Skip to main content Accessibility help
×
  • Cited by 35
Publisher:
Cambridge University Press
Online publication date:
March 2013
Print publication year:
2013
Online ISBN:
9781139047241

Book description

This new textbook seeks to promote a deep yet accessible understanding of mesoscale-convective processes in the atmosphere. Mesoscale-convective processes are commonly manifested in the form of thunderstorms, which are fast evolving, inherently hazardous, and can assume a broad range of sizes and severity. Modern explanations of the convective-storm dynamics, and of the related development of tornadoes, damaging 'straight-line' winds and heavy rainfall, are provided. Students and weather professionals will benefit especially from unique chapters devoted to observations and measurements of mesoscale phenomena, mesoscale prediction and predictability, and dynamical feedbacks between mesoscale-convective processes and larger-scale motions.

Reviews

'… the initial goal of the book, a study of a family of extremely complex phenomena of foremost interest in the field of atmospheric fluid mechanics, is successfully achieved.'

Jose Miguel Pacheco Castelao Source: Mathematical Reviews

'There is … a series of online supplemental resources available for this book that could prove to be very helpful to instructors [of] mesoscale meteorology courses … presents a thorough, clear picture of the theoretical underpinnings of mesoscale processes along with recent research advances … best suited for graduate students and researchers, although much of the material should be accessible to advanced undergraduate student[s] as well. It would likely work best as a text for introductory graduate-level courses in mesoscale meteorology, and I recommend it for use in that setting …'

Russ S. Schumacher Source: Eos, Transactions, American Geophysical Union

'In this book Robert J. Trapp has put together a great amount of knowledge along with very interesting material. The word that best describes it is 'useful' … there is a good balance in the use of historical and current research, citing books and papers published recently and decades ago. Moreover, there are many quotes to back up the contents but at the same time the reader does not need to check the references continuously. Also most of the equations are derived and explained step by step … Therefore, this book is highly recommendable. I think that it can be useful for a wide variety of readers: for students at several levels, teachers, as a basic text for the shelves of researchers.'

Juan Añel Source: Contemporary Physics

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Adlerman, E. J., Droegemeier, K. K., and Davies-Jones, R., 1999: A numerical simulation of cyclic mesocyclogenesis. J. Atmos. Sci., 56, 2045–2069.
Anderson, D. A., Tannehill, J. C., and Pletcher, R. H., 1984: Computational Fluid Mechanics and Heat Transfer. Hemisphere Publishing, New York.
Anthes, R. A., 1986: The general question of predictability. Mesoscale Meteorology and Forecasting, American Meteorological Society, Boston, 636–656.
Armijo, L, 1969: A theory for the determination of wind and precipitation velocities with Doppler radars. J. Atmos. Sci., 26, 570–573.
Arnup, S. J., and Reeder, M. J., 2007: The diurnal and seasonal variation of the northern Australian dryline. Mon. Wea. Rev., 135, 2995–3008.
Arritt, R. W., 1993: Effects of the large-scale flow on characteristic features of the sea breeze. J. Appl. Meteor., 32, 116–125.
Atkins, N. T., Bouchard, C. S., Przybylinski, R. W., et al., 2005: Damaging surface wind mechanisms within the 10 June 2003 Saint Louis bow echo during BAMEX. Mon. Wea. Rev., 113, 2275–2296.
Atkins, N. T., and Cunningham, J. J., 2006: The influence of low-level stable layers on damaging surface winds within bow echoes. Preprints, 23rd Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., (6.4) CD-ROM.
Atkins, N. T., and Laurent, M. St., 2009: Bow echo mesovortices. Part II: Their genesis. Mon. Wea. Rev., 137, 1514–1532.
Atkins, N. T., Wakimoto, R. M., and Weckwerth, T. M., 1995: Observations of the sea-breeze front during CaPE. Part II: Dual-Doppler and aircraft analysis. Mon. Wea. Rev., 123, 944–968.
Atkins, N. T., Wakimoto, R. M., and Ziegler, C. L., 1998: Observations of the finescale structure of a dryline during VORTEX 95. Mon. Wea. Rev., 126, 525–555.
Atkins, N. T., Weisman, M. L., and Wicker, L. J., 1999: The influence of preexisting boundaries on supercell evolution. Mon. Wea. Rev., 127, 2910–2927.
Augustine, J. A., and Caracena, F., 1994: Lower-tropospheric precursors to nocturnal MCS development over the central United States. Wea. Forecasting, 9, 116–135.
Balaji, V., and Clark, T. L., 1988: Scale selection in locally forced convective fields and the initiation of deep cumulus. J. Atmos. Sci., 45, 3188–3211.
Baldwin, M. E., Kain, J. S., and Lakshmivarahan, S., 2005: Development of an automated classification procedure for rainfall systems. Mon. Wea. Rev., 133, 844–862.
Banacos, P. C., and Schultz, D. M., 2005: The use of moisture flux convergence in forecasting convective initiation: Historical and operational perspectives. Wea. Forecasting, 20, 351–366.
Bannon, P. R., 1996: On the anelastic approximation for a compressible atmosphere. J. Atmos. Sci., 53, 3618–3628.
Bannon, P. R., 2002: Theoretical foundations for models of moist convection. J. Atmos. Sci., 59, 1967–1982.
Banta, R. M., and Barker Schaaf, C., 1987: Thunderstorm genesis zones in the Colorado Rocky Mountains as determined by traceback of geosynchronous satellite images. Mon. Wea. Rev., 115, 463–476.
Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3, 396–409.
Barnes, S. L., 1973: Mesoscale objective analysis using weighted time-series observations. NOAA Tech. Memo. ERL NSSL-62, National Severe Storms Laboratory, Norman, OK [NTIS COM-73–10781].
Barnes, G. M., Sieckman, K., 1984: The environment of fast- and slow-moving tropical mesoscale convective cloud lines. Mon. Wea. Rev., 112, 1782–1794.
Batchelor, G. K., 1967: An Introduction to Fluid Dynamics. Cambridge University Press.
Battan, L. J., 1973: Radar Observation of the Atmosphere. University of Chicago Press.
Bedka, K., Brunner, J., Dworak, R., et al., 2010: Objective Satellite-based detection of overshooting tops using infrared window channel brightness temperature gradients. J. Appl. Meteor. Climatol., 49, 181–202.
Beer, T., 1974: Atmospheric Waves. Wiley, New York.
Bell, G. D., and Janowiak, J. E., 1995: Atmospheric circulation associated with the Midwest floods of 1993. Bull. Amer. Meteor. Soc., 76, 681–695.
Benjamin, S. G., Brewster, K. A., Brummer, R. L., et al., 1991: An isentropic three-hourly data assimilation system using ACARS aircraft observations. Mon. Wea. Rev., 119, 888–906.
Benjamin, S. G., Schwartz, B. E., Koch, S. E., and Szoke, E. J., 2004: The value of wind profiler data in U.S. weather forecasting. Bull. Amer. Meteor. Soc., 85, 1871–1886.
Benjamin, T. B., 1968: Gravity currents and related phenomena. J. Fluid Mech., 31, 209–248.
Berry, G. J., and Thorncroft, C. D., 2012: African easterly wave dynamics in a mesoscale numerical model: The upscale role of convection. J. Atmos. Sci., 69, 1267–1283.
Biggerstaff, M. I., et al., 2005: The Shared Mobile Atmospheric Research and Teaching Radar: A collaboration to enhance research and teaching. Bull. Amer. Meteor. Soc., 86, 1263–1274.
Bluestein, H. B., 1993: Observations and Theory of Weather Systems. Vol. 2, Synoptic–Dynamic Meteorology in Midlatitudes, Oxford University Press.
Bluestein, H. B., and Jain, M. H., 1985: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci., 42, 1711–1732.
Bluestein, H. B., McCaul, Jr. E. W., Byrd, G. P., and Woodall, G. R., 1988: Mobile sounding observations of a tornadic storm near the dryline: The Canadian, Texas storm of 7 May 1986. Mon. Wea. Rev., 116, 1790–1804.
Bluestein, H. B., and Weisman, M. L., 2000: The interaction of numerically simulated supercells initiated along lines. Mon. Wea. Rev., 128, 3128–3148.
Bluestein, H. B., and Woodall, G. R., 1990: Doppler-radar analysis of a low-precipitation severe storm. Mon. Wea. Rev., 118, 1640–1664.
Blyth, A. M., Cooper, W. A., and Jensen, J. B, 1988: A study of the source of entrained air in Montana cumuli. J. Atmos. Sci., 45, 3944–3964.
Blyth, A. M., Lasher-Trapp, S. G., and Cooper, W. A., 2005: A study of thermals in cumulus clouds. Quart. J. Roy. Meteor. Soc., 131, 1171–1190.
Bohme, T., Lane, T. P., Hall, W. D., and Hauf, T., 2007: Gravity waves above a convective boundary layer: A comparison between wind-profiler observations and numerical simulations. Quart. J. Roy. Meteor. Soc., 133, 1041–1055.
Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 1046–1053.
Bony, S., et al., 2006: How well do we understand and evaluate climate change feedback processes?J. Climate, 19, 3445–3482.
Bougeault, P., et al., 2010: The THORPEX interactive grand global ensemble. Bull. Amer. Met. Soc., 91, 1059–1072.
Brady, R. H., and Szoke, E. J., 1989: A case study of nonmesocyclone tornado development in northeast Colorado: Similarities to waterspout formation. Mon. Wea. Rev., 117, 843–856.
