entropy of dilute hard particles in equilibrium. J. Stat. Mech., 2011:P08012, 2011.Google Scholar
de Wijn, A. S.. Kolmogorov-Sinai entropy for dilute systems of hard particles in equilibrium. Phys. Rev. A., 71:046211, 2005.Google Scholar
de Wijn, A. S. and van Beijeren, H.. Lyapunov spectrum of the many-dimensional dilute random Lorentz gas. Phys Rev, E, 70:036209, 2004.Google Scholar
de Wit, M.. Approximate Solutions to Boundary Layer Problems in Linear Kinetic Theory. PhD thesis, Eindhoven, 1975.Google Scholar
Ortiz de Zárate, J. M., and Sengers, J. V.. Transverse-velocity fluctuations in a liquid under steady shear. Phys. Rev. E, 77:026306, 2008.Google Scholar
Ortiz de Zárate, J. M., and Sengers, J. V.. Nonequilibrium velocity fluctuations and energy amplification in planar Couette flow. Phys. Rev. E, 79:046308, 2009.Google Scholar
Ortiz de Zárate, J. M., Kirkpatrick, T. R., and Sengers, J. V.. Nonequilibrium Casimir pressures in liquids under shear. Eur. Phys. J. E, 42:106, 2019.Google Scholar
Ortiz de Zárate, J. M. and Munoz Redondo, L.. Finite size effects with rigid boundaries on non-equilibrium fluctuations in a liquid. Eur. Phys. J. B, 21:135, 2001.Google Scholar
Dellago, C. and Posch, H.. Field and density dependence of the Lyapunov spectrum for the driven, random Lorentz gas. Physica D, 112:241, 1998.Google Scholar
Dellago, Ch. and Posch, H. A.. Lyapunov spectrum and the conjugate pairing rule for a thermostated random Lorentz gas: Numerical simulations. Phys. Rev. Lett., 78:211, 1997.Google Scholar
Dettmann, C. P.. The Burnett expansion of the periodic Lorentz gas. Ergodic Theory and Dynamical Systems, 23:481, 2003.Google Scholar
Dettmann, C. P.. Diffusion in the Lorentz gas. Commun. Theor. Phys., 62:521, 2014.Google Scholar
Dettmann, C. P. Cohen, E. G. D., Microscopic chaos and diffusion. J. Stat. Phys., 101:775, 2000.Google Scholar
Dettmann, C. P., Cohen, E. G. D., and van Beijeren, H., Microscopic chaos from Brownian motion. Nature 401:875, 1999.Google Scholar
Dettmann, C. P. and Morriss, G. P.. Proof of conjugate pairing for an isokinetic thermostat. Phys. Rev. E, 53:R5545, 1996.Google Scholar
Donnay, V.. Non-ergodicity of two particles interacting via a smooth potential. J. Stat. Phys., 96:1021, 1999.Google Scholar
Dorfman, J. R.. Note on the linearized Boltzmann equation for rigid sphere molecules. Proc. Nat. Acad. Sci. (PNAS), 50:804, 1963.Google Scholar
Dorfman, J. R.. Kinetic and hydrodynamic theory of time correlation functions. In Cohen, E. G. D., ed., Fundamental Problems in Statistical Mechanics, volume 3, North Holland Publishing Co., Amsterdam 1975.Google Scholar
Dorfman, J. R.. Advances and challenges in the kinetic theory of gases. Physica A, 106:77, 1981.Google Scholar
Dorfman, J. R.. An Introduction to Chaos in Nonequilibrium Statistical Mechanics. Cambridge University Press, Cambridge, 1999.Google Scholar
Dorfman, J. R. and Cohen, E. G. D.. On the density expansion of the pair distribution function for a dense gas not in equilibrium. Phys. Lett., 16:124, 1965.Google Scholar
Dorfman, J. R. and Cohen, E. G. D.. Difficulties in the kinetic theory of dense gases. J. Math. Phys., 8:282, 1967.Google Scholar
Dorfman, J. R. and Cohen, E. G. D.. Velocity correlation functions in two and three dimensions. II. Higher density. Phys. Rev A, 12:292, 1975.Google Scholar
Dorfman, J. R and Cohen, E.G.D.. Velocity correlations in two and three dimensions: Low density. Phys. Rev. A., 6:776, 1972.Google Scholar
Dorfman, J. R. and Cohen, E. G. D.. Velocity correlations in two and three dimensions. Phys. Rev. Lett., 25:1257, 1970.CrossRefGoogle Scholar
Dorfman, J. R. and Ernst, M. H.. Hard sphere binary-collision operators. J. Stat. Phys., 57:581, 1989.CrossRefGoogle Scholar
Dorfman, J. R. and Kirkpatrick, T. R.. Aspects of localization. In Cohen, E. G. D., ed., Fundamental Problems in Statistical Mechanics, volume VI, page 365, North-Holland Publishing Co., Amsterdam 1984.Google Scholar
Dorfman, J. R., Kirkpatrick, T. R., and Sengers, J. V.. Generic long range correlations in fluids. In Strauss, H. L., Babcock, G. T., and Leone, S. R., eds., Annual Reviews of Physical Chemistry, 45, 213. Annual Reviews, Inc., Palo Alto 1994.Google Scholar
Dorfman, J. R., Kirkpatrick, T. R., and Sengers, J. V.. Why non-equilibrium is different. In Schwegler, E., Rubenstein, B. A., and Libby, S. B., eds., Symposium in Honor of Dr. Berni Alder’s 90th Birthday, Advances in the Computational Sciences, page 24. World Scientific Publishing Co., Singapore 2017.Google Scholar
Dorfman, J. R., Kuperman, W. A., and Sengers, J. V.. Drag coefficients and the generalized Boltzmann equation. Phys. Fluids, 16:2347, 1973.Google Scholar
Dorfman, J. R., Sengers, J. V., and Mclure, C. F.. Kinetic theory of the drag force on objects in rarefied gas flows. Physica A, 134:283, 1986.Google Scholar
Dorfman, J. R. and van Beijeren, H.. The kinetic theory of gases. In Berne, B., ed., Statistical Mechanics, Part B, page 65. Plenum Press, New York 1977.Google Scholar
Dorfman, J. R. and van Beijeren, H.. Dynamical systems theory and transport coefficients: A survey with applications to Lorentz gases. Physica A, 240:12, 1997.Google Scholar
Dragulescu, A. and Yakovenko, V. M.. Statistical mechanics of money. Eur. Phys. J. B, 17:723, 2000.Google Scholar
Drude, P.. Zur elektronentheorie der metalle. Annalen der Physik, 306:566, 1900.Google Scholar
Drude, P.. Zur elektronentheorie der metalle. II: Annalen der Physik, 308:369, 1900.Google Scholar
Dufty, J.. Kinetic theory and hydrodynamics for a low density granular gas. Adv. Complex Syst., 4:397, 2001.Google Scholar
Dufty, J.. Nonequilibrium statistical mechanics and hydrodynamics for a granular fluid. Acta Physica Polonica, 114:arXiv:0707.3714[cond–mat], 2008.Google Scholar
Düring, B. and Wolfram, M.-T.. Opinion dynamics: Inhomogeneous Boltzmann-type equations modelling opinion leadership and political segregation. Proc. Roy. Soc. A, 471:20150345, 2015.Google Scholar
Eckern, U.. Relaxation processes in a condensed Bose gas. J. Low. Temp. Phys., 54:333, 1984.Google Scholar
Ehrenfest, P. and Ehrenfest, T.. The Conceptual Foundations of the Statistical Approach in Mechanics. Cornell University Press, Ithaca 1959.Google Scholar
Einstein, A.. Investigations on the Theory of the Brownian Movement. Dover Publishing Co., Mineola 1956.Google Scholar
Enskog, D.. The Kinetic Theory of Phenomena in Fairly Rare Gases. PhD thesis, Uppsala University, 1917.Google Scholar
Enskog, D.. The numerical calculation of phenomena in fairly rare gases. Svensk Vet. Akad., Arkiv f Mat., Ast., och Fys., 16:1, 1921.Google Scholar
Ernst, M. H.. Nonlinear model-Boltzmann equations and exact solutions. Phys. Rep., 78:1, 1981.CrossRefGoogle Scholar
Ernst, M. H.. Exact solutions of the nonlinear Boltzmann equation and related kinetic equations. In Lebowitz, J. L. and Montroll, E. W., eds., Nonequilibrium Phenomena I: The Boltzmann Equation, page 51. North-Holland Publishing Co., Amsterdam, 1983.Google Scholar
Ernst, M. H.. Bogoliubov–Choh–Uhlenbeck theory: Cradle of modern kinetic theory. In Sung, W., Chang, I., Kahng, B., Kim, C., and Oh, J.-H., eds., Progress in Statistical Physics, page 3. World Scientific Publishing Co., Singapore 1998.Google Scholar
Ernst, M. H.. Bogoliubov Choh–Uhlenbeck theory: Cradle of modern kinetic theory. In Sung, Wokyoung, ed., Proceedings of International Conference on Statistical Physics in Memory of Soon-Takh Choh, World Scientific Publishing Co., Singapore 1998.Google Scholar
Ernst, M. H. and Brito, R.. High-energy tails for inelastic Maxwell models. Euro-physics Letters, 58:182, 2002.Google Scholar
Ernst, M. H. and Brito, R.. Scaling solutions of inelastic Boltzmann equations with over-populated high energy tails. J. Stat. Phys., 109:407, 2002.Google Scholar
Ernst, M. H. and Brito, R.. Asymptotic solutions of the nonlinear Boltzmann equation for dissipative systems. In Pöschel, T. and Brilliantov, N. V., eds., Granular Gas Dynamics, volume 624 of Lecture Notes in Physics, page 3. Springer-Verlag, Berlin, 2003.Google Scholar
Ernst, M. H., Cichocki, B., Dorfman, J. R., Sharma, J., and van Beijeren, H.. Kinetic theory of non-linear viscous flow in two and three dimensions. J. Stat. Phys., 18:237, 1978.Google Scholar
Ernst, M. H. and Cohen, E. G. D.. Nonequilibrium fluctuations in μ space. J. Stat. Phys., 25:153, 1981.Google Scholar
Onuki, A., On fluctuations in μ space, J. Stat Phys. 18:475, 1978.Google Scholar
Ernst, M. H. and Dorfman, J. R.. Non-analytic dispersion relations in classical fluids. I: The hard sphere gas. Physica, 61:157, 1972.Google Scholar
Ernst, M. H. and Dorfman, J. R.. Non-analytic dispersion relations in classical fluids. II: The general fluid. J. Stat. Phys., 12:311, 1975.Google Scholar
Ernst, M. H., Dorfman, J. R., and Cohen, E. G. D.. Transport coefficients in dense gases I: The dilute and moderately dense gas. Physica, 31:493521, 1965.Google Scholar
Ernst, M. H., Dorfman, J. R., Hoegy, W., and van Leeuwen, J. M. J.. Hard-sphere dynamics and binary-collision operators. Physica, 45:127, 1969.Google Scholar
Ernst, M. H., Hauge, E. H., and van Leeuwen, J. M. J.. Asymptotic time behavior of correlation functions. Phys. Rev. Lett., 25:1254, 1970.Google Scholar
Ernst, M. H., Hauge, E. H., and van Leeuwen, J. M. J.. Asymptotic time behavior of correlation functions and mode-mode coupling theory. Phys. Lett., 34:419, 1971.Google Scholar
Ernst, M. H., Hauge, E. H., and van Leeuwen, J. M. J.. Asymptotic time behavior of correlation functions. I: Kinetic terms. Phys. Rev. A, 4:2055, 1971.Google Scholar
Ernst, M. H., van Beijeren, H., and Cohen, E. G. D.. Introduction to special issue. J. Stat. Phys., 109:355, 2002.Google Scholar
Ernst, M. H., Hauge, E. H., and van Leeuwen, J. M. J.. Asymptotic time behavior of correlation functions. II: Kinetic and potential terms. J. Stat. Phys., 15:7, 1976.CrossRefGoogle Scholar
Ernst, M. H, Hauge, E. H., and van Leeuwen, J. M. J.. Asymptotic time behavior of correlation functions. III: Local equilibrium and mode-coupling theory. J. Stat. Phys., 15:23, 1976.Google Scholar
Ernst, M. H., Trizac, E., and Barrat, A.. The Boltzmann equation for driven systems of inelastic soft spheres. J. Stat. Phys., 124:549, 2006.Google Scholar
Ernst, M. H., Trizac, E., and Barrat, A.. The rich behavior of the Boltzmann equation for dissipatiive gases. Europhys. Lett., 76:56, 2006.Google Scholar
Erpenbeck, J. E. and Wood, W. W.. Molecular dynamics calculations of shear viscosity time-correlation functions for hard spheres. J. Stat. Phys., 24:455, 1981.Google Scholar
Erpenbeck, J. J.. Transport coefficients of hard sphere mixtures: Theory and Monte Carlo molecular-dynamics calculations for an isotopic mixture. Phys. Rev. A, 39:4718, 1989.Google Scholar
