Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-27T04:58:58.240Z Has data issue: false hasContentIssue false

Chapter 4 - Measurement of Gustation

Published online by Cambridge University Press:  17 January 2018

Christopher H. Hawkes
Affiliation:
Barts and the London School of Medicine and Surgery
Richard L. Doty
Affiliation:
University of Pennsylvania
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ASTM, 1997. Standard Practice for Determination of Odor and Taste Thresholds by a Forced-chocie Ascending Concentration Series Method of Limits (E679–97 & E679–04). Philadelphia: American Society for Testing and Materials.Google Scholar
Bagla, R., Klasky, B., Doty, R.L., 1997. Influence of stimulus duration on a regional measure of NaCl taste sensitivity. Chemical Senses 22(2), 171175.CrossRefGoogle ScholarPubMed
Barnicot, N.A., Harris, H., Kalmus, H., 1951. Taste thresholds of further eighteen compounds and their correlation with P.T.C thresholds. Annals of Eugenics 16, 119128.CrossRefGoogle ScholarPubMed
Barros-Loscertales, A., Gonzalez, J., Pulvermuller, F., et al. 2012. Reading salt activates gustatory brain regions: FMRI evidence for semantic grounding in a novel sensory modality. Cerebral Cortex 22, 25542563.CrossRefGoogle Scholar
Barry, M.A., Gatenby, J.C., Zeiger, J.D., Gore, J.C., 2001. Hemispheric dominance of cortical activity evoked by focal electrogustatory stimuli. Chemical Senses 26, 471482.CrossRefGoogle ScholarPubMed
Bartoshuk, L.M., Pfaffmann, C., McBurney, D.H., 1964. Taste of sodium chloride solutions after adaptation to sodium chloride – implications for the “Water Taste.” Science 143(3609), 967968.CrossRefGoogle ScholarPubMed
Bartoshuk, L.M., 1978. The psychophysics of taste. American Journal of Clinical Nutrition, 31 10681077.CrossRefGoogle ScholarPubMed
Bartoshuk, L.M., Duffy, V.B., Fast, K., Green, B.G., Snyder, D.J., 2001. The General Labeled Magnitude Scale provides valid measures of genetic variation in taste and may be a universal psychophysical ruler. Appetite 37, 126.Google Scholar
Bartoshuk, L.M., Catalanotto, F., Hoffman, H., Logan, H., Snyder, D.J., 2012. Taste damage (otitis media, tonsillectomy and head and neck cancer), oral sensations and BMI. Physiology & Behavior 107(4), 516526.CrossRefGoogle ScholarPubMed
Bohon, C., Stice, E., 2012. Negative affect and neural response to palatable food intake in bulimia nervosa. Appetite 58, 964970.CrossRefGoogle ScholarPubMed
Bornstein, W.S., 1940a. Cortical representation of taste in man and monkey. I. Functional and antaomical relations of taste, olfaction and somatic sensibility. Yale Journal of Biology and Medicine 12, 719736.Google Scholar
Bornstein, W.S., 1940b. Cortical representation of taste in man and monkey. II. The localization of the cortical taste area in man, a method of measuring impairment of taste in man. Yale Journal of Biology and Medicine 13, 133156.Google Scholar
Cameron, A.T., 1947. The taste sense and the relative sweetness of sugars and other sweet substances. Scientific Report Series 9, Sugar Research Foundation, 74.Google Scholar
Coates, A.C., 1974. Effects of age, sex, and smoking on electrical taste threshold. Annals of Otology, Rhinology & Laryngology 83, 365369.CrossRefGoogle Scholar
Collings, V.B., 1974. Human taste response as a function of locus of stimulation on the tongue and soft palate. Perception & Psychophysics 16, 169174.CrossRefGoogle Scholar
Critchley, H.D., Rolls, E.T., 1996. Olfactory neuronal responses in the primate orbitofrontal cortex: Analysis in an olfactory discrimination task. Journal of Neurophysiology 75 16591672.CrossRefGoogle Scholar