Brandes, E. A., 1977: Flow in severe thunderstorms observed by dual-Doppler radar. Mon. Wea. Rev., 105, 113–120.
Brandes, E. A., 1978: Mesocyclone evolution and tornadogenesis: Some observations. Mon. Wea. Rev., 106, 995–1011.
Brandes, E. A., and Ziegler, C. L., 1993: Mesoscale downdraft influences on vertical vorticity in a mature mesoscale convective system. Mon. Wea. Rev., 121, 1337–1353.
Brock, F. V., and Richardson, S. J., 2001: Meteorological Measurement Systems. Oxford University Press.
Brock, F. V., Crawford, K. C., Elliott, R. L., et al., 1995: The Oklahoma Mesonet: A technical overview. J. Atmos. Oceanic Technol., 12, 5–19.
Brock, F. V., Lesins, G., and Walko, R., 1987: Measurement of pressure and air temperature near severe thunderstorms: An inexpensive and portable instrument. Extended Abstracts, Sixth Symp. on Meteorological Observations and Instrumentation, New Orleans, LA, American Meteorological Society, Boston, 320–323.
Brooks, H. E., Doswell, C. A. III, and Wilhelmson, R. B., 1994: The role of midtropospheric winds in the evolution and maintenance of low-level mesocyclones. Mon. Wea. Rev., 122, 126–136.
Brooks, H. E., Lee, J. W., and Craven, J. P., 2003: The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos. Res., 67–68, 73–94.
Brown, R. A., and Wood, V. T., 1991: On the interpretation of single-Doppler velocity patterns within severe thunderstorms. Wea. Forecasting, 6, 32–48.
Brown, R. A., and Wood, V. T., 2007: A guide for interpreting Doppler velocity patterns: Northern Hemisphere Edition. NOAA National Severe Storms Laboratory document, 55 pp. (Available from .)
Browning, K. A., 1964: Airflow and precipitation trajectories within severe local storms which travel to the right of the winds. J. Atmos. Sci., 21, 634–639.
Browning, K. A., 1986: Conceptual models of precipitation systems. Wea. Forecasting, 1, 23–41.
Browning, K.A. and Ludlam, F. H., 1962: Airflow in convective storms. Quart. J. Roy. Meteor. Soc., 88, 117–135.
Browning, K. A., and Donaldson, R. J., 1963: Airflow and structure of a tornadic storm. J. Atmos. Sci., 20, 533–545.
Bryan, G. H., 2008: On the computation of pseudoadiabatic entropy and equivalent potential temperature. Mon. Wea. Rev., 136, 5239–5245.
Bryan, G. H., and Fritsch, J. M., 2000: Moist absolute instability: The sixth static stability state. Bull. Amer. Meteor. Soc., 81, 1207–1230.
Bryan, G. H., and Fritsch, J. M., 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 2917–2928.
Bryan, G. H., Knievel, J. C., and Parker, M. D., 2006: A multimodel assessment of RKW theory's relevance to squall-line characteristics. Mon. Wea. Rev., 134, 2772–2792.
Bryan, G. H., and Rotunno, R., 2008: Gravity currents in a deep anelastic atmosphere. J. Atmos. Sci., 64, 536–556.
Bunkers, M. J., Klimowski, B. A., Zeitler, J. W., et al., 2000: Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15, 61–79.
Byers, H. R., and Braham, R. R., Jr., 1949: The Thunderstorm. U.S. Department of Commerce, Weather Bureau, Washington D.C.
Carbone, R. E., 1983: A severe frontal rainband. Part II: Tornado parent vortex circulation. J. Atmos. Sci., 40, 2639–2654.
Carleton, A. M., Travis, D. J., Adegoke, J. O., et al., 2008: Synoptic circulation and land surface influences on convection in the midwest U.S. “Corn Belt,” summers 1999 and 2000. Part II: Role of vegetation boundaries. J. Climate, 21, 3635–3659.
Carley, J. R., Schwedler, B. R. J., Baldwin, M. E., et al., 2011: A proposed model-based methodology for feature-specific prediction for high impact weather. Wea. Forecasting, 26, 243–249.
Carlson, T. N., and Ludlam, F. H., 1968: Conditions for the formation of severe local storms. Tellus, 20, 203–226.
Carlson, T. N., Benjamin, S. G., Forbes, G. S., and Li, Y.-F., 1983: Elevated mixed layers in the severe-storm environment: Conceptual model and case studies. Mon. Wea. Rev., 111, 1453–1473.
Chen, F., and Dudhia, J., 2001: Coupling an advanced land-surface/ hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569–585.
Chisholm, A. J., and Renick, J. H., 1972: The kinematics of multicell and supercell Alberta hailstorms. Alberta hail studies, Research Council of Alberta Hail Studies, Rep. 72–2, 24–31.
Cohen, A. E., Coniglio, M. C., Corfidi, S. F., and Corfidi, S. J., 2007: Discrimination of mesoscale convective system environments using sounding observations. Wea. Forecasting, 22, 1045–1062.
Coniglio, M. C., Corfidi, S. F., and Kain, J. S., 2011: Environment and early evolution of the 8 May 2009 derecho-producing convective system. Mon. Wea. Rev., 139, 1083–1102.
Coniglio, M. C., Stensrud, D. J., and Richman, M. B., 2004: An observational study of derecho-producing convective systems. Wea. Forecasting, 19, 320–337.
Cook, A. R., and Schaefer, J. T., 2008: The relation of El Nino-Southern Oscillation (ENSO) to winter tornado activity. Mon. Wea. Rev., 136, 3121–3137.
Corfidi, S. F., 2003: Cold pools and MCS propagation: Forecasting the motion of downwind-developing MCSs. Wea. Forecasting, 18, 997–1017.
Cotton, W. R., and Anthes, R. A., 1989: Storm and Cloud Dynamics. Academic Press, San Diego, CA.
Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367–374.
Crook, N. A., 1988: Trapping of low-level internal gravity waves. J. Atmos. Sci., 45, 1533–1541.
Dailey, P. S., and Fovell, R. G., 1999: Numerical simulation of the interaction between the sea-breeze front and horizontal convective rolls. Part I: Offshore ambient flow. Mon. Wea. Rev., 127, 858–878.
Daley, R., 1991: Atmospheric Data Analysis. Cambridge University Press.
Damiani, R., Vali, G., and Haimov, S., 2006: The structure of thermals in cumulus from airborne dual-Doppler radar observations. J. Atmos. Sci., 63, 1432–1450.
Davies, H. C., 1994: Theories of frontogenesis. The Life Cycles of Extratropical Cyclones. Gronas, S. and Shapiro, M. A. (eds.), Vol. I, University of Bergen, 182–192.
Davies-Jones, R. P., 1974: Discussion of measurements inside high-speed thunderstorm updrafts. J. Appl. Meteor., 13, 710–717.
Davies-Jones, R. P., 1979: Dual-Doppler radar coverage area as a function of measurement accuracy and spatial resolution. J. Appl. Meteor., 18, 1229–1233.
Davies-Jones, R. P., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci., 41, 2991–3006.
Davies-Jones, R. P., 1988: Tornado interception with mobile teams. Chapter 2 in Measurements and Techniques for Thunderstorm Observations and Analysis, Vol. 3, of Thunderstorms: A Social, Scientific, and Technological Documentary. Kessler, E. (ed.), Univ. of Oklahoma Press, Norman, OK, 23–32.
Davies-Jones, R., 2002: Linear and nonlinear propagation of supercell storms. J. Atmos. Sci., 59, 3178–3205.
Davies-Jones, R., and Brooks, H. E., 1993: Mesocyclogenesis from a theoretical perspective. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, American Geophysical Union, 105–114.
Davis, C. A., 1992: Piecewise potential vorticity inversion. J. Atmos. Sci., 49, 1397–1411.
Davis, C., et al., 2004: The bow echo and MCV experiment: Observations and opportunities. Bull. Amer. Meteor. Soc., 85, 1075–1093.
Davis, C. A., and Trier, S. B., 2007: Mesoscale convective vortices observed during BAMEX. Part I: Kinematic and thermodynamic structure. Mon. Wea. Rev., 135, 2029–2049.
Del Genio, A. D., and Kovari, W., 2002: Climatic properties of tropical precipitating convection under varying environmental conditions. J. Climate, 15, 2597–2615.
Derber, J. C., and Wu, W.-S., 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev., 126, 2287–2299.
Dial, G. L., Racy, J. P., and Thompson, R. L., 2010: Short-term convective mode evolution along synoptic boundaries. Wea. Forecasting, 25, 1430–1446.
Diffenbaugh, N.S., Trapp, R. J., and Brooks, H. E., 2008: Challenges in identifying influences of global warming on tornado activity. Eos Trans., 89, 553–554.
Doswell, C. A., 1985: The operational meteorology of convective weather. Vol. II: Storm scale analysis. NOAA Technical Memorandum ERL ESG-15.
Doswell, C. A., 1987: The distinction between large-scale and mesoscale contribution to severe convection: A case study example. Wea. Forecasting, 2, 3–16.
Doswell, C. A., 1991: A review for forecasters on the application of hodographs to forecasting severe thunderstorms. Nat. Wea. Dig., 16 (1), 2–16.
Doswell, C. A., 2001: Severe convective storms – An overview. Severe Convective Storms, Meteor. Monogr., No. 50, American Meteorological Society, Boston, 1–26.
Doswell, C. A., and Burgess, D. W., 1993: Tornadoes and tornadic storms: A review of conceptual models. The Tornado: Its Structure, Dynamics, Hazards, and Prediction (Geophys. Monogr. 79), Church, C., Burgess, D., Doswell, C., and Davies-Jones, R. (eds.), American Geophysical Union, 161–172.