Erpenbeck, J. J.. Transport coefficients of hard sphere mixtures. II: Diameter ratio 0.4 and mass ratio 0.03 at low density. Phys. Rev. A, 45:2298, 1992.Google Scholar
Erpenbeck, J. J.. Transport coefficients of hard sphere mixtures. III: Diameter ratio 0.4 and mass ratio 0.03 at high fluid density. Phys. Rev. A., 48:223, 1993.Google Scholar
Erpenbeck, J. J.. Einstein–Kubo–Helfand and McQuarrie relations for transport coefficients. Phys. Rev. E, 51:4296, 1995.CrossRefGoogle ScholarPubMed
Erpenbeck, J. J. and Wood, W. W.. Molecular-dynamics calculations of the velocity autocorrelation function: Methods, hard-disk results. Phys. Rev. A, 26:1648, 1982.Google Scholar
Erpenbeck, J. J. and Wood, W. W.. Molecular-dynamics calculations of the velocity autocorrelation function: Hard-sphere results. Phys. Rev. A., 32:412, 1985.Google Scholar
Erpenbeck, J. J. and Wood, W. W.. Self diffusion coefficient for the hard-sphere fluid. Phys. Rev. A, 43:4254, 1991.Google Scholar
Esposito, L.. Planetary rings. Repts. Prog. Phys., 65:1741, 2002.Google Scholar
Esposito, L.. Planetary Rings. Cambridge University Press, Cambridge 2006.Google Scholar
Evans, D. J.. Enhanced long time tail for the stress-stress time correlation function. J. Stat. Phys., 22:81, 1980.Google Scholar
Evans, D. J., Cohen, E. G. D., and Morriss, G. P.. Viscosity of a simple fluid from its maximal Lyapunov exponents. Phys. Rev. A, 42:5990, 1990.Google Scholar
Evans, D. J., Cohen, E. G. D., and Morriss, G. P.. Probability of second law violations in steady shearing flows. Phys. Rev. Lett., 71:2401, 1993.Google Scholar
Evans, D. J. and Morriss, G. P.. Statistical Mechanics of Non-equilibrium Liquids. Australian National University ePress, Canberra, 2nd ed., 2007.Google Scholar
Fan, G. and Manson, J. R.. Theory of direct scattering, trapping, and desorption in atom-surface collisions. Phys. Rev. B, 79:045424, 2009.Google Scholar
Felderhof, B. U. and Jones, R. B.. Linear response theory of the viscosity of suspensions of spherical Brownian particles. Physica D, 146:417, 1987.Google Scholar
Ferziger, J. H. and Kaper, H. G.. Mathematical Theory of Transport Processes in Gases. North Holland Publishing Co., Amsterdam 1972.Google Scholar
Fetter, A. L. and Walecka, J.D.. Quantum Theory of Many-Particle Systems. Dover Publishing Co., Mineola 2003.Google Scholar
Fixman, M.. The Critical Region, volume 6 of Advances in Chemical Physics, page 175. John Wiley and Sons, New York, 1964.Google Scholar
Fixman, M.. Transport coefficients in the gas critical region. J. Chem. Phys., 47:2808, 1967.Google Scholar
Fleury, Paul A. and Pierre Boon, Jean. Brillouin scattering in simple liquids: Argon and neon. Phys. Rev., 186:244, 1969.Google Scholar
Florkowski, W., Heller, M. P., and Spaliński, M.. New theories of relativistic hydrodynamics in the LHC era. Repts. Prog. Phys., 81(4):046001, 2018.Google Scholar
Foch, J. D.. On higher order hydrodynamic theories of shock structure. In Cohen, E. G. D. and Thirring, W., eds., The Boltzmann Equation: Theory and Applications, page 123. Springer-Verlag, Berlin 1973.Google Scholar
Foch, J. D. and Ford, G. W.. The dispersion of sound in monoatomic gases. In de Boer, J. and Uhlenbeck, G. E., eds., Studies in Statistical Mechanics, volume 5, page 103. North-Holland Publishing Co., Amsterdam 1970.Google Scholar
Foch, J. D. and Losa, M. F.. Improved kinetic theory of sound propagation. Phys. Rev. Lett., 28:1315, 1972.Google Scholar
Foch, J. D. and Uhlenbeck, G. E.. Propagation of sound in monatomic gases. Phys. Rev. Lett., 19:1025, 1967.Google Scholar
Ford, G. W.. Sound from the Boltzmann equation. In Cohen, E. G. D. and Thirring, W., eds., The Boltzmann Equation: Theory and Applications, page 141. Springer-Verlag, Berlin, 1973.Google Scholar
Ford, G. W. and Schreiber, M.. Relaxation times for a hard-sphere gas. Proc. Nat. Acad. Sci. (PNAS), 60:802, 1968.Google Scholar
Ford, G. W. and Uhlenbeck, G. E.. The theory of linear graphs with applications to the theory of the virial development of the properties of gases. In de Boer, J. and Uhlenbeck, G. E., eds., Studies in Statistical Mechanics, 1, 123. North-Holland Publishing Co., Amsterdam 1961.Google Scholar
Forster, D., Nelson, D. R., and Stephen, M.J.. Large distance and long time properties of a randomly stirred fluid. Phys. Rev. A, 16:732, 1977.Google Scholar
Forster, D., Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions, CRC Press, Boca Raton, FL, 1994.Google Scholar
Fox, R. F. and Uhlenbeck, G. E.. Contributions to non-equilibrium thermodynamics. I: Theory of hydrodynamical fluctuations. Phys. Fluids, 13:1893, 1970.Google Scholar
Fox, R. F. and Uhlenbeck, G. E.. Contributions to non-equilibrium thermodynamics. II: Fluctuation theory for the Boltzmann equation. Phys. Fluids, 13:2881, 1970.Google Scholar
Fraia, M. and Tosin, A.. The Boltzmann legacy revisited: kinetic models of social interactions. cond-mat> arXiv:2003.14225, March 2020.+arXiv:2003.14225,+March+2020.>Google Scholar
Frenkel, D. and Ernst, M. H.. Simulation of diffusion in a two dimensional lattice gas automaton: A test of mode-coupling theory. Phys. Rev. Lett., 63:2165, 1989.Google Scholar
Frisch, H. L. and Lebowitz, J. L.. The Equilibrium Ttheory of Classical Fluids: A Lecture Note and Reprint Volume. W. A. Benjamin, New York, 1964.Google Scholar
Frisch, U., Hasslacher, B., and Pomeau, Y.. Lattice-gas automata for the Navier–Stokes equation. Phys. Rev. Lett., 56:1505, 1986.CrossRefGoogle ScholarPubMed
Gallavotti, G.. Rigorous theory of the Boltzmann equation in the Lorentz gas. Technical Report Nota Interna 358, Instituto di Fisica, Universita di Roma, 1972.Google Scholar
Gallavotti, G.. Statistical Mechanics: A Short Treatise. Springer-Verlag, Berlin, 1999.Google Scholar
Galliero, G.. Computer simulations. In Experimental Thermodynamics: Advances in Transport Properties of Fluids, volume IX, chapter 11, page 362. Union of Pure and Applied Chemistry, London 2014.Google Scholar
Garcia-Colin, L. S., Velasco, R. M., and Uribe, F. J.. Beyond the Navier–Stokes equation: Burnett hydrodynamics. Phys. Reports, 465:149, 2008.Google Scholar
Garcia-Rojo, R., Luding, S., and Brey, J. J.. Transport coefficients for dense hard-disk systems. Phys. Rev. E, 74:061305, 2006.Google Scholar
Garwin, R. L.. Kinematics of an ultraelastic rough ball. Am. J. Phys., 37:88, 1969.Google Scholar
Garzo, V.. Granular Gaseous Flows. Springer Verlag, Berlin 2019.Google Scholar
Gaspard, P.. Chaos, Scattering, and Statistical Mechanics. Cambridge University Press, Cambridge 1998.Google Scholar
Gaspard, P. and Baras, F.. Dynamical chaos underlying diffusion in the classical Lorentz gas. In Maréschal, M. and Holian, B. L., eds., Microscopic Simulations of Complex Hydrodynamic Phenomena, volume 292 of NATO ASI Series, page 301, New York, 1992.Google Scholar
Gaspard, P. and Baras, F.. Chaotic scattering and diffusion in the Lorentz gas. Phys. Rev. E, 51:5332, 1995.Google Scholar
Gaspard, P. and Dorfman, J. R.. Chaotic scattering theory, thermodynamic formalism and transport coefficients. Phys. Rev. E, 52:3525, 1995.Google Scholar
Gass, D. M.. Enskog theory for a rigid disk fluid. J. Chem. Phys., 54:1898, 1971.Google Scholar
Gervois, A. and Pomeau, Y.. Logarithmic divergence in the virial expansion of transport coefficients of hard spheres, i. Phys. Rev., 9:2106, 1974.Google Scholar
Gervois, A., Normand-Alle, C., and Pomeau, Y.. Logarithmic divergence in the virial expansion of transport coefficients of hard spheres, ii. Phys. Rev. A, 12:1570, 1975.Google Scholar
Gibson, K. D., Isa, N., and Sibener, S. J.. Experiments and simulations of Ar scattering from an ordered 1-decanethiol–Au(111) monolayer. J. Chem. Phys., 119:13083, 2003.Google Scholar
Goetze, W.. Complex Dynamics of Glass Forming Liquids: A Mode-Coupling Theory. Oxford University Press, Oxford, 2008.Google Scholar
Goldhirsch, I.. Granular gases: Probing the boundaries of hydrodynamics. In Pöschel, T. and Luding, S., eds., Granular Gases, volume 564 of Lecture Notes in Physics, page 79. Springer-Verlag, Berlin, 2001.Google Scholar
Goldhirsch, I., Noskowitz, S. H., and Bar-Lev, O.. The homogeneous cooling state revisited. In Pöschel, T. and Brilliantov, N. V., eds., Granular Gas Dynamics, volume 624 of Lecture Notes in Physics, page 37. Springer-Verlag, Berlin, 2003.Google Scholar
Goldhirsch, I. and Zanetti, G.. Clustering metastability in dissipative gases. Phys. Rev. Lett., 70:1619, 1993.Google Scholar
Goldman, R.. Higher order behavior for the Boltzmann expansion of the Bogoliubov–Born–Green–Kirkwood–Yvon hierarchy. Phys. Rev. Lett., 17:910, 1966.Google Scholar
Goldman, R. and Frieman, E. A.. Logarithmic density behavior of a nonequilibrium Boltzmann gas. J. Math. Phys., 8:1410, 1967.Google Scholar
Goldreich, P. and Tremaine, S.. The velocity dispersion in Saturn’s rings. ICARUS, 34:227, 1978.Google Scholar
Goldreich, P. and Tremaine, S.. The dynamics of planetary rings. In Annual Review of Astronomy and Astrophysics, volume 20, page 249. Annual Reviews, Inc., Palo Alto, 1982.Google Scholar
Goldshtein, A. and Shapiro, M.. Mechanics of collisional motion of granular materials. I: General hydrodynamic equations. J. Fluid Mech., 282:75, 1995.Google Scholar
Goldstone, J.. Field theories with superconductor solutions. Nuovo Cimento, 19:154, 1961.Google Scholar
Goldstone, J., Salam, A., and Weinberg, S.. Broken symmetries. Phys. Rev., 127:965, 1962.CrossRefGoogle Scholar
Gorkavyi, N. N. and Fridman, A. M.. Physics of Planetary Rings: Celestial Mechanics of Continuous Media. Springer-Verlag, Berlin, 1999.Google Scholar
Gottwald, G. A. and Oliver, M.. Boltzmann’s dilemma: An introduction to statistical mechanics via the Kac ring. SIAM Rev., 51:613, 2009.Google Scholar
Grad, H.. On the kinetic theory of rarefied gases. Comm. Pure Appl. Math., 2:331, 1949.Google Scholar
Grad, H.. Principles of the kinetic theory of gases. In Flügge, S., ed., Thermodynamik der Gase/ Thermodynamics of Gases, volume XII, Springer-Verlag, Berlin 1958.Google Scholar
Grad, H.. Asymptotic theory of the Boltzmann equation. Phys. Fluids, 6:147, 1963.Google Scholar
Grad, H.. Asymptotic theory of the Boltzmann equation, II. In Lauerman, J. A., ed., Rarefied Gas Dynamics, volume 1, page 26. Academic Press, New York 1963.Google Scholar
Green, M. S.. Markoff random processes and the statistical mechanics of time-dependent phenomena. J. Chem. Phys., 20:1281, 1952.Google Scholar
Green, M. S.. Markoff random processes and the statistical mechanics of time-dependent phenomena. II: Irreversible processes in fluids. J. Chem. Phys., 22:398, 1954.Google Scholar
Green, M. S.. Boltzmann equation from a statistical mechanical point of view. J. Chem. Phys., 25:836, 1956.Google Scholar
Green, M. S.. The non-equilibrium pair distribution function at low densities. Physica, 24:393, 1958.Google Scholar
