Skip to main content Accessibility help
×
Publisher:
Cambridge University Press
Online publication date:
November 2012
Print publication year:
2012
Online ISBN:
9781139176064

Book description

The theory of R-trees is a well-established and important area of geometric group theory and in this book the authors introduce a construction that provides a new perspective on group actions on R-trees. They construct a group RF(G), equipped with an action on an R-tree, whose elements are certain functions from a compact real interval to the group G. They also study the structure of RF(G), including a detailed description of centralizers of elements and an investigation of its subgroups and quotients. Any group acting freely on an R-tree embeds in RF(G) for some choice of G. Much remains to be done to understand RF(G), and the extensive list of open problems included in an appendix could potentially lead to new methods for investigating group actions on R-trees, particularly free actions. This book will interest all geometric group theorists and model theorists whose research involves R-trees.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
References
[1] R. C., Alperin and K. N., Moss, Complete trees for groups with a real-valued length function, J. London Math. Soc. 31 (1985), 55–68.
[2] R., Baer, The subgroup of the elements of finite order of an abelian group, Ann. Math. 37 (1936), 766–781.
[3] S. A., Basarab, On a problem raised by Alperin and Bass. In: Arboreal Group Theory (ed. R. C., Alperin), MSRI Publications vol. 19, pp. 35–68, Springer-Verlag, New York, 1991.
[4] H., Bass, Group actions on non-archimedean trees. In: Arboreal Group Theory (ed. R. C., Alperin), MSRI Publications vol. 19, pp. 69–131, Springer-Verlag, New York, 1991.
[5] V. N., Berestovskii and C. P., Plaut, Covering ℝ-trees, ℝ-free groups, and dendrites, Adv. Math. 224 (2010), 1765–1783.
[6] M., Bestvina and M., Feighn, Stable actions of groups on real trees, Invent. Math. 121 (1995), 287–321.
[7] G., Cantor, Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen, J. Reine Angew. Math. 77 (1874), 258–262. Also in: Georg Cantor, Gesammelte Abhandlungen (ed. E., Zermelo), Julius Springer, Berlin, 1932.
[8] G., Cantor, Über unendliche lineare Punktmannigfaltigkeiten V, Math. Ann. 21 (1883), 545–591.
[9] I. M., Chiswell, Harrison's theorem for Λ-trees, Quart. J. Math. Oxford (2) 45 (1994), 1–12.
[10] I. M., Chiswell, Introduction to Λ-Trees, World Scientific, Singapore, 2001.
[11] I. M., Chiswell, A-free groups and tree-free groups. In: Groups, Languages, Algorithms (ed. A.V., Borovik), Contemp. Math. vol. 378, pp. 79–86, Providence (RI), Amer. Math. Soc., 2005.
[12] I. M., Chiswell and T.W., Müller, Embedding theorems for tree-free groups, Math. Proc. Cambridge Philos. Soc. 149 (2010), 127–146.
[13] I. M., Chiswell, T.W., Müller, and J.-C., Schlage-Puchta, Compactness and local compactness for ℝ-trees, Arch. Math. 91 (2008), 372–378.
[14] D. E., Cohen, Combinatorial Group Theory: A Topological Approach, London Mathematical Society Student Texts vol. 14, Cambridge University Press, 1989.
[15] P. M., Cohn, Algebra (Second Edition), Volume 3, John Wiley & Sons, Chichester, 1991.
[16] M., Coornaert, T., Delzant, and A., Papadopoulos, Géeométrie et Théorie des Groupes, Lecture Notes in Mathematics vol. 1441, Springer, Berlin, 1990.
[17] M. J., Dunwoody, Groups acting on protrees, J. London Math. Soc. 56 (1997), 125–136.
[18] L., Fuchs, Abelian Groups, Pergamon Press, Oxford, 1960.
[19] D., Gaboriau, G., Levitt, and F., Paulin, Pseudogroups of isometries of ℝ and Rips' Theorem on free actions on ℝ-trees, Israel J. Math. 87 (1994), 403–428.
[20] E., Ghys and P., de la Harpe, Sur les Groupes Hyperboliques d'après Mikhael Gromov, Birkhäuser, Boston, 1990.
[21] D., Gildenhuys, O., Kharlampovich, and A. G., Myasnikov, CSA groups and separated free constructions, Bull. Austral. Math. Soc. 52 (1995), 63–84.
[22] L., Greenberg, Discrete groups of motions, Can. J. Math. 12 (1960), 414–425.
[23] M., Gromov, Hyperbolic groups. In: Essays in Group Theory (ed. S. M., Gersten), Mathematical Sciences Research Institute Publications vol. 8, pp. 75–263, Springer-Verlag, New York, 1987.
[24] N., Harrison, Real length functions in groups, Trans. Amer. Math. Soc. 174 (1972), 77–106.
[25] P. J., Higgins, Notes on Categories and Groupoids, Van Nostrand Reinhold, London-New York-Melbourne, 1971. (Reprinted with a new preface by the author: Repr. Theory Appl. Categ. 7 (2005), 1–178 (electronic).)