Doswell, C. A., and Rasmussen, E. N. 1994: The effect of neglecting the virtual temperature correction on CAPE calculations. Wea. Forecasting, 9, 625–629.
Doswell, C. A., Brooks, H. E., and Maddox, R. A., 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560–580.
Doswell, C. A, and Bosart, L. F., 2001: Extratropical synoptic-scale processes and severe convection. Severe Convective Storms, Meteor. Monogr., No. 50, American Meteorological Society, Boston, 27–70.
Doswell, C. A., and Markowski, P. M., 2004: Is buoyancy a relative quantity?Mon. Wea. Rev., 132, 853–863.
Doswell, C. A., Brooks, H. E., and Dotzek, N., 2009: On the implementation of the enhanced Fujita scale in the USA. Atmos. Res., 93, 554–563.
Dotzek, N., Groenemeijer, P., Feuerstein, B., and Holzer, A. M., 2009: Overview of ESSL's severe convective storms research using the European Severe Weather Database ESWD. Atmos. Res., 93, 575–586.
Doviak, R. J., and Zrnic, D. S., 1993: Doppler Radar and Weather Observations, Second Edition. Academic Press, San Diego, 562 pp.
Dowell, D. C., and Bluestein, H. B., 1997: The Arcadia, Oklahoma, storm of 17 May 1981: Analysis of a supercell during tornadogenesis. Mon. Wea. Rev., 125, 2562–2582.
Dowell, D. C., Bluestein, H. B., and Jorgensen, D. P., 1997: Airborne Doppler radar analysis of supercells during COPS-91. Mon. Wea. Rev., 125, 365–383.
Dowell, D. C., Wicker, L. J., and Snyder, C., 2011: Ensemble Kalman Filter assimilation of radar observations of the 8 May 2003 Oklahoma City supercell: Influences of reflectivity observations on storm-scale analyses. Mon. Wea. Rev., 139, 272–294.
Drazin, P. G., 2002: Introduction to Hydrodynamic Stability. Cambridge University Press.
Droegemeier, K. K., and Wilhelmson, R. B., 1985a: Three-dimensional numerical modeling of convection produced by interacting thunderstorm outflows. Part I: Control simulation and low-level moisture variations. J. Atmos. Sci., 42, 2381–2403.
Droegemeier, K. K., and Wilhelmson, R. B., 1985b: Three-dimensional numerical modeling of convection produced by interacting thunderstorm outflows. Part II: Variations in vertical wind shear. J. Atmos. Sci., 42, 2404–2414.
Droegemeier, K. K., and Wilhelmson, R. B., 1987: Numerical simulation of thunderstorm outflow dynamics. Part I: Outflow sensitivity experiments and turbulence dynamics. J. Atmos. Sci., 44, 1180–1210.
Droegemeier, K. K., Lazarus, S. M., and Davies-Jones, R., 1993: The influence of helicity on numerically simulated convective storms. Mon. Wea. Rev., 121, 2005–2029.
Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46, 3077–3107.
Dworak, R., Brunner, J., Feltz, W., and Bedka, K., 2012: Comparison between GOES-12 overshooting top detections, WSR-88D radar reflectivity and severe storm reports. Wea. Forecasting, 27, 684–699.
Ebert, E. E., 2008: Fuzzy verification of high-resolution gridded forecasts: a review and proposed framework. Meteorol. Appl., 15, 51–64.
Etling, D., and Brown, R. A., 1993: Roll vortices in the planetary boundary layer: A review. Boundary-Layer Meteorology, 65, 215–248.
Emanuel, K. A., 1986: Overview and definition of mesoscale meteorology. In Mesoscale Meteorology and Forecasting, American Meteorological Society, Boston, 1–17.
Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, Oxford.
Evans, J. S., and Doswell, III C. A., 2001: Examination of derecho environments using proximity soundings. Wea. Forecasting, 16, 329–342.
Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249–280.
Fiedler, B. H., and Trapp, R. J., 1993: A fast dynamic grid adaption scheme for meteorological flows. Mon. Wea. Rev., 121, 2879–2888.
Fiedler, F., and Panofsky, H. A., 1970: Atmospheric scales and spectral gaps. Bull. Amer. Meteor. Soc., 51, 1114–1120.
Fovell, R. G., and Dailey, P. S., 1995: The temporal behavior of numerically simulated multicell-type storms. Part I: Modes of behavior. J. Atmos. Sci., 52, 2073–2095.
Fovell, R. G., and Tan, P.-H., 1998: The temporal behavior of numerically simulated multicell-type storms. Part II: The convective cell life cycle and cell regeneration. Mon. Wea. Rev., 126, 551–577.
French, A. J., and Parker, M. D., 2010: The response of simulated nocturnal convective systems to a developing low-level jet. J. Atmos. Sci., 67, 3384–3408.
Fritsch, J. M., and Forbes, G. S., 2001: Mesoscale convective systems. Severe Convective Storms, American Meteorological Society, Boston, 323–358.
Fudeyasu, H., Wang, Y., Satoh, M., et al., 2010: Multiscale interactions in the life cycle of a tropical cyclone simulated in a global cloud-system-resolving model. Part II: System-scale and mesoscale processes. Mon. Wea. Rev., 138, 4305–4327.
Fujita, T. T., 1979: Objective, operation, and results of Project NIMROD. Preprints, 11th Conf. on Severe Local Storms, Kansas City, MO, American Meteorological Society, Boston, 259–266.
Fujita, T. T., 1981: Tornadoes and downbursts in the context of generalized planetary scales. J. Atmos. Sci., 38, 1512–1534.
Fujita, T. T., 1986: Mesoscale classifications: Their history and their application to forecasting. In Mesoscale Meteorology and Forecasting, American Meteorological Society, Boston, 18–35.
Fulton, R. A., Breidenbach, J. P., Seo, D.-J., et al., 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13, 377–395.
Gage, K. S., 1979: Evidence for a k-5/3 law inertial range in mesoscale two dimensional turbulence. J. Atmos. Sci., 36, 1950–1954.
Gage, K. S., and Nastrom, G. D., 1986: Theoretical interpretation of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft during GASP. J. Atmos. Sci., 43, 729–740.
Gal-Chen, T., 1978: A method for the initialization of the anelastic equations: implications for matching models with observations. Mon. Wea. Rev., 106, 587–606.
Galloway, J., Pazmany, A., Mead, J., et al., 1997: Detection of ice hydrometeor alignment using an airborne W-band polarimetric radar. J. Atmos. Oceanic Technol., 14, 3–12.
Gallus, W. A., and Johnson, R. H., 1991: Heat and moisture budgets of an intense midlatitude squall line. J. Atmos. Sci., 48, 122–146.
Galway, J. G., 1979: Relationship between precipitation and tornado activity. Water Resources Research, 15, 961–964.
Galway, J. G., 1992: Early severe thunderstorm forecasting and research by the United States Weather Bureau. Wea. Forecasting, 7, 564–587.
Gao, J., Stensrud, D., and Xue, M., 2009: A 3DVAR application to several thunderstorm cases observed during VORTEX2 field operations and potential for real-time warning. Preprints, 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., CD-ROM.
Garcia-Carreras, L., Parker, D. J., and Marsham, J. H., 2011: What is the mechanism for the modification of convective cloud distributions by land surface–induced flows?J. Atmos. Sci., 68, 619–634.
Geerts, B., Miao, Q., and Demko, J. C., 2008: Pressure perturbations and upslope flow over a heated, isolated mountain. Mon. Wea. Rev., 136, 4272–4288.
Gilleland, E., Ahijevych, D. A., Brown, B. G., and Ebert, E. E., 2010: Verifying forecasts spatially. Bull. Amer. Meteor. Soc., 91, 1365–1373.
Gilmore, M. S., and Wicker, L. J., 1998: The influence of midtropospheric dryness on supercell morphology and evolution. Mon. Wea. Rev., 126, 943–958.
Gilmore, M. S., Straka, J. M., and Rasmussen, E. N., 2004: Precipitation and evolution sensitivity in simulated deep convective storms: Comparisons between liquid-only and simple ice and liquid phase microphysics. Mon. Wea. Rev., 132, 1897–1916.
Glickman, T. S., Ed., 2000: Glossary of Meteorology. 2d ed. Amer. Meteor. Soc.
Goff, R. C., 1976: Vertical structure of thunderstorm outflows. Mon. Wea. Rev., 104, 1429–1440.
Goody, R. M., and Yung, Y. L., 1989: Atmospheric Radiation, Theoretical Basis. Oxford University Press.
Griffiths, M., Thorpe, A. J., and Browning, K. A., KA, 2000: Convective destabilization by a tropopause fold diagnosed using potential-vorticity inversion. Quart. J. Roy. Meteor. Soc., 126, 125–144.
Guralnik, D. B., Ed., 1984: Webster's New World Dictionary of the American Language. Simon and Schuster, New York.
Hacker, J., et al., 2005: Predictability. Bull. Amer. Meteor. Soc., 86, 1733–1737.
Halpert, M. S., and Ropelewski, C. F., 1992: Surface temperature patterns associated with the Southern Oscillation. J. Climate, 5, 577–593.
Haltiner, G. J., and Williams, R. T., 1980: Numerical Prediction and Dynamic Meteorology. Wiley, New York.
Hamill, T. M., Whitaker, J. S., and Mullen, S. L., 2006: Reforecasts, an important dataset for improving weather predictions. Bull. Amer. Meteor. Soc., 87, 33–46.