Green, M. S.. Comment on a paper of Mori on time-correlation expressions for transport properties. Phys. Rev., 119:829, 1960.Google Scholar
Green, M. S.. Surface integral form for three-body collision in the Boltzmann equation. Phys. Rev., 136:A905, 1964.Google Scholar
Green, M. S. and Piccerelli, R. A.. Basis of the functional assumption in the theory of the Boltzmann equation. Phys. Rev., 132:1388, 1963.Google Scholar
Greenler, R.. Rainbows, Halos, and Glories. Cambridge University Press, Cambridge 1980.Google Scholar
Greenspan, M.. Propagation of sound in five monatomic gases. J. Acoust. Soc. Am., 28:644, 1956.Google Scholar
Griffin, A.. Excitations in a Bose-Condensed Liquid. Cambridge Studies in Low Temperature Physics. Cambridge University Press, Cambridge, 2005.Google Scholar
Griffin, A., Nikuni, T., and Zaremba, E.. Bose-Condensed Gases at Finite Temperatures. Cambridge University Press, Cambridge, 2009.Google Scholar
Groeneveld, J.. Two theorems on classical-many-particle systems. Phys. Lett., 3:50, 1962.Google Scholar
Gross, E. P. and Jackson, E. A.. Kinetic models and the linearized Boltzmann equation. Phys. Fluids, 2:432, 1959.Google Scholar
Guiraud, J. P.. Kinetic theory and rarefied gas dynamics. In Trilling, L. and Wachman, H. Y., editors, Rarefied Gas Dynamics, page 121. Academic Press, New York, 1969.Google Scholar
Gust, E. and Reichl, L.. Transport coefficients from the boson Uehling–Uhlenbeck equation. Phys. Rev. E, 87:042109, 2013.Google Scholar
Gust, E. and Reichl, L. E.. Relaxation rates of the linearized Uehling–Uhlenbeck equation for bosons. Phys. Rev. E, 81:061202, 2010.Google Scholar
Gust, E. D. and Reichl, L. E.. Relaxation rates and collision integrals for Bose– Einstein condensates. J. Low Temp. Phys., 170:43, 2013.Google Scholar
Gust, E. D. and Reichl, L.. The viscosity of dilute Bose–Einstein condensates. Phys. Scr., T165:014034, 2015.Google Scholar
Gust, E. D. and Reichl, L. E.. Decay of hydrodynamic modes in dilute Bose–Einstein condensates. Phys. Rev. A, 90:043615, 2014.Google Scholar
Ter Haar, D.. The foundations of statistical mechanics. Rev. Mod. Phys., 27:289, 1955.Google Scholar
Haarman, J. W.. Thermal conductivity measurements of He, Ne, Ar, Kr, N2, and CO2 with a transient hot wire method. In Kestin, J., editor, Transport Phenomena, number 11, page 193. American Institute of Physics, New York 1973.Google Scholar
Haff, P. K.. Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech., 134:401, 1983.Google Scholar
Halmos, P. R.. Ergodic Theory. Chelsea Publishing Co., New York 1956.Google Scholar
Hamel, B. B. and Cooper, A. L.. Nature of the first iterate for nearly free molecular flow. Phys. Fluids, 16:43, 1973.Google Scholar
Hanley, H. J. M.. The viscosity and thermal conductivity coefficients of dilute argon between 100 and 2000 k. Technical Report Technical Note 333, National Bureau of Standards, 1966.Google Scholar
Hanley, H. J. M.. Some experimental comments on the dilute gas transport expressions. In Hanley, H. J. M., ed., Transport Phenomena in Fluids, page 313. Marcel Dekker, New York 1969.Google Scholar
Hanley, H. J. M., ed. Transport Phenomena in Fluids. Marcel Dekker, New York 1969.Google Scholar
Hanley, H. J. M. and Klein, M.. Application of the m-6-8 potential to simple gases. J. Phys. Chem., 76:1743, 1972.Google Scholar
Hansen, J.-P. and McDonald, I. R.. Theory of Simple Liquids. Academic Press, New York, 4th ed., 2013.Google Scholar
Harris, S.. An Introduction to the Theory of the Boltzmann Equation. Dover Publishing Co., New York, 2004.Google Scholar
Hauge, E. H.. Exact and Chapman Enskog solutions of the Boltzmann equation for the Lorentz model. Phys. Fluids, 13:1201, 1970.Google Scholar
Hauge, E. H.. What can one learn from the Lorentz model? In Kirczenow, G. and Marro, J., eds., Transport Phenomena, Springer-Verlag, Berlin 1974.Google Scholar
Hauge, E. H. and Cohen, E. G. D.. Normal and abnormal diffusion in Ehrenfest’s wind-tree model. Phys. Lett. A, 25:78, 1967.Google Scholar
Hauge, E. H. and Cohen, E. G. D.. Normal and abnormal diffusion in Ehrenfest’s wind-tree model. J. Math. Phys., 10:397, 1969.Google Scholar
Hauge, E. H. and Martin-Lof, A.. Fluctuating hydrodynamics and Brownian motion. J. Stat. Phys., 7:259, 1973.Google Scholar
Hauge, E. H. and Praestgaard, E.. The Bobylev approach to the nonlinear Boltzmann equation. J. Stat. Phys., 24:21, 1981.Google Scholar
Helbing, D.. Quantitative Sociodynamics. Springer, 2nd edn., Berlin 2010.Google Scholar
Helfand, E.. Transport coefficients from dissipation in a canonical ensemble. Phys. Rev., 119:1, 1960.Google Scholar
Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B.. The Molecular Theory of Gases and Liquids. John Wiley and Sons, New York, 1954.Google Scholar
Hod, S.. Mode-coupling in rotating gravitational collapse: Gravitational and electromagnetic perturbations. Phys. Rev. D, 61:064018, 2000.Google Scholar
Hoegy, W. R. and Sengers, J. V.. Three-particle collisions in a gas of hard spheres. Phys. Rev. A, 2:2461, 1970.Google Scholar
Hoheisel, C. and Vogelsang, R.. Thermal transport coefficients for one and two component liquids from time correlation functions computed by molecular dynamics. Comp. Phys. Rep., 8:1, 1988.Google Scholar
Hohenberg, P. C. and Martin, P. C.. Microscopic theory of superfluid helium. Ann. Phys., 34:291, 1965.Google Scholar
Hoogeveen, W. and Tjon, J. A.. Anomalous transport properties of the quantum Lorentz gas. Physica A, 115:101, 1982.Google Scholar
Hoover, W. G.. Computational Statistical Mechanics. Elsevier Science Publishers, Amsterdam, 1991.Google Scholar
Hoover, W. G.. Time Reversibility, Computer Simulation, and Chaos. World Scientific Publishing Co., Singapore, 1999.Google Scholar
Huang, K. and Yang, C. N.. Quantum-mechanical many-body problem with hard-sphere interaction. Phys. Rev., 105:767, 1957.Google Scholar
Hubeny, V.. The fluid/gravity correspondence: A new perspective on the Membrane Paradigm. Class. Quant. Grav., 28:114007, 2011.Google Scholar
Hunter, G. L. and Weeks, E. R.. The physics of the colloidal glass transition. Repts. Prog. Phys., 75(6), 2012.Google Scholar
Huthmann, M., Orza, J. A., and Brito, R.. Dynamics of deviations from the Gaussian state in a freely cooling homogeneous system of smooth inelastic particles. Granular Matter, 2:189, 2000.Google Scholar
Iannini, M. L. L. and Dickman, R.. Kinetic theory of vehicular traffic. Am. J. Phys., 84:135, 2016.Google Scholar
Irving, J. H. and Kirkwood, J. G.. The statistical mechanics of transport processes IV: The equations of hydrodynamics. J. Chem. Phys. 18:817, 1950.Google Scholar
Irving, J. H. and Zwanzig, R. W.. The statistical mechanical theory of transport processes.V. Quantum hydrodynamics. J. Chem. Phys., 19:1173, 1951.Google Scholar
Isobe, M.. Long time tail of the velocity autocorrelation function in a two-dimensional moderately dense hard disk fluid. Phys Rev. E, 77:021201, 2008.Google Scholar
Isobe, M.. Hard sphere simulation in statistical physics: Methodologies and applications. Molecular Simulation, 42:1317, 2016.Google Scholar
Ortiz de Zárate J, M. and Sengers, J. V.. Hydrodynamic Fluctuations in Fluids and Fluid Mixtures. Elsevier Science Publishers, Amsterdam 2006.Google Scholar
Jaynes, E. T.. Information theory and statistical mechanics. Phy. Rev., 106:620, 1957.Google Scholar
Jeney, S., Lukic, B., Kraus, J. A., Franosch, T., and Forro, L.. Anisotropic memory effects in confined colloidal diffusion. Phys. Rev. Lett., 100:240604, 2008.Google Scholar
Jenkins, J. T., Lawrey, B. P., and Burns, J. A.. Simple kinetic theory for a dense planetary ring. Prog. Theor. Phys. Suppl., 195:68, 2012.Google Scholar
John, S. T., Hadzibabic, Z., and Cooper, N. R.. Spectroscopic method to measure the superfluid fraction of an ultracold atomic gas. Phys. Rev. A., 83:023610, 2011.Google Scholar
Kac, M.. Foundations of kinetic theory. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, volume III, page 171. University of California Press, Berkeley 1956.Google Scholar
Kac, M.. Probability and Related Topics in Physical Science. American Mathematical Society, Providence 1976.Google Scholar
Kadanoff, L.. Built upon sand: Theoretical ideas insprired by granular flows. Rev. Mod. Phys., 71:435, 1999.Google Scholar
Kadanoff, L. P. and Baym, G. A.. Quantum Statistical Mechanics. W. A. Benjamin, Inc., New York 1962.Google Scholar
Kadanoff, L. P., McNamara, G. R., and Zanetti, G.. From automata to fluid flow: Comparisons of simulation and theory. Phys. Rev. A, 40:4527, 1989.Google Scholar
Kadanoff, L. P. and Swift, J.. Transport coefficients near the liquid-gas critical point. Phys. Rev., 166:89, 1968.Google Scholar
Kamgar-Parsi, B. and Sengers, J. V.. Logarithmic dependence of the transport properties of gases. Phys Rev. Lett. Rev., 51:2163, 1983.Google Scholar
Kan, Y. and Dorfman, J. R.. Logarithmic terms in the density expansion of transport coefficients of moderately dense gases. Phys. Rev. A, 16:2447, 1977.Google Scholar
Kan, Y. H.. An estimate of the first logarithmic term in the density expansions of transport coefficients of moderately dense gases. Physica A, 93:191, 1978.Google Scholar
Kan, Y. H., Dorfman, J. R., and Sengers, J. V.. Logarithmic terms in the density expansion of transport coefficients in dense gases: A survey. In A. Cezairliyan, ed., Proceedings on the Seventh Symposium on Thermophysical Properties. American Society of Mechanical Engineers, page 625, New York, 1977.Google Scholar
Kanazawa, K., Sueshige, T., Takayasu, H., and Takayasu, M.. Kinetic theory for financial brownian motion from microscopic dynamics. Phys. Rev. E, 98:052317, 2018.Google Scholar
Kannuluik, W. G. and Carman, E. H.. The thermal conductivity of rare gases. Proc. Phys. Soc. B, 65:701, 1952.Google Scholar
Kapral, R.. Kinetic theory of chemical reactions in liquids. In Prigogine, I. and Rice, S. A., ed., Advances in Chemical Physics, volume 48, page 71. John Wiley and Sons, Hoboken 1981.Google Scholar
Kapral, R.. Two particle dynamics: Reflections, rings, and reactions. J. Phys. Chem., 86:1259, 1982.Google Scholar
Karkheck, J. and Stell, G.. Transport properties of the Widom-Rowlinson hard sphere mixture model. J. Chem. Phys., 71:3620, 1979.Google Scholar
Karkheck, J. and Stell, G.. Kinetic mean field theories. J. Chem. Phys., 75:1475, 1981.Google Scholar
Karkheck, J. and Stell, G.. Kinetic perturbation theory. structure of collision integrals for the square well gas. J. Phys. Chem., 87:2858, 1983.Google Scholar
Karkheck, J., van Beijeren, H., de Schepper, I, and Stell, G.. Kinetic theory and H-theorem for a dense square well fluid. Phys. Rev. A, 32:2517, 1985.Google Scholar
Kawasaki, K.. Kinetic equations and time correlation functions of critical fluctuations. Ann. Phys., 61:1, 1970.Google Scholar