[26] W., Imrich, On metric properties of tree-like spaces. In: Beiträge zur Graphentheorie und deren Anwendungen (ed. Sektion MARÖK der Technischen Hochschule Ilmenau), pp. 129–156, Oberhof, 1977.
[27] A., Kertész, Einführung in die Transfinite Algebra, Birkhäuser Verlag, Basel–Stuttgart, 1975.
[28] F., Levi, Arithmetische Gesetze im Gebiete diskreter Gruppen, Rend. Palermo 35 (1913), 225–236.
[29] G., Levitt, Constructing free actions on ℝ-trees, Duke Math. J. 69 (1993), 615–633.
[30] R. C., Lyndon and P. E., Schupp, Combinatorial Group Theory, Springer-Verlag, Berlin–Heidelberg, 1977.
[31] W., Magnus, A., Karrass, and D., Solitar, Combinatorial Group Theory. Presentations of Groups in Terms of Generators and Relations, reprint of the 1976 second edition, Dover, Mineola, NY, 2004.
[32] G. A., Margulis, Discrete Subgroups of Semisimple Lie Groups, Springer-Verlag, Berlin–Heidelberg, 1991.
[33] J. C., Mayer, J., Nikiel, and L. G., Oversteegen, Universal spaces for ℝ-trees, Trans. Amer. Math. Soc. 334 (1992), 411–432.
[34] J.W., Morgan and P. B., Shalen, Valuations, trees and degenerations of hyperbolic structures: I, Ann. of Math. (2) 122 (1985), 398–476.
[35] J.W., Morgan and P. B., Shalen, Free actions of surface groups on ℝ-trees, Topology 30 (1991), 143–154.
[36] T.W., Müller, A hyperbolicity criterion for subgroups of RJ(G), Abh. Math. Semin. Univ. Hambg. 80 (2010), 193–205.
[37] T.W., Müller, Some contributions to the theory of RJ-groups. In preparation.
[38] T.W., Müller and J.-C., Schlage-Puchta, On a new construction in group theory, Abh. Math. Semin. Univ. Hambg. 79 (2009), 193–227.
[39] A. G., Myasnikov and V. N., Remeslennikov, Exponential groups, II: extensions of centralizers and tensor completion of CSA-groups, Internat. J. Algebra Comput. 6 (1996), 687–711.
[40] A. G., Myasnikov, V. N., Remeslennikov, and D., Serbin, Regular free length functions on Lyndon's free ℤ[t]-group Fℤ[t]. In: Groups, Languages, Algorithms (ed. A. V., Borovik), Contemp. Math. vol. 378, pp. 33–77, Providence (RI), Amer. Math. Soc., 2005.
[41] M. H. A., Newman, On theories with a combinatorial definition of “equivalence“, Ann. of Math. (2) 43 (1942) 223–243.
[42] F. S., Rimlinger, ℝ-trees and normalisation of pseudogroups, Exper. Math. 1 (1992), 95–114.
[43] H. L., Royden, Real Analysis, Macmillan, New York, 1963.
[44] H., Schubert, Categories, Springer-Verlag, Berlin–Heidelberg, 1972.
[45] J.-P., Serre, Trees, Springer-Verlag, Berlin–Heidelberg, 1980.
[46] H., Short, Notes on word hyperbolic groups. In: Group Theory from a Geometrical Viewpoint (eds. E., Ghys, A., Haefliger, and A., Verjovsky), World Scientific, Singapore, 1991.
[47] W., Sierpiński, Cardinal And Ordinal Numbers, Monographs of the Polish Academy of Science vol. 34, Warsaw, 1958.
[48] H. J. S., Smith, On the integration of discontinuous functions, Proc. London Math. Soc. 6 (1875), 140–153.
[49] T., Szele, Ein Analogon der Körpertheorie für abelsche Gruppen, J. Reine Angew. Math. 188 (1950), 167–192.
[50] J., Tits, A ‘theorem of Lie–Kolchin’ for trees. In: Contributions to Algebra: A Collection of Papers Dedicated to Ellis Kolchin, Academic Press, New York, 1977.
[51] M., Urbański and L. Q., Zamboni, On free actions on Λ-trees, Math. Proc. Camb. Phil. Soc. 113 (1993), 535–542.
[52] M. J., Wicks, Commutators in free products, J. London Math. Soc. 37 (1962), 433–444.
[53] M. J., Wicks, A general solution of binary homogeneous equations over free groups, Pacific J. Math. 41 (1972), 543–561.
[54] D. L., Wilkens, Group actions on trees and length functions, Michigan Math. J. 35 (1988), 141–150.
[55] A., Zastrow, Construction of an infinitely generated group that is not a free product of surface groups and abelian groups, but which acts freely on an ℝ-tree, Proc. Royal Soc. Edinburgh (A) 128 (1998), 433–445.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.