Hane, C. E., Wilhelmson, R. B., and Gal-Chen, T., 1981: Retrieval of thermodynamic variables within deep convective clouds: Experiments in three dimensions. Mon. Wea. Rev., 109, 564–576.
Hane, C. E., and Ray, P. S., 1985: Pressure and buoyancy fields derived from Doppler radar data in a tornadic thunderstorm. J. Atmos. Sci., 42, 18–35.
Härtel, C., Carlsson, F., and Thunblom, M., 2000: Analysis and direct numerical simulation of the flow at a gravity-current head. Part 2. The lobe-and-cleft instability. J. Fluid Mech., 418, 213–229.
Hartmann, D. L., 1993: Radiative effects of clouds on Earth's climate. In Aerosol-Cloud-Climate Interactions, Hobbs, P. V. (ed.), Academic Press, San Diego, CA.
Hartmann, D. L., and Michelsen, M. L., 2002: No evidence for Iris. Bull. Amer. Meteor. Soc., 83, 249–254.
Hendricks, E. A., Montgomery, M. T., and Davis, C. A., 2004: On the role of “vortical” hot towers in formation of tropical cyclone Diana (1984). J. Atmos. Sci., 61, 1209–1232.
Hess, S. L., 1959: Introduction to Theoretical Meteorology. Robert E. Krieger Publishing, Huntington, NY.
Heymsfield, G. M., Tian, L., Heymsfield, A. J., et al., 2010: Characteristics of deep tropical and subtropical convection from nadir-viewing high-altitude airborne Doppler radar. J. Atmos. Sci., 67, 285–308.
Hildebrand, P. H., Walther, C. A., Frush, C. L., et al., 1994: The ELDORA/ASTRAIA airborne Doppler weather radar: Goals, design, and first field tests. Proc. IEEE, 82, 1873–1890.
Hitchens, N. M., Trapp, R. J., Baldwin, M. E., and Gluhovsky, A., 2010: Characterizing subdiurnal extreme precipitation in the midwestern United States. J. Hydrometeor., 11, 211–218.
Hitchens, N. M., Baldwin, M. E., and Trapp, R. J., 2012: An object-oriented characterization of extreme precipitation-producing convective systems in the Midwestern United States. Mon. Wea. Rev., 140, 1356–1366.
Hjelmfelt, M. R., Orville, H. D., Roberts, R. D., et al., 1989: Observational and numerical study of a microburst line-producing storm. J. Atmos. Sci., 46, 2731–2743.
Hoch, J., and Markowski, P., 2004: A climatology of springtime dryline position in the U.S. Great Plains region. J. Climate, 18, 2132–2137.
Hock, T. F., and Franklin, J. L., 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc., 80, 407–420.
Holland, G. J., et al., 2001: The Aerosonde robotic aircraft: A new paradigm for environmental observations. Bull. Amer. Meteor. Soc., 82, 889–901.
Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Elsevier, Burlington, MA.
Hong, S.-Y., and Pan, H.-L., 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322–2339.
Hooke, W. H., 1986: Gravity waves. In Mesoscale Meteorology and Forecasting, American Meteorological Society, Boston, 272–288.
Hoskins, B. J., and Karoly, D., 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 1179–1196.
Hoskins, B. J., McIntyre, M. E., and Robertson, A. W., 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877–946.
Houtekamer, P. L., Lefaivre, L., Derome, J., et al., 1996: A system simulation approach to ensemble prediction. Mon. Wea. Rev., 124, 1225–1242.
Houze, R. A., 1993: Cloud Dynamics. Academic Press, San Diego, CA.
Houze, R. A., Rutledge, S. A., Biggerstaff, M. I., and Smull, B. F., 1989: Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems. Bull. Amer. Meteor. Soc., 70, 608–619.
Houze, R. A., Smull, B. F., and Dodge, P., 1990: Mesoscale organization of springtime rainstorms in Oklahoma. Mon. Wea. Rev., 118, 613–654.
Hsieh, J.-S., and Cook, K. H., 2005: Generation of African easterly wave disturbances: Relationship to the African easterly jet. Mon. Wea. Rev., 133, 1311–1327.
Jacobson, M. Z., 2005: Fundamentals of Atmospheric Modeling. Cambridge University Press.
James, R. P., Fritsch, J. M., and Markowski, P. M., 2005: Environmental distinctions between cellular and slabular convective lines. Mon. Wea. Rev., 133, 2669–2690.
James, E. P., and Johnson, R. H., 2010: Patterns of precipitation and mesolow evolution in midlatitude mesoscale convective vortices. Mon. Wea. Rev., 138, 909–931.
Johns, R. H., 1993: Meteorological conditions associated with bow echo development in convective storms. Wea. Forecasting, 8, 294–299.
Johns, R. H. and Hirt, W. D., 1987: Derechos: Widespread convectively induced windstorms. Wea. Forecasting, 2, 32–49.
Jorgensen, D. P., Hildebrand, P. H., and Frush, C. L., 1983: Feasibility test of airborne pulse Doppler meteorological radar. J. Climate Appl. Meteor., 22, 744–757.
Jorgensen, D. P., Zhaoxia, P., Persson, P. O. G., and Tao, W.-K., 2003: Variations associated with cores and gaps of a Pacific narrow cold frontal rainband. Mon. Wea. Rev., 131, 2705–2729.
Joss, J., and Waldvogel, A., 1970: Raindrop size distribution and Doppler velocities. Preprints, 14th Conf. Radar Meteorology, American Meteorological Society, Boston, 153–156.
Kain, J. S., and Fritsch, J. M., 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization, J. Atmos. Sci., 47, 2784–2802.
Kain, J. S., Weiss, S. J., Levit, J. J., Baldwin, M. E., and Bright, D. R., 2006: Examination of convection-allowing configurations of the WRF model for the prediction of severe convective weather: The SPC/NSSL Spring Program 2004. Wea. Forecasting, 21, 167–181.
Kain, J. S., et al., 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931–942.
Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation, and Predictability. Cambridge University Press.
Karl, T. R., and Knight, R. W., 1998: Secular trends of precipitation amount, frequency, and intensity in the U.S.A. Bull. Amer. Meteor. Soc. 79, 231–242.
Kawase, H., Yoshikane, T., Hara, M., et al., 2008: Impact of extensive irrigation on the formation of cumulus clouds, Geophys. Res. Lett., 35, L01806, .
Kelly, G. A., Bauer, P., Geer, A. J., Lopez, P., and Thépaut, J-N., 2008: Impact of SSM/I observations related to moisture, clouds, and precipitation on global NWP forecast skill. Mon. Wea. Rev., 136, 2713–2726.
Kessinger, C. J., Ray, P. S., and Hane, C. E., 1987: The Oklahoma squall line of 19 May 1977. Part I: A multiple Doppler analysis of convective and stratiform structure. J. Atmos. Sci., 44, 2840–2865.
Kessler, E., 1969: On the distribution and continuity of water substance in atmospheric circulation, Meteor. Monogr., 32, Amer. Meteor. Soc.
Khairoutdinov, M., and Randall, D., 2006: High-resolution simulation of shallow-to-deep convection transition over land. J. Atmos. Sci., 63, 3421–3436.
Kidder, S. Q., and Vonder Haar, T. H., 1995: Satellite Meteorology: An Introduction. Academic Press, San Diego, CA.
Kirshbaum, D. J., 2011: Cloud-resolving simulations of deep convection over a heated mountain. J. Atmos. Sci., 68, 361–378.
Klemp, J. B., 1987: Dynamics of tornadic thunderstorms. Ann. Rev. Fluid Mech., 19, 369--402.
Klemp, J. B., and Rotunno, R., 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci., 40, 359–377.
Klemp, J. B., and Wilhelmson, R. B., 1978: The simulation of three dimensional convective storm dynamics. J. Atmos. Sci., 35, 1070–1096.
Klemp, J. B., Rotunno, R., and Skamarock, W. C., 1994: On the dynamics of gravity currents in a channel. J. Fluid Mech., 269, 169–198.
Klimowski, B. A., Hjelmfelt, M. R., and Bunkers, M. J., 2004: Radar observations of the early evolution of bow echoes. Wea. Forecasting, 19, 727–734.
Klotzbach, P. J., 2007: Recent developments in statistical prediction of seasonal Atlantic basin tropical cyclone activity. Tellus A 59, 511–518.
Klotzbach, P. J., and Gray, W. M., 2003: Forecasting September Atlantic basic tropical cyclone activity. Wea. Forecasting, 18, 1109–1128.
Knopfmeier, K. H., 2007: Real-data and idealized simulations of the 4 July 2004 bow echo event. M.S. Thesis, Purdue University.
Knupp, K. R., 2006: Observational analysis of a gust front to bore to solitary wave transition within an evolving nocturnal boundary layer. J. Atmos. Sci., 63, 2016–2035.
Koch, S. E., 1984: The role of an apparent mesoscale frontogenetic circulation in squall line initiation. Mon. Wea. Rev., 112, 2090–2111.
Koch, S. E., DesJardins, M., and Kocin, P. J., 1983: An interactive Barnes objective analysis scheme for use with satellite and conventional data. J. Climate Appl. Meteor., 22, 1487–1503.
Koch, S. E., Ferrier, B., Stolinga, M., et al., 2005: The use of simulated radar reflectivity fields in the diagnosis of mesoscale phenomena from high-resolution WRF model forecasts. Preprints, 12th Conf. on Mesoscale Processes, Albuquerque, NM, Amer. Meteor. Soc., J4J.7. (Available online at 97032.pdf.)