Dawes, C., 1974. Rhythms in salivary flow rate and composition. International Journal of Chronobiology 2, 253279.Google ScholarPubMed
de Araujo, I.E., Kringelbach, M.L., Rolls, E.T., McGlone, F., 2003. Human cortical responses to water in the mouth, and the effects of thirst. Journal of Neurophysiology 90, 18651876.CrossRefGoogle ScholarPubMed
Deems, D.A., Doty, R.L., Settle, R.G., et al. 1991. Smell and taste disorders, a study of 750 patients from the University of Pennsylvania Smell and Taste Center. Archives of Otolaryngology – Head & Neck Surgery, 117, 519528.CrossRefGoogle ScholarPubMed
Delwiche, J., O’Mahony, M., 1996. Changes in secreted salivary sodium are sufficient to alter salt taste sensitivity: Use of signal detection measures with continuous monitoring of the oral environment. Physiology & Behavior 59, 605611.CrossRefGoogle ScholarPubMed
Desai, H., Smutzer, G., Coldwell, S.E., Griffith, J.W., 2011. Validation of edible taste strips for identifying PROP taste recognition thresholds. Laryngoscope 121, 11771183.CrossRefGoogle ScholarPubMed
Doty, R.L., McKeown, D.A., Lee, W.W., Shaman, P., 1995. A study of the test-retest reliability of ten olfactory tests. Chemical Senses 20, 645656.CrossRefGoogle ScholarPubMed
Doty, R.L., Bagla, R., Morgenson, M., Mirza, N., 2001. NaCl thresholds: Relationship to anterior tongue locus, area of stimulation, and number of fungiform papillae. Physiology & Behavior 72, 373378.CrossRefGoogle ScholarPubMed
Doty, R.L., Laing, D.G., 2015. Psychophysical measurement of human olfactory function. In: Doty, R.L. (Ed.), Handbook of Olfaction and Gustation (3rd Edition). Hoboken, N.J.: John Wiley & Sons, pp. 229261.CrossRefGoogle Scholar
Doty, R.L., Haxel, B.R., 2005. Objective assessment of terbinafine-induced taste loss. Laryngoscope 115, 20352037.CrossRefGoogle ScholarPubMed
Doty, R.L., Chen, J.H., Overend, J., 2017. Taste quality confusions: Influences of age, smoking, PTC taster status, and other subject characteristics. Perception 46, 257267.CrossRefGoogle ScholarPubMed
Essick, G.K., Chopra, A., Guest, S., McGlone, F., 2003. Lingual tactile acuity, taste perception, and the density and diameter of fungiform papillae in female subjects. Physiology & Behavior., 80, 289302.CrossRefGoogle ScholarPubMed
Falconer, A., 1847. Über eine merkwürdige Eigenschaft einer indischen Pflanze (Gymnema sylvestre). Pharmaceutical Journal and Transactions 7, 551.Google Scholar
Ferguson, D.B., Botchway, C.A., 1979. Circadian variations in the flow rate and composition of whole saliva stimulated by mastication. Archives of Oral Biology 24, 877881.CrossRefGoogle ScholarPubMed
Fischer, R., Griffin, F., England, S., Garn, S.M., 1961. Taste thresholds and food dislikes. Nature 191, 1328.CrossRefGoogle ScholarPubMed
Foerster, O., 1936. Sensible corticale Felder. Bumke und Foersters Handb.Neurol., 6, 358448.Google Scholar
Frey, S., Petrides, M., 1999. Re-examination of the human taste region: A positron emission tomography study. European Journal of Neuroscience 11, 29852988.CrossRefGoogle ScholarPubMed
Fujimura, A., Kajiyama, H., Tateishi, T., Ebihara, A., 1990. Circadian rhythm in recognition threshold of salt taste in healthy subjects. The American Journal of Physiology 259, R931R935.Google ScholarPubMed
Gerull, G., Mrowinski, D., Schilling, V., 1984. [Objective gustometry with adequate stimulation by registration of contingent negative variation]. EEG.EMG.Z. Elektroenzephalogr.Elektromyogr. Verwandte.Geb. 15, 121–26.Google ScholarPubMed
Grant, R., Ferguson, M.M., Strang, R., Turner, J.W., Bone, I., 1987. Evoked taste thresholds in a normal population and the application of electrogustometry to trigeminal nerve disease. Journal of Neurology, Neurosurgery & Psychiatry 50, 1221.CrossRefGoogle Scholar