Kawasaki, K.. Long time behavior of the velocity autocorrelation function. Phys. Lett. A, 32:379, 1970.Google Scholar
Kawasaki, K.. Non-hydrodynamical behavior of two dimensional fluids. Phys. Lett. A, 34:12, 1971.Google Scholar
Kawasaki, K. and Gunton, J. D.. Theory of non-linear transport processes: Nonlinear shear viscosity and normal stress effects. Phys. Rev. A, 8:2048, 1973.Google Scholar
Kawasaki, K. and Oppenheim, I.. Logarithmic terms in the density expansion of transport coefficients. Phys. Rev., 139:A1763, 1965.Google Scholar
Keizer, J.. A theory of spontaneous fluctuations in viscous fluids far from equilibrium. Phys. Fluids, 21:198, 1978.Google Scholar
Keizer, J.. Statistical Thermodynamics of Nonequilibrium Processes. Springer- Verlag, Berlin 1987.Google Scholar
Kestin, J., Khalifa, H. E., Ro, S. T., and Wakeham, W.. The viscosity and diffusion coefficients of eighteen binary gaseous systems. Physica A, 88:242, 1977.Google Scholar
Kestin, J., Khalifa, H. E., and Wakeham, W. A.. The viscosity and diffusion coeffi-cients of the binary mixtures of xenon with the other noble gases. Physica A, 90:215, 1978.Google Scholar
Kestin, J., Knierim, K., Mason, E. A., Najafi, B., Ro, S. T., and Waldman, M.. Equilibrium and transport properties of the noble gases and their mixtures at low density. J. Phys. Chem. Ref. Data, 13:229, 1984.Google Scholar
Kestin, J. and Mason, E. A.. Transport proterties in gases: Comparison between theory and experiment. In Kestin, J., ed., Transport Phenomena – 1973, number 11, page 137. American Institute of Physics, New York 1973.Google Scholar
Kestin, J., Ro, S. T., and Wakeham, W.. An extended law of corresponding states for the equilibrium and transport properties of the noble gases. Physica, 58:165, 1972.Google Scholar
Kestin, J., Ro, S. T., and Wakeham, W.. Viscosity of the noble gases in the temperature range 25–700 C. J. Chem. Phys., 56:4119, 1972.Google Scholar
Khalatnikov, I. M.. An Introduction to the Theory of Superfluidity. W. A. Benjamin, Inc., New York, 1965.Google Scholar
Kikuchi, S. and Nordheim, L.. Uber die kinetische fundamentalgleichung in der quantenstatistik. Zeitschrift fur Physik, 60:652, 1930.Google Scholar
Kinkaid, J. M., Cohen, E. G. D., and Lopez de Haro, M.. The Enskog theory for mulitcomponent mixtures. II: Mutual diffusion. J. Chem. Phys., 79:4509, 1983.Google Scholar
Kinkaid, J. M., Cohen, E. G. D., and Lopez de Haro, M.. The Enskog theory for mulitcomponent mixtures. IV: Thermal diffusion. J. Chem. Phys., 86:963, 1987.Google Scholar
Kinkaid, J.M.. Self-diffusion on all time scales. Phys. Rev. Lett., 74:2985, 1995.Google Scholar
Kirkpatrick, T. R.. On the Theory of Light Scattering from Fluids in Non-equilibrium Steady States. PhD thesis, Rockefeller Univ., New York, 1981.Google Scholar
Kirkpatrick, T. R.. Large long-time tails and shear waves in dense classical liquids. Phys. Rev. Lett., 53:1735, 1984.Google Scholar
Kirkpatrick, T. R.. Anomalous mode coupling effects in dense classical liquids. J. Non-Cryst. Solids, 75:437, 1985.Google Scholar
Kirkpatrick, T. R.. Does the velocity autocorrelation function oscillate in a hard-sphere crystal? J. Stat. Phys., 57:483, 1989.Google Scholar
Kirkpatrick, T. R., Das, S. P., Ernst, M. H., and Piasecki, J.. Kinetic theory of transport in a hard sphere crystal. J. Chem. Phys., 92:3768, 1990.Google Scholar
Kirkpatrick, T. R. and Belitz, D.. Breakdown of hydrodynamic transport theory in the ordered phase of helimagnets. Phys. Rev. Lett., 97:267205, 2006.Google Scholar
Kirkpatrick, T. R., Belitz, D., and Sengers, J. V.. Long time tails, weak localization, and classical and quantum critical behavior. J. Stat. Phys., 109:373, 2002.Google Scholar
Kirkpatrick, T. R. and Cohen, E. G. D.. Light scattering in a fluid far from equilibrium. Phys. Lett. A, 78:350, 1980.Google Scholar
Kirkpatrick, T. R., Cohen, E. G. D., and Dorfman, J. R.. Fluctuations in a non-equilibrium steady state: Basic equations. Phys. Rev. A, 26:950, 1982.Google Scholar
Kirkpatrick, T. R., Cohen, E. G. D., and Dorfman, J. R.. Light scattering by a fluid in a non-equilibrium steady state. I: Small gradients. Phys. Rev. A, 26:972, 1982.Google Scholar
Kirkpatrick, T. R., Cohen, E. G. D., and Dorfman, J. R.. Light scattering by a fluid in a non-equilibrium steady state. II: Large gradients. Phys. Rev. A, 26:995, 1982.Google Scholar
Kirkpatrick, T. R., Ortiz de Zárate, J. M., and Sengers, J. V.. Giant Casimir effect in fluids in non-equilibrium steady states. Phys. Rev. Lett., 110:235903, 2013.Google Scholar
Kirkpatrick, T. R., Ortiz de Zárate, J. M., and Sengers, J. V.. Non-equilibrium fluctuation-induced Casimir pressures in liquid mixtures. Phys. Rev. E, 93:032117, 2016.Google Scholar
Kirkpatrick, T. R., Ortiz de Zárate, J. M., and Sengers, J. V.. Fluctuation-induced pressures in fluids in thermal non-equilibrium steady states. Phys. Rev. E, 89:022145, 2014.Google Scholar
Kirkpatrick, T. R., Ortiz de Zárate, J. M., and Sengers, J. V.. Nonequilibrium Casimir-like forces in liquid mixtures. Phys. Rev. Lett., 110:035901, 2015.Google Scholar
Kirkpatrick, T. R., Ortiz de Zárate, J. M., and Sengers, J. V.. Physical origin of nonequilibrium fluctuation-induced forces in fluids. Phys. Rev. E, 93:012148, 2016.Google Scholar
Kirkpatrick, T. R. and Dorfman, J. R.. Divergences and long-time tails in two- and three-dimensional quantum Lorentz gases. Phys. Rev. A, 28:1022, 1983.Google Scholar
Kirkpatrick, T. R. and Dorfman, J. R.. Electron mobility in gases at low temperatures: The quantum Lorentz gas, I. J. Stat. Phys., 30:67, 1983.Google Scholar
Kirkpatrick, T. R. and Dorfman, J. R.. Transport theory for a weakly interacting condensed Bose gas. Phys. Rev. A, 28:2576(R), 1983.Google Scholar
Kirkpatrick, T. R. and Dorfman, J. R.. Time correlation functions and transport coefficients in a dilute superfluid. J. Low Temp. Phys., 59:1, 1985.Google Scholar
Kirkpatrick, T. R. and Dorfman, J. R.. Transport coefficients in a dilute but condensed Bose gas. J. Low Temp. Phys., 58:399, 1985.Google Scholar
Kirkpatrick, T. R. and Dorfman, J. R.. Transport in a dilute but condensed nonideal Bose gas: Kinetic equations. J. Low Temp. Phys., 58:301, 1985.Google Scholar
Kirkpatrick, T. R. and Dorfman, J. R.. Nonequilibrium is different. Phys. Rev. E, 92:022109, 2015.Google Scholar
Kirkpatrick, T. R. and Nieuwoudt, J. C.. Mode-coupling theory of large long time tails in the stress-tensor autocorrelation function. Phys. Rev. A, 33:2651, 1986.Google Scholar
Kirkpatrick, T. R. and Nieuwoudt, J. C.. Mode-coupling theory of the intermediate-time behavior of the velocity autocorrelation function. Phys. Rev. A, 33:2658, 1986.Google Scholar
Kirkpatrick, T. R., Thirumalai, D., and Wolynes, P. G.. Scaling concepts for the dynamics of viscous liquids near an ideal glassy state. Phys. Rev. A, 40:1045, 1989.Google Scholar
Kirkwood, J. G.. The statistical mechanical theory of transport processes. I: General theory. J. Chem. Phys., 14:180, 1946.Google Scholar
Kirkwood, J. G.. The statistical mechanical theory of transport processes. II: Transport in gases. J. Chem. Phys., 15:72, 1947.Google Scholar
Klages, R.. Theoretische analyse des Boltzmann-stossterms der kinetischen theorie und berechnung von transportkoeffizienten. Master’s thesis, Technical University of Berlin, 1992.Google Scholar
Klages, R.. Microscopic Chaos, Fractals and Transport in Nonequilibrium Statistical Mechanics. World Scientific Publishing Co., Singapore 2007.Google Scholar
Klein, M. and Hanley, H. J. M.. m-6-8 potential function. J. Chem. Phys., 53:4722, 1970.Google Scholar
Knauf, A.. Ergodic and topological properties of Coulombic periodic potentials. Comm. Math. Phys., 110:89, 1987.Google Scholar
Kogan, M. N.. Rarefied Gas Dynamics. Plenum Press, New York, 1969.Google Scholar
Kolev, M., Kozlowska, E., and Lachowicz, M.. A mathematical model for single cell cancer-immune system dynamics. Math. Comp. Model., 41:1083, 2005.Google Scholar
Konijnendijk, H. H. U. and van Leeuwen, J. M. J.. Kinetic equation for hard sphere correlation functions. Physica, 64:342, 1973.Google Scholar
Kovtun, P.. Lectures on hydrodynamic fluctuations in relativistic theories. J. Phys. A: Math. Gen., 45:473001, 2012.Google Scholar
Krapivsky, P. L. and Redner, S.. Slowly divergent drift in the field-driven Lorentz gas. Phys. Rev. E, 56:3822, 1997.Google Scholar
Krapivsky, P. L., Redner, S., and Ben-Naim, E.. A Kinetic View of Statistical Physics. Cambridge University Press, Cambridge, 2010.Google Scholar
Krook, M. and Wu, T. T.. Formation of Maxwellian tails. Phys. Rev. Lett., 36:1107, 1976.Google Scholar
Krook, M. and Wu, T. T.. Exact solutions of the Boltzmann equation. Phys. Fluids, 20:1589, 1977.Google Scholar
Krylov, N. S.. Works on the Foundations of Statistical Mechanics. Princeton University Press, Princeton 1979.Google Scholar
Kubo, R.. Statistical mechanical theory of irreversible processes. I: General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Japan, 12:570, 1957.Google Scholar
Kubo, R.. The fluctuation-dissipation theorem. Repts. Prog. Phys., 29:255, 1966.Google Scholar
Kubo, R., Toda, M., and Hashitsume, N.. Statistical Physics, volume II. Springer-Verlag, 2nd ed., Berlin 1991.Google Scholar
Kubo, R., Yokota, M., and Nakajima, S.. Statistical mechanical theory of irreversible processes. II: Response to thermal disturbance. J. Phys. Soc. Japan, 12:1203, 1957.Google Scholar
Ladd, A. J. C., Alley, W. E., and Alder, B. J.. Structural relaxation in dense hard-sphere fluids. J. Stat. Phys., 48:1147, 1987.Google Scholar
Lagendijk, A., van Tiggelen, B., and Wiersma, D. S.. Fifty years of Anderson localization. Physics Today, page 24, August 2009.Google Scholar
Landau, L.. The theory of superfluidity of helium II. J. Phys. USSR, 5:71, 1941.Google Scholar
Landau, L. D. and Lifshitz, E. M.. Fluid Mechanics. Butterworth-Heinemann, Oxford, 1959.Google Scholar
Lanford, O. E.. Hard-sphere gas in the Boltzmann–Grad limit. Physica A, 106:70, 1981.Google Scholar
Lanford, O. E.. On a derivation of the Boltzmann equation. In Lebowitz, J. L. and Montroll, E. W., eds, Nonequilibrium Phenomena I: The Boltzmann Equation, volume X of Studies in Statistical Mechanics. North Holland Publishing Co., Amsterdam, 1983.Google Scholar
Lanford, O. E.. On a derivation of the Boltzmann equation. Astérisque, 40:117, 1976.Google Scholar
Langer, J. S. and Neal, T.. Breakdown of the concentration expansion for the impurity resistivity of metals. Phys. Rev. Lett., 16:984, 1966.Google Scholar
Latz, A., van Beijeren, H., and Dorfman, J. R.. Lyapunov spectrum and conjugate pairing rule for a thermostated random Lorentz gas: Kinetic theory. Phys. Rev. Lett., 78:207, 1997.Google Scholar
Law, B. M., Gammon, R. W., and Sengers, J. V.. Light-scattering observations of long-range correlations in a non-equilibrium liquid. Phys. Rev. Lett., 60:1554, 1988.Google Scholar