Kogan, Y. L., 1991: The simulation of a convective cloud in a 3-D model with explicit microphysics. Part I: Model description and sensitivity experiments. J. Atmos. Sci., 48, 1160–1189.
Kundu, P., 1990: Fluid Mechanics. Academic Press, San Diego, CA.
Laing, A. G., and Fritsch, J. M., 1997: The global population of mesoscale convective complexes. Quart. J. Roy. Meteor. Soc., 123, 389–405.
Lane, T. P., and Reeder, M. J., 2001: Convectively generated gravity waves and their effect on the cloud environment. J. Atmos. Sci., 58, 2427–2440.
Lee, B. D., and Wilhelmson, R. B., 1997: The numerical simulation of non-supercell tornadogenesis. Part I: Initiation and evolution of pretornadic miscocyclone circulations along a dry outflow boundary. J. Atmos. Sci., 54, 32–60.
Lemon, L. R., and Doswell, C. A., 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 1184–1197.
Leon, D., Vali, G., and Lothon, M., 2006: Dual-Doppler analysis in a single plane from an airborne platform. J. Atmos. Oceanic Technol., 23, 3–22.
Leslie, L. M., and Smith, R. K., 1978: The effect of vertical stability on tornadogenesis. J. Atmos. Sci., 35, 1281–1288.
Lewis, J. M., Lakshmivarahan, S., and Dhall, S. K., 2006: Dynamic Data Assimilation: A Least Squares Approach. Cambridge University Press.
Ligda, M. G. H., 1951: Radar storm observation. In Compendium of Meteorology, American Meteorological Society, Boston, 1265–1282.
Lilly, D. K., 1979: The dynamical structure and evolution of thunderstorms and squall lines. Annu. Rev. Earth Planet. Sci., 7, 117–161.
Lilly, D. K., 1982: The development and maintenance of rotation in convective storms. Intense Atmospheric Vortices, Bengtsson, L. and Lighthill, J. (eds.), Springer-Verlag, Berlin/Heidelberg/New York, 149–160.
Lilly, D. K., 1983: Stratified turbulence and the mesoscale variability of the atmosphere. J. Atmos. Sci., 40, 749–761.
Lilly, D. K., 1986a: The structure, energetics and propagation of rotating convective storms. Part I: Energy exchange with the mean flow. J. Atmos. Sci., 43, 113–125.
Lilly, D. K., 1986b: The structure, energetics and propagation of rotating convective storms. Part II: helicity and storm stabilization. J. Atmos. Sci., 43, 126–140.
Lilly, D. K., 1990: Numerical prediction of thunderstorms – has its time come? Q. J. Roy. Meteor. Soc., 116, 779–798.
Lima, M. A., and Wilson, J. W., 2008: Convective storm initiation in a moist tropical environment. Mon. Wea. Rev., 136, 1847–1864.
Lindborg, E., 1999: Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence?J. Fluid Mech., 388, 259–288.
Lindzen, R. S., Chou, M.-D., and Hou, A. Y., 2001: Does the earth have an adaptive infrared iris? Bull. Amer. Meteor. Soc., 82, 417–432.
Liou, K. N., 2002: An Introduction to Atmospheric Radiation. Academic Press, San Diego, CA.
Loehrer, S. M., and Johnson, R. H., 1995: Surface pressure and precipitation life cycle characteristics of PRE-STORM mesoscale convective systems. Mon. Wea. Rev., 123, 600–621.
Loftus, A. M., Weber, D. B., and Doswell, III C. A., 2008: Parameterized mesoscale forcing mechanisms for initiating numerically simulated isolated multicellular convection. Mon. Wea. Rev., 136, 2408–2421.
Long, A. B., Matson, R. J., and Crow, E. L., 1980: The hailpad: Materials, data reduction and calibration. J. Appl. Meteor., 19, 1300–1313.
Lorenz, E., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–141.
Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289–307.
Lorenz, E. N., 1984: Estimates of atmospheric predictability at medium range. Predictability of Fluid Motions: A.I.P. Conference Proceedings, No. 106, American Institute of Physics, La Jolla Institute, 133–140.
Lucas, C., Zipser, E. J., and LeMone, M. A., 1994: Vertical velocity in oceanic convection off tropical Australia. J. Atmos. Sci., 51, 3183–3193.
MacDonald, A. E., 2005: A Global profiling system for improved weather and climate prediction. Bull. Amer. Meteor. Soc., 86, 1747–1764.
Maddox, R. A., 1976: An evaluation of tornado proximity wind and stability data. Mon. Wea. Rev., 104, 133–142.
Maddox, R. A., 1980a: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 1374–1387.
Maddox, R. A., 1980b: An objective technique for separating macroscale and mesoscale features in meteorological data. Mon. Wea. Rev., 108, 1108–1121.
Maddox, R. A., Hoxit, L. R., and Chappell, C. F., 1980: A study of tornadic thunderstorm interactions with thermal boundaries. Mon. Wea. Rev., 108, 322–336.
Mahoney, W. P., 1988: Gust front characteristics and the kinematics associated with interacting thunderstorm outflows. Mon. Wea. Rev., 116, 1474–1491.
Mahoney, K. M., Lackmann, G. M., and Parker, M. D., 2009: The role of momentum transport in the motion of a quasi-idealized mesoscale convective system. Mon. Wea. Rev., 137, 3316–3338.
Malkus, J. S., and Scorer, R. S., 1955: The erosion of cumulus towers. J. Meteor., 12, 43–57.
Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci, 50, 2026–2037.
Markovic, M., Lin, H., and Winger, K., 2010: Simulating global and North American climate using the global environmental multiscale model with a variable-resolution modeling approach. Mon. Wea. Rev., 138, 3967–3987.
Markowski, P. M., Rasmussen, E. N., and Straka, J. M., 1998: The occurrence of tornadoes in supercells interacting with boundaries during VORTEX-95. Wea. Forecasting, 13, 852–859.
Markowski, P. M., Straka, J. M., and Rasmussen, E. N., 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 1692–1721.
Marquis, J. N., Richardson, Y. P., and Wurman, J. M., 2007: Kinematic observations of misocyclones along boundaries during IHOP. Mon. Wea. Rev., 135, 1749–1768.
Marshall, J. S., and Palmer, W. McK., 1948: The distribution of raindrops with size. J. Meteor., 5, 165–166.
Marsham, J. H., and Parker, D. J., 2006: Secondary initiation of multiple bands of cumulonimbus over southern Britain. II: Dynamics of secondary initiation. Quart. J. Roy. Meteor. Soc., 132, 1053–1072.
Marsham, J. H., Trier, S. B., Weckwerth, T. M., and Wilson, J. W., 2011: Observations of elevated convection initiation leading to a surface-based squall line during 13 June IHOP_2002. Mon. Wea. Rev., 139, 247–271.
Martin, J. E., 2006: Mid-Latitude Atmospheric Dynamics: A First Course. Wiley, New York.
Marwitz, J. D., 1972: The structure and motion of severe hailstorms. Part II: Multi-cell storms. J. Appl. Meteor., 11, 180–188.
May, P. T., and Rajopadhyaya, D. K., 1999: Vertical velocity characteristics of deep convection over Darwin, Australia. Mon. Wea. Rev., 127, 1056–1071.
McCaul, E. W., 1987: Observations of the Hurricane “Danny” tornado outbreak of 16 August 1985. Mon. Wea. Rev., 115, 1206–1223
McCaul, E. W., and Weisman, M. L., 1996: Simulations of shallow supercell storms in landfalling hurricane environments. Mon. Wea. Rev., 124, 408–429.
Miller, L. J., and Fredrick, S. M., 1998: CEDRIC: Custom Editing and Display of Reduced Information in Cartesian space. User's Manual, National Center for Atmospheric Research, Boulder, CO, 130 pp.
Miller, S. T. K., Keim, B. D., Talbot, R. W., and Mao, H., 2003: Sea breeze: structure, forecasting, and impacts. Rev. Geophysics, 41, 1–31.
Mitchell, E. D., Vasiloff, S. V., Stumpf, G. J., et al., 1998: The National Severe Storms Laboratory Tornado Detection Algorithm. Wea. Forecasting, 13, 352–366.
Mohr, C. G., and Vaughan, R. L., 1979: An economical procedure for Cartesian interpolation and display of reflectivity factor data in three-dimensional space. J. Appl. Meteor., 18, 661–670.
Moller, A. R., Doswell, III C. A., Foster, M. P., and Woodall, G. R., 1994: The operational recognition of supercell thunderstorm environments and storm structures. Wea. Forecasting, 9, 327–347.
Moncrieff, M. W., 1992: Organized convective systems: Archetypal dynamical models, mass and momentum flux theory, and parameterization. Quart. J. Roy. Meteor. Soc., 118, 819–850.
Moninger, W. R., Mamrosh, R. D., and Pauley, P. M., 2003: Automated meteorological reports from commercial aircraft. Bull. Amer. Meteor. Soc., 84, 203–216.
Montgomery, M. T., Nicholls, M. E., Cram, T. A., and Saunders, A. B., 2006: A vertical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355–386.
Musil, D. J., Heymsfield, A. J., and Smith, P. L., 1986: Microphysical characteristics of a well-developed weak echo region in a High Plains supercell thunderstorm. J. Clim. Appl. Meteor., 25, 1037–1051.
Nachamkin, J. E., McAnelly, R. L., and Cotton, W. R., 1994: An observational analysis of a developing mesoscale convective complex. Mon. Wea. Rev., 122, 1168–1188.
Namias, J., 1991: Spring and summer 1998 drought over the contiguous United States – causes and prediction. J. Climate, 4, 54–65.