Green, B.G., Shaffer, G.S., Gilmore, M.M., 1993. Derivation and evaluation of a semantic scale of oral sensation magnitude with apparent ratio properties. Chemical Senses 18(6), 683702.CrossRefGoogle Scholar
Grzegorczyk, P.B., Jones, S.W., Mistretta, C.M., 1979. Age-related differences in salt taste acuity. Journal of Gerontology 34, 834840.CrossRefGoogle ScholarPubMed
Hahn, H., 1934. Die Adaptation des Geschmackssinnes. Zeitschrift fur Sinnesphysiologie 65, 1051–45.Google Scholar
Hahn, H., Günther, H., 1932. Uber die Reize und die Reizbedingungen des Geschmackssinnes. Pflügers Arch.ges.Physiol., 231, 4867.CrossRefGoogle Scholar
Hara, S., 1955. Interrelationship among stimulus intensity, stimulated area and reaction time in the human gustatory sensation. Bulletin of Tokyo Medical and Dental University 2, 147157.Google Scholar
Harris, H., Kalmus, H., 1949. The measurement of taste sensitivity to phenylthiourea (P.T.C.). Annals of Eugenics 15, 2431.CrossRefGoogle Scholar
Harris, H., Kalmus, H., 1951. The distribution of taste thresholds for phenylthiourea of 384 sib pairs. Annals of Eugenics 16, 226230.CrossRefGoogle ScholarPubMed
Hebhardt, P., Bagla, R., Doty, R.L., 1999. An automated regional taste-testing system. Behavior Research Methods, Instruments, & Computers 31, 464469.CrossRefGoogle Scholar
Henkin, R.I., Solomon, D.H., 1962. Salt-taste threshold in adrenal insufficiency in man. The Journal of Clinical Endocrinology and Metabolism 22, 856858.Google ScholarPubMed
Henkin, R.I., Gill, J.R., Bartter, F.C., 1963. Studies on taste thresholds in normal man and in patients with adrenal cortical insufficiency: The role of adrenal cortical steroids and of serum sodium concentration. Journal of Clinical Investigation 42, 727735.CrossRefGoogle ScholarPubMed
Henkin, R.I., Schechter, P.J., Hoye, R., Mattern, C.F., 1971. Idiopathic hypogeusia with dysgeusia, hyposmia, and dysosmia. A new syndrome. JAMA 217, 434440.CrossRefGoogle ScholarPubMed
Henkin, R.I., Levy, L.M. Lin, C.S., 2000. Taste and smell phantoms revealed by brain functional MRI (fMRI). Journal of Computer Assisted Tomography 24, 106123.CrossRefGoogle ScholarPubMed
Holway, A.H., Hurvich, L.M., 1937. Differential gustatory sensitivity to salt. American Journal of Psychology 49, 3748.CrossRefGoogle Scholar
Hooper, D., 1887. An examination of the leaves of Gymnema sylvestre. Nature (London) 35, 565567.Google Scholar
Hummel, T., Genow, A., Landis, B.N., 2010. Clinical assessment of human gustatory function using event related potentials. Journal of Neurology, Neurosurgery, & Psychiatry 81, 459464.CrossRefGoogle ScholarPubMed
Jones, F.N., 1956. A forced-choice method of limits. The American Journal of Psychology 69, 672673.CrossRefGoogle ScholarPubMed
Kinomura, S., Kawashima, R., Yamada, K., et al. 1994. Functional anatomy of taste perception in the human brain studied with positron emission tomography. Brain Research 659, 263266.CrossRefGoogle ScholarPubMed
Kobal, G., 1985. Gustatory evoked potentials in man. Electroencephalography and Clinical Neurophysiology 62, 449454.CrossRefGoogle ScholarPubMed
Kobayakawa, T., Endo, H., Ayabe-Kanamura, S., et al. 1996. The primary gustatory area in human cerebral cortex studied by magnetoencephalography. Neuroscience Letters 212, 155158.CrossRefGoogle ScholarPubMed
Krarup, B., 1958. Electro-gustometry: A method for clinical taste examination. Acta Otolaryngologica 49, 294305.CrossRefGoogle Scholar
Kunka, M., Doty, R.L., Settle, R.G., 1981. An examination of intertrial interval and gender influences on sucrose detection thresholds established by a modified staircase procedure. Perception 10, 3538.CrossRefGoogle ScholarPubMed