Lebowitz, J. L. and Bargmann, P. G.. New approach to non-equilibrium processes. Phys. Rev., 99:578, 1955.Google Scholar
Lebowitz, J. L. and Bargmann, P. G.. Irreversible Gibbsian ensembles. Ann. Phys., 1:1, 1957.Google Scholar
Lebowitz, J. L. and Percus, J.K.. Statistical thermodynamics of nonuniform fluids. J. Math. Phys., 4:116, 1963.Google Scholar
Lee, P. A. and Ramakrishnan, T. V.. Disordered electronic systems. Rev. Mod. Phys., 57:287, 1985.Google Scholar
Lee, T. D., Huang, K., and Yang, C. N. Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties. Phys. Rev., 106:1135, 1957.Google Scholar
Lee, T. D. and Yang, C. N.. Many body problem in quantum statistical mechanics IV: Formulation in terms of average occupation number in momentum space. Phys. Rev., 22:117,1960.Google Scholar
Lee, T. D. and Yang, C. N.. Many-body problem in quantum mechanics and quantum statistical mechanics. Phys. Rev., 105:1119, 1957.Google Scholar
Lee, T. D. and Yang, C. N.. Low-temperature behavior of a dilute Bose system of hard spheres. I: Equilibrium properties. Phys. Rev., 112:1419, 1958.Google Scholar
Lee, T. D. and Yang, C. N.. Low-temperature behavior of a dilute Bose system of hard spheres. II: Nonequilibrium properties. Phys. Rev., 113:1406, 1959.Google Scholar
Lee, T. D. and Yang, C. N.. Many-body problem in quantum statistical mechanics. I: General formulation. Phys. Rev., 113:1165, 1959.Google Scholar
Lee, T. D. and Yang, C. N.. Many-body problem in quantum statistical mechanics. V: Degenerate phase in Bose–Einstein condensation. Phys. Rev., 117:897, 1960.Google Scholar
Leggett, A. J.. Bose–Einstein condensation in the alkali gases: Some fundamental concepts. Rev. Mod. Phys., 73:307, 2001.Google Scholar
Leggett, A. J.. Quantum Liquids: Bose Condensation and Cooper Pairing in Condensed-Matter Systems. Oxford University Press, Oxford 2006.Google Scholar
Li, W. B., Gammon, R. W., and Sengers, J. V.. Small-angle Rayleigh scattering from non-equilibrium fluctuations in liquid and liquid mixtures. Physica A, 204:399, 1994.Google Scholar
Lieb, E. H.. Some problems in statistical mechanics that I would like to see solved. Physica A, 263:491, 1999.Google Scholar
Lifshitz, E. M. and Pitaevskii, L. P.. Physical Kinetics. Butterworth Heinemann, Oxford 1981.Google Scholar
Lifshitz, I. M.. The energy spectrum of disordered systems. Adv. Phys., 13:483, 1964.Google Scholar
Littlejohn, R. G.. The semiclassical evolution of wave packets. Phys. Rept., 138:193, 1986.Google Scholar
Lebowitz, J. L. and Rubin, E.. Dynamical study of Brownian motion. Phys. Rev., 131:2381, 1963.Google Scholar
London, F.. Superfluids, Macroscopic Theory of Superconductivity. Dover Publishing Co., New York, 2nd ed., 1961.Google Scholar
London, F.. Superfluids: II: Macroscopic Theory of Superfluid Helium. John Wiley and Sons, Hoboken 1954.Google Scholar
Lorentz, H. A.. The motion of electrons in metallic bodies, I, II, III. Proc. Royal Netherlands Acad. Arts Sci., 7:438, 585, 684, 1905.Google Scholar
Lorentz, H. A.. Lessen over Theoretische Natuurkunde: Kinetische Problemen, volume V. E. J. Brill, Leiden, 1921.Google Scholar
Lotka, A. J.. Analytical note on certain rhythmic relations in organic systems. Proc. Nat. Acad. Sci. (PNAS), 6:410, 1920.Google Scholar
Lowe, C. P. and Frenkel, D.. The super long-time decay of velocity fluctuations in a two-dimensional fluid. Physica A, 220:251, 1995.Google Scholar
Pitaevskii, L. and Stringari, S.. Bose–Einstein Condensation. Oxford University Press, Oxford 2003.Google Scholar
Lunc, M. and Lubonski, J.. Sur une solution approchée du problème de l’écoulement d’un gaz raréfié autour d’un obstacle. Archivum Mechaniki Stosowanej, 8:579, 1956.Google Scholar
Lutsko, J. F. and Dufty, J. W.. Long-ranged correlations in sheared fluids. Phys. Rev. E, 66:41206, 2002.Google Scholar
Ma, S. K.. Second sound in a low-temperature, weakly interacting Bose gas. J. Math. Phys., 12:2157, 1971.Google Scholar
Ma, S. K.. Statistical Mechanics. World Scientific Publishing Co., Singapore 1985.Google Scholar
Machta, J. and Oppenheim, I.. Mode coupling theory of hydrodynamics and steady state systems. Physica A, 112:361, 1982.Google Scholar
Mahan, G. D.. Many Particle Physics. Physics of Liquids and Solids. Springer-Verlag, Berlin, 3rd ed., 2000.Google Scholar
Maimbourg, T., Kurchan, J., and Zamponi, F.. Solution of the dynamics of liquids in the large-dimensional limit. Phys. Rev. Lett., 116:015902, 2016.Google Scholar
Marchetti, M. C., Cohen, E. G. D., Dorfman, J. R., and Kirkpatrick, T. R.. Initial state dependence of nonlinear kinetic equations: The classical electron gas. J. Stat. Phys., 41:75, 1985.Google Scholar
Marchetti, M. C., Joanny, J. F., Ramaswamy, S., Liverpool, T. B., Prost, J., Rao, M., and Aditi Simha, R.. Hydrodynamics of soft active matter. Rev. Mod. Phys., 85:1143, 2013.Google Scholar
Marchetti, M. C. and Kirkpatrick, T. R.. Kinetic theory of long time tails in velocity correlation functions in a moderately dense electron gas. J. Stat. Phys., 41:621, 1985.Google Scholar
Marchetti, M. C., Kirkpatrick, T. R., Dorfman, J. R., and Cohen, E. G. D.. Kinetic equation for a weakly interacting classical electron gas. J. Stat. Phys., 41:37, 1985.Google Scholar
Mareschal, M., Blawzdziewicz, J., and Piasecki, J.. Local entropy production from the revised Enskog equation: General formulation for inhomogeneous fluids. Phys. Rev. Lett., 52:1169, 1984.Google Scholar
Martin, Ph. and Piasecki, J.. Lorentz’s model with dissipative collisions. Physica A, 265:19, 1999.Google Scholar
Maslach, G. J. and Schaaf, S. A.. Cylinder drag in the transition from continuum to free molecule flow. Phys. Fluids, 6:315, 1963.Google Scholar
Mason, E. A.. Higher approximations for the transport properties of binary mixtures. II: Applications. J. Chem. Phys., 27:782, 1957.Google Scholar
Mason, E. A.. Higher approximations for the transport properties of binary gas mixtures. I: General formulas. J. Chem. Phys., 27:75, 1957.Google Scholar
Mason, E. A.. Publications of E. A. Mason. Intl. J Thermophys., 18:1063, 1997.Google Scholar
Mason, E. A. and Marrero, T.. The diffusion of atoms and molecules. Adv. Atom. Mol. Phys., 6:155, 1970.Google Scholar
Mason, E. A., Munn, R. J., and Smith, F. J.. Thermal diffusion in gases. Adv. Atom. Mol. Phys., 2:33, 1966.Google Scholar
Mason, E. A. and Saxena, S. C.. Approximate formula for the thermal conductivity of gas mixtures. Phys. Fluids, 1:361, 1958.Google Scholar
Maxwell, J. C.. On the dynamical theory of gases. Phil. Trans. Roy. Soc. London, 157:4988, 1867.Google Scholar
Maxwell, J. C.. On the stability of the motion of saturn’s rings. In Niven, W. D., ed., The Scientific Papers of James Clerk Maxwell, volume 1, page 288. Cambridge Univ. Press, Cambridge 1890.Google Scholar
Mayer, J.. The theory of ionic solutions. J. Chem. Phys., 18:1426, 1950.Google Scholar
Mayer, J. E. and Mayer, M. G.. Statistical Mechanics. Wiley-Interscience, New York, 2nd ed., 1977.Google Scholar
Mazenko, G.. Nonequilibrium Statistical Mechanics. Wiley-VCH, Hoboken 2006.Google Scholar
Mazenko, G., Ramaswamy, S., and Toner, J.. Breakdown of conventional hydrodynamics for smectic- a, hexatic- b, and cholesteric liquid crystals. Phys. Rev. A, 28:1618, 1983.Google Scholar
Mazenko, G. F.. Fully renormalized kinetic theory. I: Self-diffusion. Phys. Rev. A, 7:209, 1973.Google Scholar
Mazenko, G. F.. Fully renormalized kinetic theory. II: Velocity autocorrelation. Phys. Rev. A., 7:222, 1973.Google Scholar
Mazenko, G. F.. Fully renormalized kinetic theory. III: Density fluctuations. Phys. Rev. A, 9:360, 1974.Google Scholar
Born, M. and Green, H. S.. A general kinetic theory of liquids. I: The molecular distribution functions. Proc. Phys. Soc. A, 188:10, 1946.Google Scholar
McCoy, B.. Advanced Statistical Mechanics. Oxford University Press, Oxford, 2015.Google Scholar
McLennan, J. A.. Convergence of the Chapman–Enskog expansion for the linearized Boltzmann equation. Phys. Fluids, 8:1580, 1965.Google Scholar
McLennan, J. A.. Introduction to Nonequilibrium Statistical Mechanics. Prentice Hall, Upper Saddle River 1989.Google Scholar
McLennan, J. A. and Chiu, S. C.. On Stokes’ problem in kinetic theory. Phys. Fluids, 17:1146, 1974.Google Scholar
McNamara, S. and Young, W. R.. Inelastic collapse and clumping in a one-dimensional granular medium. Phys. Fluids A, 4:496, 1992.Google Scholar
McNamara, S. and Young, W. R.. Inelastic collapse in two dimensions. Phys. Rev. E, 50:R28, 1993.Google Scholar
Mehaffy, J. R. and Cukier, R. I. Kinetic theory derivation of the Stokes-Einstein law. Phys Rev. Lett., 38:1039, 1977.Google Scholar
Mehaffy, J. R. and Cukier, R. I.. Kinetic theory of single-particle motion in a fluid. Phys. Rev. A, 17:1181, 1978.Google Scholar
Metzler, R. and Klafter, J.. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep., 339:1, 2000.Google Scholar
Michels, A., Sengers, J. V., and Van der Gulick, P. S.. The thermal conductivity of carbon dioxide in the critical region. II: Measurements and conclusions. Physica, 28:1216, 1962.Google Scholar
Lifshitz, E. M. and Pitaevskii, L. P.. Statistical Physics (Part 2): Theory of the Condensed State. Butterworth Heinemann, Oxford, revised ed., 1980.Google Scholar
Montroll, E. W. and Badger, W. W.. Introduction to Quantitative Aspects of Social Phenomena. Gordon and Breach Science Publ., London 1975.Google Scholar
Moore, C. C.. Ergodic theorem, ergodic theory, and statistical mechanics. Proc. Nat. Acad. Sci. (PNAS), 112:1907, 2015.Google Scholar
Mori, H.. Statistical-mechanical theory of transport in fluids. Phys. Rev., 112:1829, 1958.Google Scholar
Mori, H.. Transport, collective motion, and Brownian motion. Prog. Theor. Phys., 33:423, 1965.Google Scholar
Morkel, C. and Gronemeyer, C.. Determination of the low frequency cusp in tne velocity autocorrelation spectrum of liquid sodium. Zeit. Phys. B, 72:433, 1988.Google Scholar
Morkel, Chr., Gronemeyer, Chr., Gläser, W., and Bosse, J.. Experimental evidence for the long time decay of the velocity autocorrelation in liquid sodium. Phys. Rev. Lett., 58:1873, 1987.Google Scholar
Morriss, G. P. and Dettmann, C. P. Thermostats: Analysis and application. Chaos, 8:321, 1998.Google Scholar
Mott, N. F. and Massey, H. S. W.. The Theory of Atomic Collisions. Oxford University Press, 2nd ed., Oxford 1987.Google Scholar
Mouhot, C. and Villani, C.. On Landau damping. Acta Math., 207:29, 2011.Google Scholar
Muller, P. and Pöschel, T.. Collision of viscoelastic spheres: Compact expressions for the coefficient of normal restitution. Phys. Rev. E, 84:021302, 2011.Google Scholar
Murphy, T. J. and Cohen, E. G. D.. On sequences of collisions among hard spheres in infinite space. In Szász, D., ed., Hard ard Ball Systems and the Lorentz Gas, page 29. Springer-Verlag, Berlin 2000.Google Scholar