Nastrom, G. D., and Gage, K. S., 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950–960.
Neiman, P. J., and Wakimoto, R. M., 1999: The interaction of a Pacific cold front with shallow air masses east of the Rocky Mountains. Mon. Wea. Rev., 127, 2102–2127.
Newton, C. W., 1976: Severe convective storms. Advances in Geophysics, Vol. 12, Academic Press, 257–303.
Newton, C. W., and Newton, H. R., 1959: Dynamical interactions between large convective clouds and environments with vertical shear. J. Meteor., 16, 483–496.
Nicholls, M. E., and Pielke, R. A., 2000: Thermally induced compression waves and gravity waves generated by convective storms. J. Atmos. Sci., 57, 3251–3271.
Nieman, S. J., Menzel, W. P., Hayden, C. M., et al., 1997: Fully automated cloud-drift winds in NESDIS operations. Bull. Amer. Meteor. Soc., 78, 1121–1133.
Norris, J. R., and Iacobellis, S. F., 2005: North Pacific cloud feedbacks inferred from synoptic-scale dynamic and thermodynamic relationships. J. Climate, 18, 4862–4878.
Oreskes, N., Shrader-Frechette, K., and Belitz, K., 1994: Verification, validation, and confirmation of numerical models in the earth sciences. Science, 263, 641–646.
Orlanski, I., 1975: A rational division of scales for atmospheric processes. Bull. Amer. Meteor. Soc., 56, 527–530.
Pal, J. S., and Eltahir, E. A. B., 2001: Pathways relating soil moisture conditions to future summer rainfall within a model of the land-atmosphere system. J. Climate, 14, 1227–1242.
Pal, J. S., and Eltahir, E. A. B., 2002: Teleconnections of soil moisture and rainfall during the 1993 midwest summer flood. Geophys. Res. Lett., 29, .
Palencia, C., Castro, A., Giaiotti, D., et al., 2011: Dent overlap in hailpads: Error estimation and measurement correction. J. Appl. Meteor. Climatol., 50, 1073–1087.
Parker, M. D., 2008: Response of simulated squall lines to low-level cooling. J. Atmos. Sci., 65, 1323–1341.
Parker, M. D., 2010: Relationship between system slope and updraft intensity in squall lines. Mon. Wea. Rev., 138, 3572–3578.
Parker, M. D., and Johnson, R. H., 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 3413–3436.
Parker, M. D., and Johnson, R. H., 2004: Simulated convective lines with leading precipitation. Part II: Evolution and maintenance. J. Atmos. Sci., 61, 1656–1673.
Parker, M. D., Ratcliffe, I. C., and Henebry, G. M., 2005: The July 2003 Dakota hailswaths: creation, characteristics, and possible impacts. Mon. Wea. Rev., 133, 1241–1260.
Parsons, D. B., Shapiro, M. A., Hardesty, R. M., et al., 1991: The finescale structure of a West Texas dryline. Mon. Wea. Rev., 119, 1242–1258.
Parsons, D. P., et al., 1994: The integrated sounding system: Description and preliminary observations from TOGA COARE. Bull. Amer. Meteor. Soc., 75, 553–567.
Pauley, P. M., and Smith, P. J., 1988: Direct and indirect effects of latent heat release on a synoptic-scale wave system. Mon. Wea. Rev., 116, 1209–1235.
Peckham, S. E., Wilhelmson, R. B., Wicker, L. J., and Ziegler, C. L., 2004: Numerical simulation of the interaction between the dryline and horizontal convective rolls. Mon. Wea. Rev., 132, 1792–1812.
Peixoto, J. P. and Oort, A. H., 1998: Physics of Climate, American Institute of Physics.
Pielke, R. A., 1974: A three-dimensional numerical model of the sea breezes over south Florida. Mon. Wea. Rev., 102, 115–139.
Pielke, R. A.. 2002: Mesoscale Meteorological Modeling. Academic Press, San Diego, CA.
Pielke, R. A., Lee, T. J., Copeland, J. H., et al., 1997: Use of USGS-provided data to improve weather and climate simulations. Ecological Applications, 7, 3–21.
Proctor, F. H., 1989: Numerical simulations of an isolated microburst. Part II: Sensitivity experiments. J. Atmos. Sci., 46, 2143–2165.
Pruppacher, H. R., and Klett, J. D., 1978: Microphysics of Clouds and Precipitation. D. Reidel, Dordrecht, the Netherlands.
Przybylinski, R. W., 1995: The bow echo: Observations, numerical simulations, and severe weather detection methods. Wea. Forecasting, 10, 203–218.
Ramanathan, V., and Collins, W., 1991: Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature, 351, 27–32.
Randall, D. A., Khairoutdinov, M., Arakawa, A., and Grabowski, W., 2003: Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84, 1547–1564.
Rasmussen, E. N., and Blanchard, D. O., 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 1148–1164.
Rasmussen, E. N., and Straka, J. M., 1998: Variations in supercell morphology. Part I: Observations of the role of upper-level storm-relative flow. Mon. Wea. Rev., 126, 2406–2421.
Raymond, D. J., and Jiang, H., 1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci., 47, 3067–3077.
Redelsperger, J. L., and Clark, T. L., 1990: The initiation and horizontal scale selection of convection over gently sloping terrain. J. Atmos. Sci., 47, 516–541.
Rinehart, R. E., 1997: Radar for Meteorologists, Third Edition. Rinehart Publications, Columbia, MO.
Roberts, N. M., and Lean, H. W., 2008: Scale-selective verification of rainfall accumulations from high resolution forecasts of convective events. Mon. Wea. Rev., 136, 78–96.
Roebber, P. J., Schultz, D. M., and Romero, R., 2002: Synoptic regulation of the 3 May 1999 tornado outbreak. Wea. Forecasting, 17, 399–429.
Rogers, R. R., and Yau, M. K., 1989: A Short Course in Cloud Physics. Pergamon Press, Elmsford, NY.
Ropelewski, C. F., and Halpert, M. S., 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 1606–1626.
Ross, A. N., Tompkins, A. M., and Parker, D. J., 2004: Simple models of the role of surface fluxes in convective cold pool evolution. J. Atmos. Sci., 61, 1582–1595.
Rotunno, R., and Klemp, J. B., 1985: On the rotation and propagation of numerically simulated supercell thunderstorms. J. Atmos. Sci., 42, 271–292.
Rotunno, R., Klemp, J. B., and Weisman, M. L., 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463–485.
Russell, A., Vaughan, G., Norton, E. G., et al., 2008: Convective inhibition beneath an upper-level PV anomaly. Quart. J. Roy. Meteor. Soc., 134, 371–383.
Ryzhkov, A. V., Giangrande, S. E., and Schuur, T. J., 2005: Rainfall estimation with a polarimetric prototype of WSR-88D. J. Appl. Meteor., 44, 502–515.
Saltzman, B., 1962: Finite amplitude free convection as an initial value problem – I. J. Atmos. Sci., 19, 329–341.
Schiffer, R. A., and Rossowe, W. B., 1983: The International Satellite Cloud Climatology Project (ISCCP): The first project of the World Climate Research Programme. Bull. Amer. Meteor. Soc., 64, 779–748.
Schultz, D. M., Schumacher, P. N., and Doswell, III C. A., 2000: The intricacies of instabilities. Mon. Wea. Rev., 128, 4143–4148.
Schultz, D. M, Weiss, C. C., and Hoffman, P. M., 2007: The synoptic regulation of the dryline. Mon. Wea. Rev., 135, 1699–1709.
Schumacher, R. S., and Johnson, R. H., 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961–976.
Schroeder, J. L., and Weiss, C. C., 2008: Integrating research and education through measurement and analysis. Bull. Amer. Meteor. Soc., 89, 793–798.
Scorer, R. S., and Ludlam, F. H., 1953: Bubble theory of penetrative convection. Quart. J. Roy. Meteor. Soc., 79, 94–103.
Segal, M., and Arritt, R. W., 1992: Nonclassic mesoscale circulations caused by surface sensible heat-flux gradients. Bull. Amer. Meteor. Soc., 73, 1593–1604.
Segel, Z. T., Stensrud, D. S., Ratcliffe, I. C., and Henebry, G. M., 2005: Influence of a hailstreak on boundary layer evolution. Mon. Wea. Rev., 133, 942–960.
Shabbott, C. J., and Markowski, P. M., 2006: Surface in situ observations within the outflow of forward-flank downdrafts of supercell thunderstorms. Mon. Wea. Rev., 134, 1422–1441.
Shapiro, M. A., Hampel, T., Rotzoll, D., and Mosher, F., 1985: The frontal hydraulic head: A micro-α scale (~ 1 km) triggering mechanism for mesoconvective weather systems. Mon. Wea. Rev., 113, 1166–1183.
Shepherd, M., Niyogi, D., and Mote, T. L., 2009: A seasonal-scale climatological analysis correlating spring tornadic activity with antecedent fall-winter drought in the southeaster United States. Environ. Res. Lett., 4, 1–7.
Sherwood, S. C., 2000: On moist instability. Mon. Wea. Rev., 128, 4139–4142.
Simpson, J. E. 1969 A comparison between laboratory and atmospheric density currents. Quart. J. Roy. Meteor. Soc., 95, 758–765.
Simpson, J., Adler, R. F., and North, G. R., 1988: A proposed tropical rainfall measuring mission (TRMM) satellite. Bull. Amer. Meteor. Soc., 69, 278–295.
Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 3019–3032.