Kurihara, K., 1971. Taste modifiers. In Beidler, L.M. (Ed.), Handbook of Sensory Physiology. Vol. IV. Chemical Senses 2. Taste (pp. 363378). Berlin-Heidelberg: Springer-Verlag.Google Scholar
Landis, B.N., Welge-Luessen, A., Bramerson, A., et al. 2009. “Taste Strips” – a rapid, lateralized, gustatory bedside identification test based on impregnated filter papers. Journal of Neurology 256, 242248.CrossRefGoogle ScholarPubMed
Liu, G., Zong, G., Doty, R.L., Sun, Q., 2016. Prevalence and risk factors of taste and smell impairment in a nationwide representative sample of the US population: A cross-sectional study. BMJ Open. Nov 9; 6(11);e013246. doi:10.1136/bmjopen-2016-013246.CrossRefGoogle Scholar
Levy, L.M., Henkin, R.I., Lin, C.S., Finley, A., Schellinger, D., 1999. Taste memory induces brain activation as revealed by functional MRI. Journal of Computer Assisted Tomography 23, 499505.CrossRefGoogle ScholarPubMed
Lobb, B., Elliffe, D.M., Stillman, J.A., 2000. Reliability of electrogustometry for the estimation of taste thresholds. Clinical Otolaryngology & Allied Sciences 2000 December; 25, 531534.Google ScholarPubMed
Loucks, C.A., Doty, R.L., 2004. Effects of stimulation duration on EGM thresholds. Physiology & Behavior 81, 14.CrossRefGoogle Scholar
Mayer-Gross, W., Walker, J.W., 1946. Taste and selection of food in hypoglycaemia. British Journal of Experimental Pathology 27, 297305.Google ScholarPubMed
McBurney, D.H., Collings, V.B., Glanz, L.M., 1973. Temperature dependence of human taste responses. Physiology & Behavior 11, 8994.CrossRefGoogle ScholarPubMed
Meiselman, H.L., 1971. Effect of presentation procedure on taste intensity functions. Perception & Psychophysics 10, 1518.CrossRefGoogle Scholar
Miller, S.L., Mirza, N., Doty, R.L., 2002. EGM thresholds: relationship to anterior tongue locus, area of stimulation, and number of fungiform papillae. Physiology & Behavior 75, 753757.CrossRefGoogle Scholar
Murphy, C., Quinonez, C., Nordin, S., 1995. Reliability and validity of electrogustometry and its application to young and elderly persons. Chemical Senses 20, 499503.CrossRefGoogle Scholar
Nagel, W., 1894. Vergleichend physiologische und anatomische Untersuchungen über den Geruchs- and Geschmackssin und ihre Organe. Bibliotheca Zoologica 7, 1207.Google Scholar
Nakamura, M., Kurihara, K., 1991. Differential temperature dependence of taste nerve responses to various taste stimuli in dogs and rats. The American Journal of Physiology 261, R1402R1408.Google ScholarPubMed
Nakamura, Y., Goto, T.K., Tokumori, K., et al. 2012. The temporal change in the cortical activations due to salty and sweet tastes in humans: fMRI and time-intensity sensory evaluation. Neuroreport 23, 400404.CrossRefGoogle ScholarPubMed
Nakazato, M., Endo, S., Yoshimura, I., Tomita, H., 2002. Influence of aging on electrogustometry thresholds. Acta Oto-Laryngologica 122, 1626.CrossRefGoogle Scholar
Nicolaescu, S.A., Wertheimer, J.M., Barbash, S.E., et al. 2005. Electrical taste thresholds established on the medial tongue using two sizes of electrodes. Laryngoscope, 115, 15091511.CrossRefGoogle ScholarPubMed
Ninomiya, Y., Funakoshi, M., 1981. Responses of rat chorda tympani fibers to electrical stimulation of the tongue. Japanese Journal of Physiology 31, 559570.Google ScholarPubMed
Nitschke, J.B., Dixon, G.E., Sarinopoulos, I., et al. 2006. Altering expectancy dampens neural response to aversive taste in primary taste cortex. Nature Neuroscience 9, 435442.CrossRefGoogle ScholarPubMed
O’Mahony, M., 1973. Qualitative description of low concentration sodium chloride solutions. British Journal of Psychology 64, 601606.CrossRefGoogle ScholarPubMed