Murphy, T. J. and Cohen, E. G. D.. Maximum number of collisions among identical hard spheres. J. Stat. Phys., 71:1063, 1993.Google Scholar
Murray, C.. Saturn’s dynamical rings. Phys. Today, 60(8):74, 2007.Google Scholar
Naitoh, T., Ernst, M. H., van der Hoef, M. A., and Frenkel, D.. Extended mode coupling and simulations in cellular-automata fluids. Phys. Rev. A, 44:2484, 1991.Google Scholar
Najafi, B., Mason, E. A., and Kestin, J.. Improved corresponding states principle for the noble gases. Physica A, 119:387, 1982.Google Scholar
Nasser, L.. Two Topics in Modern Kinetic Theory. PhD thesis, University of Maryland, Department of Physics, College Park, 2001.Google Scholar
Nietzsche, F.. Basic Writings of Nietzsche. Modern Library, New York 2000.Google Scholar
Nikuni, T. and Griffin, A.. Hydrodynamic damping in trapped Bose gases. J. Low. Temp. Phys., 111:793, 1998.Google Scholar
Riesco, N.. The viscosity of dense gas mixtures: The Vesovic–Wakeham method. In M. J. Assael, A. R. G. Goodwin, V. Vesovic, and W. A. Wakeham, eds., Experimental Thermodynamics: Advances in Transport Properties of Fluids, volume IX, page 263. International Union of Pure and Applied Chemistry, London, 2014.Google Scholar
Ogilvie, G. I.. James Clerk Maxwell and the dynamics of astrophysical disks. Phil. Trans. Roy. Soc. A, A366:1707, 2008.Google Scholar
Olaussen, K. and Hemmer, P. C.. The drift velocity of a hard-sphere Lorentz gas. J. Phys. A:Math. Gen., 15:3255, 1982.Google Scholar
Omelyan, I. P. and Tovarchuk, M. V.. Kinetic equation for liquids with a multistep potential of interaction. H-theorem. Physica A, 234:89, 1996.Google Scholar
Onsager, L.. Reciprocal relations in irreversible processes, I. Phys. Rev., 37:405, 1931.Google Scholar
Onsager, L.. Reciprocal relations in irreversible processes, II. Phys. Rev., 38:2265, 1931.Google Scholar
Onsager, L. and Machlup, S.. Fluctuations and irreversible processes. Phys. Rev., 91:1505, 1953.Google Scholar
Onuki, A.. Non-Newtonian effect and long-range correlation in shear flow in two dimensions. Phys. Lett. A, 70:31, 1979.Google Scholar
Ornstein, L. S. and Zernike, F.. Integral equation in liquid state theory. In Frisch, H. L. and Lebowitz, J. L., eds., Equilibrium Theory of Classical Fluids, page 11. W. A. Benjamin, Inc., New York 1964.Google Scholar
Ott, E.. Chaos in Dynamical Systems. Cambridge University Press, Cambridge, 2nd ed., Cambridge 2002.Google Scholar
Pagonabarraga, I., Trizac, E., van Noije, T. P. C., and Ernst, M. H.. Randomly driven granular fluids: Collisional statistics and short scale structure. Phys. Rev. E, 65:011303, 2001.Google Scholar
Panja, D.. An elementary proof of Lyapunov exponent pairing for hard-sphere systems at constant kinetic energy. J. Stat. Phys., 109:705, 2002.Google Scholar
Panja, D. and van Zon, R.. Pairing of Lyapunov exponents for a hard sphere gas under shear, in the thermodynamic limit. Phys. Rev. E, 66:021101, 2002.Google Scholar
Pao, Y.-P. and Willis, D. R.. Asymptotic theory of nearly free molecular flows. Phys. Fluids, 12:435, 1969.Google Scholar
Pareschi, L. and Toscani, G.. Wealth distribution and collective knowledge: a Boltzmann approach. Phil. Trans. Roy. Soc. A, 372:20130396, 2013.Google Scholar
Parisi, G. and Zamponi, F.. Mean-field theory of hard sphere glasses and jamming. Rev. Mod. Phys., 82:789, 2010.Google Scholar
Peierls, R.. Surprises in Theoretical Physics. Princeton Series in Physics. Princeton University Press, Princeton 1979.Google Scholar
Pekeris, C. L., Alterman, Z., Finkelstein, L., and Frankowski, K.. Propagation of sound in a gas of rigid spheres. Phys. Fluids, 5:1608, 1962.Google Scholar
Peletminskii, S. V., Sokolovskii, A. I., and Shchelokov, V. S.. Hydrodynamics of a syperfluid Bose liquid with allowance for dissipative processes in a model with weak interaction. Theor. Math. Phys. Math., 34:51, 1978.Google Scholar
Penrose, O. and Onsager, L.. Bose–Einstein condensation and liquid helium. Phys. Rev., 104:576, 1956.Google Scholar
Pethick, C. J. and Smith, H.. Bose–Einstein Condensation in Dilute Gases. Cambridge University Press, Cambridge, 2008.Google Scholar
Piasecki, J.. Local H theorem for the revised Enskog equation. J. Stat. Phys., 48:1203, 1987.Google Scholar
Piasecki, J. and Pomeau, Y.. Large energy behavior of the velocity distribution for the hard-sphere gas. J. Stat. Phys., 28:235, 1982.Google Scholar
Piasecki, J. and Wajnryb, E.. Long time behavior of the Lorentz electron gas in a constant, uniform electric field. J. Stat. Phys., 21:549, 1979.Google Scholar
Piccoli, B. and Tosin, A.. Vehicular traffic: A review of continuum mathematical models. In Meyers, R. A., ed., Encyclopedia of Complexity and Systems Science, volume 22, page 9727. Springer, Berlin 2009.Google Scholar
Pines, D. and Nozieres, P.. Theory of Quantum Liquids: Superfluid Bose Liquids. Westview Press, Boulder, 1994.Google Scholar
Pitaevskii, L. and Stringari, S.. Bose–Einstein Condensation. Oxford University Press, Oxford, 2003.Google Scholar
Poling, B., Prausnitz, J., and O’Connell, J.. The Properties of Gases and Liquids. McGraw-Hill, New York, 5th ed., 2000.Google Scholar
Pollicott, M. and Yuri, M.. Dynamical Systems and Ergodic Theory. Number 40 in London Mathematical Society Student Texts. Cambridge University Press, Cam-bridge, 1998.Google Scholar
Pomeau, Y.. A new kinetic theory for a dense classical gas. Phys. Lett. A, 27:601, 1968.Google Scholar
Pomeau, Y.. Transport theory for a two dimensional dense gas. Phys. Rev. A, 3:1174, 1971.Google Scholar
Pomeau, Y.. Asymptotic properties of autocorrelation functions and the Enskog expansion in three dimensional simple classical fluids. Phys. Rev. A, 7:1134, 1973.Google Scholar
Pomeau, Y. and Resibois, P.. Time dependent correlation functions and mode-mode coupling theories. Phys. Rep., 19C:63, 1975.Google Scholar
Pomeau, Yves and Tran, Minh-Binh. Statistical Physics of Nonequilibrium Quantum Phenomena. Springer Verlag, Berlin, 2019.Google Scholar
Popov, V. N.. Functional Integrals in Quantum Field Theory and Statistical Mechanics. D. Riedel Publishing Co., Dordrecht, 1983.Google Scholar
Price, R. H.. Nonspherical perturbations of relativistic gravitational collapse. I: Scalar and gravitational perturbations. Phys. Rev. D, 5:2419, 1972.Google Scholar
Price, R. H.. Nonspherical perturbations of relativistic gravitational collapse. II: Integer-spin, zero-rest-mass fields. Phys. Rev. D, 5:2439, 1972.Google Scholar
Prigogine, I.. Le domain de validité de la thermodynamique des phénomenes irréversibles. Physica, 15:272, 1949.Google Scholar
Prigogine, I. and Herman, R.. Kinetic Theory of Vehicular Traffic. Elsevier Science Publishers, Amsterdam 1971.Google Scholar
Procaccia, I., Ronis, D., Collins, M. A., Ross, J., and Oppenheim, I.. Statistical mechanics of stationary states. I: Formal theory. Phys. Rev. A, 19:1290, 1979.Google Scholar
Procaccia, I., Ronis, D., and Oppenheim, I.. Light scattering from nonequilibrium stationary states: The implication of broken time-reversal symmetry. Phys. Rev. Lett., 42:287,614, 1979.Google Scholar
Putterman, S.. Superfluid Hydrodynamics. North-Holland Publishing Co., Amster-dam 1974.Google Scholar
Ramaswamy, S.. The mechanics and statistics of active matter. In Annual Reviews of Condensed Matter Physics, 1, 323. Annual Reviews, Inc., Palo Alto, 2010.Google Scholar
Rammer, J.. Quantum Transport Theory. Westview Press, Boulder, 1998.Google Scholar
Rapaport, D. C.. The Art of Molecular Dynamics Simulation. Cambridge University Press, Cambridge 2004.Google Scholar
Reichl, L.. A Modern Course in Statistical Physics. John Wiley and Sons, 4th ed., Hoboken 2016.Google Scholar
Reichl, L. E. and Gust, E. D.. Transport theory for a dilute Bose–Einstein condensate. Phys. Rev. A, 88:053603, 2013.Google Scholar
Reichl, L. E. and Tran, M.-B.. A kinetic model for very low temperature dilute Bose gases. J. Phys. A: Math. Gen., 52:063001, 2019.Google Scholar
Resibois, P.. H-theorem for the (modified) nonlinear Enskog equation. J. Stat. Phys., 19:593, 1978.Google Scholar
Resibois, P.. H-theorem for the (modified) nonlinear Enskog equation. Phys. Rev. Lett., 40:1409, 1978.Google Scholar
Resibois, P.. The linearized (modified) Enskog equation: The approach to equilibrium. Physica A, 94:1, 1978.Google Scholar
Resibois, P. and de Leener, M.. Classical Kinetic Theory of Fluids. John Wiley and Sons, Hoboken 1977.Google Scholar
Resibois, P. and Pomeau, Y.. Kinetic approach to the long-time behaviour in fluids. II: Long time behaviour of the time-dependent collision operator. Physica, 72:493, 1974.Google Scholar
Resibois, P. and Velarde, M. G.. Non-analytic density expansion of transport coefficients in the quantum Lorentz gas and weak-coupling approximation. Physica, 51:541, 1971.Google Scholar
Rhodes, R.. The Making of the Atomic Bomb. Simon and Schuster, New York, 1986.Google Scholar
Rivet, J.-P. and Boon, J.-P.. Lattice Gas Hydrodynamics. Cambridge University Press, Cambridge, 2001.Google Scholar
Rom-Kedar, V. and Turaev, D.. Big islands in dispersing billiard-like potentials. Physica D, 130:187, 1999.Google Scholar
Romatschke, P. and Romatschke, U.. Relativistic Fluid Dynamics in and out of Equilibrium. Cambridge University Press, Cambridge 2019.Google Scholar
Ronis, D. and Procaccia, I.. Nonlinear resonant coupling between shear and heat fluctuations in fluids far from equilibrium. Phys. Rev. A, 26:1812, 1982.Google Scholar
Ronis, D., Procaccia, I., and Machta, J.. Statistical mechanics of stationary states. vi. hydrodynamic fluctuation theory far from equilibrium. Phys. Rev. A, 22:714, 1980.Google Scholar
Ronis, D., Procaccia, I., and Oppenheim, I.. Statistical mechanics of stationary states. III: Fluctuations in dense fluids with applications to light scattering. Phys. Rev. A, 19:1324, 1979.Google Scholar
Rothman, D. H. and Zaleski, S.. Lattice Gas Cellular Automata: Simple Models of Complex Hydrodynamics. Cambridge University Press, Cambridge 2004.Google Scholar
Rudin, H.. Real and Complex Analysis. McGraw-Hill, New York, 1987.Google Scholar
Ruelle, D.. Locating resonances for Axiom-A dynamical systems. J. Stat. Phys., 44:281, 1986.Google Scholar
Ruelle, D.. Statistical Mechanics: Rigorous Results. World Scientific Publishing Co., Singapore 1999.Google Scholar
Ruelle, D. and Eckmann, J.-P.. Ergodic theory of chaos and strange attractors. Rev. Mod. Phys., 57:617, 1985.Google Scholar
Sakurai, J. J.. Modern Quantum Mechanics. Addison-Wesley Publishing Co., Boston 1995.Google Scholar
Satten, G. and Ronis, D.. Modification of non-equilibrium fluctuations by interactions with surfaces. Phys. Rev. A, 26:940, 1982.Google Scholar
Saxena, S. C. and Dave, S. M.. Thermal diffusion of binary gas mixtures. Rev. Mod. Phys., 33:148, 1961.Google Scholar