Skamarock, W. C., Weisman, M. L., and Klemp, J. B., 1994: Three-dimensional evolution of simulated long-lived squall lines. J. Atmos. Sci., 51, 2563–2584.
Skamarock, W. C., et al., 2008: A description of the Advanced Research WRF Version 3. NCAR Technical Note NCAR/TN-475-STR.
Smith, A. M., McFarquhar, G. M., Rauber, R. M., Grim, J. A., Timlin, M. S., and Jewett, B. F., 2009: Microphysical and thermodynamic structure and evolution of the trailing stratiform regions of mesoscale convective systems during BAMEX. Part I: Observations. Mon. Wea. Rev., 137, 1165–1185.
Smith, D. M., et al., 2010: Skillful multi-year predictions of Atlantic hurricane frequency. Nature-Geos., 3, 846–849.
Smith, J. A., Baeck, M. L., Zhang, Y., and Doswell, III C. A., 2001: Extreme rainfall and flooding from supercell thunderstorms. J. Hydrometeor., 2, 469–489.
Smith, P. J., 1971: An analysis of kinematic vertical motions. Mon. Wea. Rev., 99, 715–724.
Smith, P. J., 2000: The importance of the horizontal distribution of heating during extratropical cyclone development. Mon. Wea. Rev., 128, 3692–3694.
Smith, R. K., and Leslie, L. M., 1978: Tornadogenesis. Quart. J. Roy. Meteor. Soc., 104, 189–199.
Srivastava, R. C., 1985: A simple model of evaporatively driven downdraft: Application to microburst downdraft. J. Atmos. Sci., 42, 1004–1023.
Srivastava, R. C., 1987: A model of intense downdrafts driven by the melting and evaporation of precipitation. J. Atmos. Sci., 44, 1752–1773.
Stensrud, D. J., 1993: Elevated residual layers and their influence on boundary-layer evolution. J. Atmos. Sci., 50, 2284–2293.
Stensrud, D. J., 1996a: Importance of low-level jets to climate: A review. J. Climate, 9, 1698–1711.
Stensrud, D. J., 1996b: Effects of persistent, midlatitude mesoscale regions of convection on the large-scale environment during the warm season. J. Atmos. Sci., 53, 3503–3527.
Stensrud, D. J. and Anderson, J. L., 2001: Is midlatitude convection an active or a passive player in producing global circulation patterns? J. Climate, 14, 2222–2237.
Stensrud, D. J., 2007: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press.
Stensrud, D. J., and Fritsch, J. M., 1994: Mesoscale convective systems in weakly forced large-scale environments. Part II: Generation of mesoscale initiation condition. Mon. Wea. Rev., 122, 2068–2083.
Stensrud, D. J., and Maddox, R. A., 1988: Opposing mesoscale circulations: A case study. Wea. Forecasting, 3, 189–204.
Stensrud, D. J., Bao, J.-W., and Warner, T. T., 2000: Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems. Mon. Wea. Rev., 128, 2077–2107.
Stensrud, D. J., Coniglio, M. C., Davies-Jones, R. P., and Evans, J. S., 2005: Comments on “‘A theory for strong long-lived squall lines’ revisited.” J. Atmos. Sci., 62, 2989–2996.
Stensrud, D. J., et al., 2009: Convective-scale warn-on-forecast system: A vision for 2020. Bull. Amer. Met. Soc., 90, 1487–1499.
Straka, J. M., 2009: Cloud and Precipitation Microphysics: Principles and Parameterizations. Cambridge University Press.
Straka, J. M., Rasmussen, E. N., and Fredrickson, S. E., 1996: A mobile mesonet for finescale meteorological observations. J. Atmos. Oceanic Technol., 13, 921–936.
Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Dordrecht/Boston/London.
Stumpf, G. J., Witt, A., Mitchell, E. D., et al., 1998: The National Severe Storms Laboratory Mesocyclone Detection Algorithm for the WSR-88D. Wea. Forecasting, 13, 304–326.
Tennekes, H., and Lumley, J. L., 1972: A First Course in Turbulence. MIT Press, Cambridge, MA.
Tepper, M., 1950: On the origin of tornadoes. Bull. Amer. Meteor. Soc., 31, 311–314.
Thompson, P., 1957: Uncertainty in the initial state as a factor in the predictability of large scale atmospheric flow patterns. Tellus, 9, 275–295.
Thompson, R. L., and Edwards, R., 2000: An overview of environmental conditions and forecast implications of the 3 May 1999 tornado outbreak. Wea. Forecasting, 15, 682–699.
Thompson, R. L., Edwards, R., Hart, J. A., et al., 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 1243–1261.
Thompson, R. L., Mead, C. M., and Edwards, R., 2007: Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Wea. Forecasting, 22, 102–115.
Thomson, D. W., 1986: Systems for measurements at the surface. Mesoscale Meteorology and Forecasting. Ray, P. (ed.), Amer. Meteor. Soc.
Thorncroft, C. D., Hall, N. M. J., and Kiladis, G. N., 2008: Three-dimensional structure and dynamics of African easterly waves. Part III: Genesis. J. Atmos. Sci., 65, 3596–3607.
Thorpe, A. J., Miller, M. J., and Moncrieff, M. W., 1982: Two-dimensional convection in non-constant shear: A model of midlatitude squall lines. Quart. J. Roy. Meteor. Soc., 108, 739–762.
Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of cold pools. J. Atmos. Sci., 58, 1650–1672.
Toth, Z., Kalnay, E., Tracton, S. M., Wobus, R., and Irwin, J., 1997: A synoptic evaluation of the NCEP ensemble. Wea. Forecasting, 12, 140–153.
Toth, M., Trapp, R. J., Wurman, J., and Kosiba, K. A., 2013: Improving tornado estimates with Doppler radar. Wea. Forecasting. .
Trapp, R. J., 1999: Observations of nontornadic low-level mesocyclones and attendant tornadogenesis failure during VORTEX. Mon. Wea. Rev., 127, 1693–1705.
Trapp, R. J., and Fiedler, B. H., 1995: Tornado-like vortexgenesis in a simplified numerical model. J. Atmos. Sci., 52, 3757–3778.
Trapp, R. J., and Davies-Jones, R., 1997: Tornadogenesis with and without a dynamic pipe effect. J. Atmos. Sci., 54, 113–133.
Trapp, R. J., and Doswell, III C. A., 2000: Radar data objective analysis. J. Atmos. Oceanic Technol., 17, 105–120.
Trapp, R. J., and Weisman, M. L., 2003: Low-level mesovortices within squall lines and bow echoes: Part II: Their genesis and implications. Mon. Wea. Rev., 131, 2804–2823.
Trapp, R. J., Stumpf, G. J., and Manross, K. L., 2005a: A reassessment of the percentage of tornadic mesocyclones. Wea. Forecasting, 20, 680–687.
Trapp, R. J., Tessendorf, S. A., Godfrey, E. Savageau, and Brooks, H. E., 2005b: Tornadoes from squall lines and bow echoes. Part I: Climatological distribution. Wea. Forecasting, 20, 23–34.
Trapp, R. J., Wheatley, D. M., Atkins, N. T., et al., 2006: Buyer beware: Some words of caution on the use of severe wind reports in post-event assessment and research. Wea. Forecasting, 21, 408–415.
Trapp, R. J., Diffenbaugh, N. S., Brooks, H. E., et al., 2007a: Changes in severe thunderstorm environment frequency during the 21st century caused by anthropogenically enhanced global radiative forcing. Proc. Natl Acad. Sci., 104, 19719–19723, .
Trapp, R. J., Halvorson, B., and Diffenbaugh, N. S., 2007b: Telescoping, multimodel approaches to evaluate extreme convective weather under future climates. J. Geophys. Res., 112, D20109, .
Trapp, R. J., Robinson, E. D., Baldwin, M. E., et al., 2010: Regional climate of hazardous convective weather through high-resolution dynamical downscaling. Clim. Dyn., .
Trenberth, K. E., 1998: Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change. Climatic Change, 39, 667–694.
Trenberth, K. E., and Guillemot, C. J., 1996: Physical processes involved in the 1988 drought and 1993 floods in North America. J. Climate, 9, 1288–1298.
Tribbia, J. J., and Baumhefner, D. P., 1988: The reliability of improvements in deterministic short-range forecasts in the presence of initial-state and modeling deficiencies. Mon. Wea. Rev., 116, 2276–2228.
Tribbia, J. J., and Baumhaufner, D. P., 2004: Scale interactions and atmospheric predictability: An updated perspective. Mon. Wea. Rev., 132, 703–713.
Trier, S. B., Davis, C. A., and Tuttle, J. D., 2000a: Long-lived mesoconvective vortices and their environment. Part I: Observations from the central United States during the 1998 warm season. Mon. Wea. Rev., 128, 3376–3395.
Trier, S. B., Davis, C. A., and Skamarock, W. C., 2000b: Long-lived mesoconvective vortices and their environment. Part II: Induced thermodynamic destabilization in idealized simulations. Mon. Wea. Rev., 128, 3396–3412.
Trier, S. B., and Davis, C. A., 2007: Mesoscale convective vortices observed during BAMEX. Part II: Influences on secondary deep convection. Mon. Wea. Rev., 135, 2051–2075.
Tripoli, G. J., and Cotton, W. R., 1981: The use of ice-liquid water potential temperature as a thermodynamic variable in deep atmospheric models. Mon. Wea. Rev., 109, 1094–1102.
Velden, C. S., Hayden, C. M., Nieman, S. J., et al., 1997: Upper-tropospheric winds derived from geostationary satellite water vapor observations. Bull. Amer. Meteor. Soc., 78, 173–195.