Lo Schaivo, M.. The modelling of political dynamics by generalized kinetic (Boltz-mann) models. Math. Comp. Model., 37:261, 2003.Google Scholar
Scharf, G.. Stokes’ problems in kinetic theory. Phys. Fluids, 13:848, 1970.Google Scholar
Scharf, G.. Reply to comments by Carlo Cercignani. Phys. Fluids, 15:959, 1972.Google Scholar
Schmitz, R.. Fluctuations in non-equilibrium fluids. Phys. Rep., 171:1, 1988.Google Scholar
Schmitz, R. and Cohen, E. G. D.. Brillouin scattering from fluids subject to large thermal gradients. Phys. Rev A, 35:2602, 1987.Google Scholar
Schram, P. P. M. J.. Kinetic Theory of Gases and Plasmas. Springer, Dordrecht, 1991.Google Scholar
Schwager, T. and Pöschel, T.. Coefficient of restitution for viscoelastic spheres: The effect of delayed recovery. Phys. Rev. E, 78:051304, 2008.Google Scholar
Sengers, J. V.. Density expansion of the viscosity of a moderately dense gas. Phys. Rev. Lett., 15:515, 1965.Google Scholar
Sengers, J. V.. Divergence in the density expansion of the transport coefficients of a two-dimensional gas. Phys. Fluids, 9:1685, 1966.Google Scholar
Sengers, J. V.. Triple collision contribution to the transport coefficients of a rigid sphere gas. Phys. Fluids, 9:1333, 1966.Google Scholar
Sengers, J. V.. The three particle collision term in the generalized Boltzmann equation. In Cohen, E. G. D. and Thirring, W., eds., The Boltzmann Equation: Theory and Applications, page 177. Springer, Berlin 1973.Google Scholar
Sengers, J. V., Ortiz de Zárate, J. M., and Kirkpatrick, T. R.. Thermal fluctuations in non-equilibrium steady states. In Bedeaux, D., Kjelstrup, S., and Sengers, J. V., eds., Experimental Thermodynamics: Non-equilibrium Thermodynamics with Applications, volume X, page 39. International Union of Pure and Applied Chemistry, London, 2016.Google Scholar
Sengers, J. V., Gillespie, D. T., and Perez-Esandi, J. J.. Three-particle collision effects in the transport properties of a gas of hard spheres. Physica A, 90:365, 1978.Google Scholar
Sengers, J. V., Lin Wang, Y.-Y., Kamgar-Parsi, B., and Dorfman, J. R.. Kinetic theory of drag on objects in nearly free molecular flow. Physica A, 413:409, 2014.Google Scholar
Sherman, F. S.. The transition from continuum to molecular flow. In Annual Review of Fluid Mechanics, page 317. Annual Reviews, Inc., Palo Alto 1969.Google Scholar
Siegert, A. J. F. and Teramoto, E.. Simplified derivation of the binary collision expansion and its connection with the scattering operator expansion. Phys. Rev., 110:1232, 1958.Google Scholar
Sigurgeirsson, H. and Heyes, D. M.. Transport coefficients of hard sphere fluids. Mol. Phys., 101:469, 2003.Google Scholar
Simányi, N.. Proof of the Boltzmann–Sinai ergodic hypothesis for typical hard disk systems. Invent. Math., 154:123, 2003.Google Scholar
Simányi, N. and Szász, D.. Hard ball systems are completely hyperbolic. Ann. Math., 149:35, 1999.Google Scholar
Sinai, Ya. G., ed.. Dynamical Systems, volume II of Encyclopedia of Mathematical Sciences. Springer-Verlag, Berlin 1989.Google Scholar
Sinai, Ya. G., ed.. Dynamical Systems, A Collection of Papers. World Scientific Publishing Co., Singapore 1991.Google Scholar
Sirovich, L. and Thurber, J. K.. Comparison of theory and experiment for forced sound-wave propagation in rarefied gas dynamics. J. Acoust. Soc. Am., 38:477, 1965.Google Scholar
Sirovich, L. and Thurber, J. K.. Propagation of forced sound waves in rarefied gas dynamics. J. Acoust. Soc. Am., 37:329, 1965.Google Scholar
Sirovich, L. and Thurber, J. K.. Plane wave propagation in kinetic theory. J. Math Phys., 8:888, 1967.Google Scholar
Sone, Y.. Kinetic theory analysis of the linearized Rayleigh problem. Phys. Fluids, 7:470, 1964.Google Scholar
Sone, Y.. Asymptotic theory of flow of rarefied gases over a smooth boundary. In Trilling, L. and Wachman, H. Y., eds., Rarefied Gas Dynamics, volume 1, page 243. Academic Press, New York 1969.Google Scholar
Sone, Y.. Molecular Gas Dynamics. Birkhäuser, Basel 2007.Google Scholar
Sone, Y.. Kinetic Theory and Fluid Dynamics. Springer-Verlag, Berlin 2012.Google Scholar
Spahn, F.. Planetary rings: Non-equilibrium systems in space. In L. Schimansky-Geier and T. Pöschel, eds., Stochastic Dynamics, volume 484 of Lecture Notes in Physics, page 372. Springer-Verlag, Berlin, 2007.Google Scholar
Spahn, F., Hertzsch, J.-M., and Brilliantov, N. V.. The role of particle collisions for the dynamics of planetary rings. Chaos, Solitons, Fractals, 5:1945, 1995.Google Scholar
Spahn, F. and Schmidt, J.. Hydrodynamic description of planetary rings. GAMM- Mitt., 29:115, 2006.Google Scholar
Spohn, H.. Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Mod. Phys., 52:569, 1980.Google Scholar
Spohn, H.. Fluctuation theory for the Boltzmann equation. In Lebowitz, J. L. and Montroll, E. W., eds., Nonequilibrium Phenomena I: The Boltzmann Equation, page 225. North-Holland Publishing Co., Amsterdam 1983.Google Scholar
Spohn, H.. Large Scale Dynamics of Interacting Particles. Springer-Verlag, Berlin 1991.Google Scholar
Squires, G. L.. Introduction to the Theory of Thermal Neutron Scattering. Cambridge University Press, 3rd ed., Cambridge 2012.Google Scholar
Steele, W. A.. Time correlation functions. In Hanley, H. J. M., ed., Transport Phenomena in Fluids, page 209. Marcel Dekker, New York, 1970.Google Scholar
Stell, G., Karkheck, J., and van Beijeren, H.. Kinetic mean field theories: Results of energy constraint in maximizing entropy. J. Chem Phys., 79:3166, 1983.Google Scholar
Stillinger, F.H. and Buff, F. P.. Equilibrium statistical mechanics of inhomogeneous fluids. J. Chem. Phys., 37:1, 1962.Google Scholar
Stöcker, H. and Greiner, W.. High energy heavy ion collisions: Probing the equation of state of highly excited hardronic matter. Phys. Rept., 137:277, 1986.Google Scholar
Stoof, H. T. C., Gubbels, K. B., and Dickerscheid, D. B. M.. Ultracold Quantum Fields. Springer-Verlag, Berlin, 2009.Google Scholar
Storvick, T. S. and Mason, E. A.. Determination of diffusion coefficients from viscosity measurements: Effect of higher Chapman–Enskog approximations. J. Chem. Phys., 45:3752, 1966.Google Scholar
Rayleigh, Lord (J. W. Strutt). Dynamical problems in illustration of the theory of gases. Philos. Mag. 5, 32:424, 1891.Google Scholar
Succi, S.. The Lattice Boltzmann Equation. Oxford University Press, Oxford 2001.Google Scholar
Szász, D.. Ergodicity of classical billiard balls. Physica A, 194:86, 1993.Google Scholar
Szasz, D., ed. Hard Ball Systems and the Lorentz Gas. Springer-Verlag, Berlin 2000.Google Scholar
Tatarski, V. I.. The Wigner representation of quantum mechanics. Usp. Fiz. Nauk, 139:587, 1983.Google Scholar
Taylor, G. I.. Diffusion by continuous movements. Proc. Lond. Math. Soc., 20:196, 1922.Google Scholar
Temperley, H. N. V.. On the relationship between the Landau and London–Tisza models of liquid helium II. Proc. Phys. Soc. A, 65, 1952.Google Scholar
Tiscareno, M.S.. Planets, Stars, and Stellar Systems, volume 3, page 311. Springer Verlag, Berlin, 2013.Google Scholar
Tisza, L.. Sur la supraconductibilite thermique de l’Helium II liquide et la statistique de Bose–Einstein. Compt. Rend. Acad. Sci., 207:1035,1186, 1938.Google Scholar
Tisza, L.. Transport phenomena in Helium II. Nature, 141:913, 1938.Google Scholar
Tisza, L.. Sur la theorie des liquides quantiques: Application a l’Helium liquide. J. Phys. Radium, 1:164,350, 1940.Google Scholar
Tolman, R. C.. The Principles of Statistical Mechanics. Dover Publishing Co., Mineola 1979.Google Scholar
Tran, M.-B and Pomeau, Y. Boltzmann-type collision operators for Bogoliubov excitations of Bose-Einstein condensates: A unified framework. 2019. cond-mat: archiv:1912.06945.Google Scholar
Tremblay, A., Arai, M., and Siggia, E. D.. Fluctuations about simple non-equilibrium steady states. Phys. Rev. A, 23:1451,1655, 1981.Google Scholar
Tremblay, A., Siggia, E. D., and Arai, M. R.. Fluctuations about hydrodynamic non-equilibrium steady states. Phys. Lett. A, 76:57, 1980.Google Scholar
Turaev, D. and Rom-Kedar, V.. Elliptic islands appearing in near-ergodic flows. Nonlinearity, 11:575, 1998.Google Scholar
Uehling, E. A. and Uhlenbeck, G. E.. Transport phenomena in Einstein–Bose and Fermi–Dirac gases, I. Phys. Rev., 43:552, 1933.Google Scholar
Uhlenbeck, G. E. and Ford, G. W.. Lectures in Statistical Mechanics. American Mathematical Society, Providence, 1963.Google Scholar
van Beijeren, H.. Kinetic Theory of Hard Spheres. PhD thesis, University of Nijmegen (Radboud Universiteit), 1974.Google Scholar
van Beijeren, H.. Transport properties of stochastic Lorentz models. Rev. Mod. Phys., 54:195, 1982.Google Scholar
van Beijeren, H.. Equilibrium distribution of hard sphere systems and revised Enskog theory. Phys. Rev. Lett., 51:1503, 1983.Google Scholar
van Beijeren, H.. On the intermediate time behavior of the stress tensor and velocity autocorrelation functions for dense hard sphere systems. Phys. Lett. A, 105:191, 1984.Google Scholar
van Beijeren, H. and Dorfman, J. R.. Comment on “Kinetic theory of single-particle motion in a fluid”. Phys. Rev A, 19:416, 1979.Google Scholar
van Beijeren, H. and Dorfman, J. R.. Kinetic theory of hydrodynamic flows. I: The generalized normal solution method and its application to the drag on a sphere. J. Stat. Phys., 23:335, 1980.Google Scholar
van Beijeren, H. and Dorfman, J. R.. Kinetic theory of hydrodynamic flows. II: The drag on a sphere and on a cylinder. J. Stat. Phys., 23:443, 1980.Google Scholar
van Beijeren, H. and Dorfman, J. R.. Lyapunov exponents and Kolmogorov–Sinai entropy for the Lorentz gas at low densities. Phys. Rev. Lett., 74:4412, 1995.Google Scholar
van Beijeren, H. and Dorfman, J. R.. Lyapunov exponents and Kolmogorov–Sinai entropy for the Lorentz gas at low densities: Erratum. Phys. Rev. Lett., 76:3238, 1996.Google Scholar
van Beijeren, H. and Dorfman, J. R.. A note on the Ruelle pressure for a dilute, disordered Sinai billiard. J. Stat. Phys., 108:767, 2002.Google Scholar
van Beijeren, H., Dorfman, J. R., Cohen, E. G. D., Posch, H. A., and Dellago, Ch.. Lyapunov exponents from kinetic theory for a dilute, field driven Lorentz gas. Phys. Rev. Lett., 77:1974, 1996.Google Scholar
van Beijeren, H., Dorfman, J. R., Posch, H. A., and Dellago, Ch.. Kolmogorov–Sinai entropy for dilute gases in equilibrium. Phys. Rev. E, 56:5272, 1997.Google Scholar
van Beijeren, H. and Ernst, M. H.. The modified Enskog equation. Physica, 68:437, 1973.Google Scholar
van Beijeren, H. and Ernst, M. H.. The modified Enskog equation for mixtures. Physica, 70:225, 1973.Google Scholar
van Beijeren, H. and Ernst, M. H.. Kinetic theory of hard spheres. J. Stat. Phys., 21:125, 1979.Google Scholar
van Beijeren, H., Lanford, O. E. III, Lebowitz, J. L., and Spohn, H.. Equilibrium time correlation functions in the low-density limit. J. Stat. Phys., 22:237, 1980.Google Scholar