Velden, C., and Coauthors, , 2005: Recent innovations in deriving tropospheric winds from meteorological satellites. Bull. Amer. Meteor. Soc., 86, 205–223.
Vinnichenko, N. K., 1970: The kinetic energy spectrum in the free atmosphere–one second to five years. Tellus, 22, 158–166.
Vitart, F., et al., 2007: Dynamically-based seasonal forecasts of Atlantic tropical storm activity issued in June by EUROSIP. Geophys. Res. Lett., 34, L16815, .
Wakimoto, R. M., 2001: Convectively driven high wind events. Severe Convective Storms, American Meteorological Society, Boston, 255–298.
Wakimoto, R. M., and Murphey, H. V., 2010: Analysis of convergence boundaries observed during IHOP_2002. Mon. Wea. Rev., 138, 2737–2760.
Wakimoto, R. M., and Wilson, J. W., 1989: Non-supercell tornadoes. Mon. Wea. Rev., 117, 1113–1140.
Wakimoto, R. M., Cai, H., and Murphey, H. V., 2004: The Superior, Nebraska, supercell during BAMEX. Bull. Amer. Meteor. Soc., 85, 1095–1106.
Wakimoto, R. M., Lee, W.-C., Bluestein, H. B., Liu, C.-H., Hildebrand, P. H., 1996: ELDORA observations during VORTEX 95. Bull. Amer. Meteor. Soc., 77, 1465–1481.
Wakimoto, R. M., Liu, C-H., and Cai, H-Q., 1998: The Garden City, Kansas, storm during VORTEX 95. Part I: Overview of the storm's life cycle and mesocyclogenesis. Mon. Wea. Rev., 126, 372–392.
Wakimoto, R. M., Murphey, H. V., Nester, A., et al., 2006: High winds generated by bow echoes. Part I: Overview of the Omaha bow echo 5 July 2003 storm during BAMEX. Mon. Wea. Rev., 134, 2793–2812.
Wallace, J. M., and Hobbs, P. V., 2006: Atmospheric Science: An Introductory Survey, 2nd Edition. Elsevier, London.
Wang, H., et al., 2009: A statistical forecast model for Atlantic seasonal hurricane activity based on the NCEP dynamical seasonal forecast. J. Clim., 22, 4481–4500.
Wang, J., and Wolff, D. B., 2010: Evaluation of TRMM ground-validation radar-rain errors using rain gauge measurements. J. Appl. Meteor. Climatol., 49, 310–324.
Warner, J., 1970: On steady-state one-dimensional models of cumulus convection. J. Atmos. Sci., 27, 1035–1040.
Warner, T. T., and Hsu, H.-M., 2000: Nested-model simulation of moist convection: The impact of coarse-grid parameterized convection on fine-grid resolved convection. Mon. Wea. Rev., 128, 2211–2231.
Weaver, C. P., and Avissar, R., 2001: Atmospheric disturbances caused by human modification of the landscape. Bull. Amer. Meteor. Soc., 82, 269–281.
Weaver, J. F., Knaff, J. A., Bikos, D., et al., 2002: Satellite observations of a severe supercell thunderstorm on 24 July 2000 made during the GOES-11 Science Test. Wea. Forecasting, 17, 124–138.
Weber, B. L., et al., 1990: Preliminary evaluation of the first NOAA demonstration network wind profiler. J. Atmos. Oceanic Technol., 7, 909–918.
Weckwerth, T. M., 2000: The effect of small-scale moisture variability on thunderstorm initiation. Mon. Wea. Rev., 128, 4017–4030.
Weckwerth, T. M., and Parsons, D. B., 2006: A review of convection initiation and motivation for IHOP_2002. Mon. Wea. Rev., 134, 5–22.
Weckwerth, T. M., Murphey, H. V., Flamant, C., et al., 2008: An observational study of convection initiation on 12 June 2002 during IHOP_2002. Mon. Wea. Rev., 136, 2283–2304.
Weckwerth, T. M., Wilson, J. W., and Wakimoto, R. M., 1996: Thermodynamic variability within the convective boundary layer due to horizontal convective rolls. Mon. Wea. Rev., 124, 769–784.
Weckwerth, T. M., Wilson, J. W., Wakimoto, R. M., and Crook, N. A., 1997: Horizontal convective rolls: Determining the environmental supporting their existence and characteristics. Mon. Wea. Rev., 125, 505–526.
Weckwerth, T. M., et al., 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85, 253–277.
Weisman, M. L., 1992: The role of convectively generated rear-inflow jets in the evolution of long-lived mesoconvective systems. J. Atmos. Sci., 49, 1826–1847.
Weisman, M. L., 1993: The genesis of severe, long-lived bow echoes. J. Atmos. Sci., 50, 645–670.
Weisman, M. L., 2001: Bow echoes: A tribute to T. T. Fujita. Bull. Amer. Meteor. Soc., 82, 97–116.
Weisman, M. L., and Davis, C. A., 1998: Mechanisms for the generation of mesoscale vortices within quasi-linear convective systems. J. Atmos. Sci., 55, 2603–2622.
Weisman, M. L., and Klemp, J. B., 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504–520.
Weisman, M. L., and Klemp, J. B., 1986: Characteristics of isolated convective storms. In Mesoscale Meteorology and Forecasting. American Meteorological Society, Boston, 331–358.
Weisman, M. L., Klemp, J. B., and Rotunno, R., 1988: Structure and evolution of numerically simulated squall lines. J. Atmos. Sci., 45, 1990–2013.
Weisman, M. L., Skamarock, W. C., and Klemp, J. B., 1997: The Resolution Dependence of Explicitly Modeled Convective Systems. Mon. Wea. Rev., 125, 527–548.
Weisman, M. L., and Rotunno, R., 2000: The use of vertical wind shear versus helicity in interpreting supercell dynamics. J. Atmos. Sci., 57, 1452–1472.
Weisman, M. L., and Rotunno, R., 2004: “A theory for long-lived squall lines” revisited. J. Atmos. Sci., 61, 361–382.
Weisman, M. L., and Trapp, R. J., 2003: Low-level mesovortices within squall lines and bow echoes: Part I: Overview and dependence on environmental shear. Mon. Wea. Rev., 131, 2779–2803.
Weiss, C. C., and Bluestein, H. B., 2002: Airborne pseudo-dual Doppler analysis of a dryline-out flow boundary intersection. Mon. Wea. Rev., 130, 1207–1226.
Wentz, F. J. and Schabel, M., 2000: Precise climate monitoring using complementary satellite data sets. Nature, 403, 414–416.
Westrick, K. J., Mass, C. F., and Colle, B. A., 1999: The limitations of the WSR-88D radar network for quantitative precipitation measurement over the coastal western United States. Bull. Amer. Meteor. Soc., 80, 2289–2298.
Wheatley, D. M., and Trapp, R. J., 2008: The effect of mesoscale heterogeneity on the genesis and structure of mesovortices within quasi-linear convective systems. Mon. Wea. Rev., 136, 4220–4241.
Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press.
Wilson, J. W., and Roberts, R. D., 2006: Summary of convective storm initiation and evolution during IHOP: Observational and modeling perspective. Mon Wea. Rev., 134, 23–47.
Wilson, J. W., and Schreiber, W. E., 1986: Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev., 114, 2516–2536.
Wilson, J. W., Crook, N. A., Mueller, C. K., et al., 1998: Nowcasting thunderstorms: A status report. Bull. Amer. Meteor. Soc., 79, 2079–2099.
Winn, W. P., Hunyady, S. J., and Aulich, G. D., 1999: Pressure at the ground in a large tornado. J. Geophys. Res., 104, 22 067–22 082.
Wurman, J., Randall, M., and Zahari, A., 1997: Design and deployment of a portable, pencil-beam, pulsed, 3-cm Doppler radar. J. Atmos. Oceanic Technol., 14, 1502–1512.
Wurman, J., et al., 2012: The Second Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2. Bull. Amer. Meteor. Soc.,
Xue, M., Drogemeier, K. K., and Wong, V., 2000: The Advanced Regional Prediction System (ARPS) – A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part I: Model dynamics and verification. Meteor. Atmos. Physics, 75, 161–193.
Yuter, S. E., and Houze, Jr. R. A., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part I: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 1941–1963.
Zhang, F., Snyder, C., and Rotunno, R., 2003: Effects of moist convection on mesoscale predictability. J. Atmos. Sci., 60, 1173–1185.
Ziegler, C. L., and Rasmussen, E. N., 1998: The initiation of moist convection at the dryline: Forecasting issues from a case study perspective. Wea. Forecasting, 13, 1106–1131.
Ziegler, C. L., Martin, W. J., Pielke, R. A., and Walko, R. L., 1995: A modeling study of the dryline. J. Atmos. Sci., 52, 263–285.
Ziegler, C. L., Rasmussen, E. N., Buban, M. S., et al., 2007: The “triple point” on 24 May 2002 during IHOP. Part II: Ground radar and in situ boundary layer analysis of cumulus development and convection initiation. Mon. Wea. Rev., 135, 2443–2472.
Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line structure. Mon. Wea. Rev., 105, 1568–1589.
Zipser, E. J., 2003: Some views on “hot towers” after 50 years of tropical field programs and two years of TRMM data. Cloud Systems, Hurricanes, and the TRMM. Meteor. Monogr., No. 51, Amer. Meteor. Soc., 49–58.
Zrnic, D. S., Ryzhkov, A. V., 1999: Polarimetry for weather surveillance radars. Bull. Amer. Meteor. Soc., 80, 389–406.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.