van Beijeren, H. and Kehr, K. W.. Correlation factor, velocity autocorrelation function and frequency-dependent tracer diffusion coefficient. J. Phys. C: Solid State Phys., 19:1319, 1986.Google Scholar
van Beijeren, H., Latz, A., and Dorfman, J. R.. Chaotic properties of dilute two- and three-dimensional random Lorentz gases: Equilibrium theory. Phys. Rev. E, 57:1, 1998.Google Scholar
van Beijeren, H. and Mülken, H.. Thermodynamic formalism for the Lorentz gas with open boundaries in d-dimensions. Phys. Rev. E, 71:036213, 2005.Google Scholar
van der Hoef, M. A. and Frenkel, D.. Long-time tails of the velocity autocorrelation function in two- and three-dimensional lattice-gas cellular automata: A test of mode-coupling theory. Phys. Rev. A, 41:4277, 1990.Google Scholar
van der Hoef, M. A. and Frenkel, D.. Evidence for faster than inverse time decay of the velocity autocorrelation function in a 2d fluid. Phys. Rev. Lett., 66:1591, 1991.Google Scholar
van der Hoef, M. A. and Frenkel, D.. Tagged particle diffusion in 3d lattice gas cellular automata. Physica D, 47:191, 1991.Google Scholar
van Kampen, N. G.. The case against linear response theory. Physica Norvegica, 5:279, 1971.Google Scholar
van Kampen, N. G.. Stochastic Processes in Physics and Chemistry. North-Holland Publishing Co., Amsterdam, 2nd ed., 1992.Google Scholar
van Kampen, N. G. and Felderhof, B. U.. Theoretical Methods in Plasma Physics. North Holland Publishing Co., Amsterdam, 1967.Google Scholar
van Leeuwen, J. M. J. and Weijland, A.. Non-analytic density behaviour of the diffusion coefficient of a Lorentz gas. I Divergencies in the expansion in powers in the density. Physica, 36:457, 1967.Google Scholar
van Noije, T. C. P. and Ernst, M. H.. Cahn–Hilliard theory for unstable granular fluids. Phys. Rev. E, 61:1765, 2000.Google Scholar
van Noije, T. P. C. and Ernst, M. H.. Velocity distributions in homogeneously cooling and heated granular fluids. Granular Matter, 1:56, 1998.Google Scholar
van Noije, T. P. C. and Ernst, M. H.. Kinetic theory of granular gases. In Pöschel, T. and Luding, S., eds., Granular Gases, volume 564 of Lecture Notes in Physics, page 3. Springer-Verlag, Berlin 2001.Google Scholar
van Noije, T. P. C., Ernst, M. H., Trizac, M., and Pagonabarraga, I.. Randomly driven granular fluids: Large scale structure. Phys. Rev. E, 59:4326, 1999.Google Scholar
van Zon, R. and van Beijeren, H.. Mean-field theory for the largest Lyapunov exponent for a dilute gas. Phys. Rev. Lett., 80:2035, 1998.Google Scholar
van Zon, R., van Beijeren, H., and Dorfman, J. R.. Kinetic theory estimates for the Kolmogorov–Sinai entropy and largest Lyapunov exponents for dilute , hard ball gases, and for dilute, random Lorentz gases. In Szasz, D., ed., Hard Ball Systems and the Lorentz Gas, page 231. Springer-Verlag, Berlin 2000.Google Scholar
Venerus, D. C. and Ottinger, H. C.. A Modern Course in Transport Theory. Cambridge University Press, Cambridge 2018.Google Scholar
Garzo, V.. Brazil-nut effect versus reverse brazil-nut effect in a moderately dense granular fluid. Phys. Rev. E, 78:020301, 2008.Google Scholar
Villani, C.. The mathematics of granular gases. J. Stat. Phys., 124:781, 2006.Google Scholar
Villani, C.. A review of mathematical topics in collisional kinetic theory. In Fried-lander, S. and Serre, D., eds., Handbook of Mathematical Fluid Dynamics, volume 1. Elsevier Science Publishers, Amsterdam, 2002.Google Scholar
Viscardy, S. and Gaspard, P.. Viscosity in molecular dynamics with periodic boundary conditions. Phys. Rev. E, 68:041204, 2003.Google Scholar
Viscardy, S. and Gaspard, P.. Viscosity in the escape-rate formalism. Phys. Rev. E, 68:041205, 2003.Google Scholar
Viscardy, S., Servantie, J., and Gaspard, P.. Transport and Helfand moments in the Lennard–Jones fluid. i. shear viscosity. J. Chem. Phys., 126:184512, 2007.Google Scholar
Volterra, V.. Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Mem. Accad, Lincei, 6:31, 1926.Google Scholar
Wada, H. and Sasa, S.. Anomalous pressure in fluctuating shear flow. Phys. Rev. E, 57:065302, 2003.Google Scholar
Wainwright, T. E., Alder, B. J., and Gass, D. M.. Decay of time correlations in two dimensions. Phys. Rev. A, 4:233, 1971.Google Scholar
Wax, N., ed.. Selected Papers in Noise and Stochastic Processes. Dover Publishing Co., Mineola, NY 1954.Google Scholar
Weeks, J. D., Chandler, D., and Anderson, H. C.. Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem Phys., 54:5237, 1971.Google Scholar
Weijland, A. and van Leeuwen, J. M. J.. Non-analytic density behaviour of the diffusion coefficient of a Lorentz gas. II: Renormalization of the divergencies. Physica, 38:35, 1968.Google Scholar
Weinstock, J.. Nonanalyticity of transport coefficients and the complete density expansion of momentum correlation functions. Phys. Rev. A, 140:460, 1965.Google Scholar
Welander, P.. On the temperature jump in a rarefied gas. Arkiv for Fysik, 7:507, 1954.Google Scholar
Widom, B. and Rowlinson, J. S.. New model for the study of liquid-vapor phase transitions. J. Chem. Phys., 52:410, 1970.Google Scholar
Wigner, E.. On the quantum correction for thermodynamic equilibrium. Phys. Rev., 40:749, 1932.Google Scholar
Wilkinson, D. R. and Edwards, S. F.. Spontaneous interparticle percolation. Proc. Roy. Soc. London A, 381:33, 1982.Google Scholar
Williams, S. R., Bryant, G., Snook, I. K., and van Megen, W.. Velocity autocorrelation functions of hard-sphere fluids: Long time tails upon undercooling. Phys. Rev. Lett., 96:087801, 2006.Google Scholar
Wojcik, D. and Dorfman, J. R.. Crossover from diffusive to ballistic transport in periodic quantum maps. Physica D, 187:223, 2004.Google Scholar
Wolf-Gladrow, D. A.. Lattice Gas Cellular Automata and Lattice Boltzmann Models: An Introduction. Springer-Verlag, Berlin 2000.Google Scholar
Wood, W. W.. A review of computer studies in the kinetic theory of fluids. In E. G. D. Cohen and W. Thirring, eds., The Boltzmann Equation: Theory and Applications, Vienna, 1973. Springer-Verlag Berlin.Google Scholar
Wood, W. W. and Erpenbeck, J. J.. Molecular dynamics and Monte-Carlo calculations in statistical mechanics. In Annual Reviews of Physical Chemistry, volume 27, page 319. Annual Reviews, Inc., Palo Alto 1976.Google Scholar
Wood, W. W. and Erpenbeck, J. J.. On the linearity of the self diffusion process. J. Stat. Phys., 27:37, 1982.Google Scholar
Woods, A. D. B. and Hollis Hallett, A. C.. The viscosity of liquid helium ii between 0.79 K and the lambda point. Can. J. Phys., 41:596, 1963.Google Scholar
Wysokinski, K. I., Park, W., Belitz, D., and Kirkpatrick, T. R.. Density expansion for the mobility of electrons in helium gas. Phys. Rev. Lett., 73:2571, 1994.Google Scholar
Wysokinski, K. I., Park, W., Belitz, D., and Kirkpatrick, T. R.. Density expansion for the mobility in a quantum Lorentz model. Phys. Rev. E, 52:612, 1995.Google Scholar
Yakovenko, V. M. and Rosser, J. B.Jr.. Colloquium: Statistical mechanics of money, wealth, and income. Rev. Mod. Phys., 81:1703, 2009.Google Scholar
Yamada, T. and Kawasaki, K. Applications of mode coupling theory to nonlinear stress tensor in fluids. Prog. Theor. Phys., 53:111, 1975.Google Scholar
Yu, P., Schröter, M., and Sperl, M.. Velocity distribution of a homogeneously cooling granular gas. arxiv: 2005:046 [cond-mat.soft], 2020.Google Scholar
Yuan, H. H.-H. and Oppenheim, I.. Transport in two dimensions. I: The self-diffusion coefficient. Physica A, 90:1, 1978.Google Scholar
Yukalov, V. I. and Yukalova, E. P.. Bose–Einstein condensation temperature of weakly interacting atoms. Laser Phys. Lett., 14:073001, 2017.Google Scholar
Yvon, J.. La théorie statistique des fluides et l’équation d’état. Actual. Sci. Indust., 203, 1935.Google Scholar
Zaremba, E., Griffin, A., and Nikuni, T.. Two-fluid hydrodynamics for a trapped, weakly interacting Bose gas. Phys. Rev. A, 57:4695, 1997.Google Scholar
Zaremba, E., Nikuni, T., and Griffin, A.. Dynamics of trapped Bose gases at finite temperatures. J. Low. Temp. Phys., 116:277, 1999.Google Scholar
Ziman, J. M.. Electrons and Phonons: The Theory of Transport Phenomena in Solids. Oxford University Press, Oxford, 2001.Google Scholar
Zubarev, D. N. and Morozov, V.. Stastistical Mechanics of Nonequilibrium Processes. I: Basic Concepts, Kinetic Theory. Wiley-VCH, Weinheim 1996.Google Scholar
Zubarev, D. N. and Morozov, V.. Statistical Mechanics of Nonequilibrium Processes. 2: Relaxation and Hydrodynamic Processes. Wiley-VCH, Weinheim 1997.Google Scholar
Zubarev, D. N., Morozov, V. G., Omelyan, I. P., and Tokarchuk, M. V.. Unification of the kinetic and hydrodynamic approaches in the theory of dense gases and liquids. Theor. Math. Phys., 96:997, 1993.Google Scholar
Zubarev, D. N. and Novikov, M. Yu.. Renormalized kinetic equations for a system with weak interaction and for a low-density gas. Theor. Math. Phys., 19:480, 1974.Google Scholar
Zwanzig, R.. Method for finding the density expansion of transport coefficients of gases. Phys. Rev., 129:486, 1963.Google Scholar
Zwanzig, R.. Nonequilibrium Statistical Mechanics. Oxford University Press, Oxford 2001.Google Scholar
Zwanzig, R. and Bixon, M.. Hydrodynamic theory of the velocity correlation function. Phys. Rev. A, 2:2005, 1970.Google Scholar
Zwanzig, R., Nordholm, K. S. J., and Mitchell, W. C.. Memory effects in irreversible thermodynamics: Corrected derivation of transport equations. Phys. Rev. A, 5:2680, 1972.Google Scholar
Zwanzig, R. W.. Ensemble method in the theory of irreversibility. J. Chem. Phys., 33:1338, 1960.Google Scholar
Zwanzig, R. W.. Time-correlation functions and transport coefficients in statistical mechanics. In Annual Reviews of Physical Chemistry, volume 16, page 67. Annual Reviews, Inc., Palo Alto 1965.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • J. R. Dorfman, University of Maryland, College Park, Henk van Beijeren, Universiteit Utrecht, The Netherlands, T. R. Kirkpatrick, University of Maryland, College Park
  • Book: Contemporary Kinetic Theory of Matter
  • Online publication: 18 June 2021
  • Chapter DOI: https://doi.org/10.1017/9781139025942.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • J. R. Dorfman, University of Maryland, College Park, Henk van Beijeren, Universiteit Utrecht, The Netherlands, T. R. Kirkpatrick, University of Maryland, College Park
  • Book: Contemporary Kinetic Theory of Matter
  • Online publication: 18 June 2021
  • Chapter DOI: https://doi.org/10.1017/9781139025942.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • J. R. Dorfman, University of Maryland, College Park, Henk van Beijeren, Universiteit Utrecht, The Netherlands, T. R. Kirkpatrick, University of Maryland, College Park
  • Book: Contemporary Kinetic Theory of Matter
  • Online publication: 18 June 2021
  • Chapter DOI: https://doi.org/10.1017/9781139025942.017
Available formats
×