O’Mahony, M., Dunn, M., 1974. Do sensitivity drifts occur for stimuli other than sodium chloride? A preliminary investigation. Perception 3, 213220.CrossRefGoogle Scholar
O’Mahony, M., Ivory, H., King, E., 1974. Pair comparison and ascending series NaCl threshold: Criterion and residual effects. Perception 3, 185192.CrossRefGoogle ScholarPubMed
O’Mahony, M., Hobson, A., Garvey, J., Davies, M., Birt, C., 1976. How many tastes are there for low concentration “sweet” and “sour” stimuli? – Threshold implications. Perception 5, 147154.CrossRefGoogle ScholarPubMed
O’Mahony, M., 1983. Gustatory responses to nongustatory stimuli. Perception 12, 627633.CrossRefGoogle ScholarPubMed
Ogawa, H., Wakita, M., Hasegawa, K., et al. 2005. Functional MRI detection of activation in the primary gustatory cortices in humans. Chemical Senses 30, 583592.CrossRefGoogle ScholarPubMed
Pavlidis, P., Gouveris, H., Antonia, A., et al. 2012. Age-related changes in electrogustometry thresholds, tongue tip vascularization, density, and form of the fungiform papillae in humans. Chemical Senses 38(1), 3543.CrossRefGoogle ScholarPubMed
Pingel, J., Ostwald, J., Pau, H.W., Hummel, T., Just, T., 2010. Normative data for a solution-based taste test. European Archives of Oto-Rhino-Laryngology 267, 19111917.CrossRefGoogle ScholarPubMed
Plassmann, H., O’Doherty, J., Shiv, B., Rangel, A., 2008. Marketing actions can modulate neural representations of experienced pleasantness. Proceedings of the National Academy of Sciences of the United States of America 105, 10501054.CrossRefGoogle ScholarPubMed
Plattig, K.H., 1969. [Electric taste. Stimulus intensity dependent evoked brain potentials following electric stimulation of the tongue in humans]. Zeitschrift Fur Biologie 116, 161211.Google ScholarPubMed
Plattig, K.H., Haußner, C., 1985. A new gustometer system enabling proper computer evaluation of human taste responses. Medical & Biological Engineering & Computing 23 (Suppl. Pt 2), 10261027.Google Scholar
Plattig, K.H., Dazert, S., Maeyama, T., 1988. A new gustometer for computer evaluation of taste responses in men and animals. Acta Otolaryngologica Suppl 458, 123128.CrossRefGoogle ScholarPubMed
Rawal, S., Hoffman, H.J., Honda, M., Huedo-Medina, T.B., Duffy, V.B., 2015. The taste and smell protocol in the 2011–2014 US National Health and Nutrition Survey (NHANES): Test-retest reliability and validity testing. Chemosensory Perception 8, 138148.CrossRefGoogle ScholarPubMed
Richter, C.P., 1936. Increased salt appetite in adrenalectomized rats. American Journal of Physiology 115, 155161.CrossRefGoogle Scholar
Richter, C.P., MacLean, A., 1939. Salt taste threshold of humans. The American Journal of Physiology 126, 16.CrossRefGoogle Scholar
Rolls, E.T., Baylis, L.L., 1994. Gustatory, olfactory, and visual convergence within the primate orbitofrontal cortex. Journal of Neuroscience 14, 54375452.CrossRefGoogle ScholarPubMed
Rolls, E.T., Critchley, H.D., Treves, A., 1996. Representation of olfactory information in the primate orbitofrontal cortex. Journal of Neurophysiology 75, 19821996.CrossRefGoogle ScholarPubMed
Rolls, E.T., Rolls, B.J., Rowe, E.A., 1983. Sensory-specific and motivation-specific satiety for the sight and taste of food and water in man. Physiology & Behavior 30, 185192.CrossRefGoogle ScholarPubMed
Rolls, E.T., Sienkiewicz, Z.J., Yaxley, S., 1989. Hunger modulates the responses to gustatory stimuli of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. European Journal of Neuroscience 1, 5360.CrossRefGoogle ScholarPubMed
Rolls, E.T., 2001. The rules of formation of the olfactory representations found in the orbitofrontal cortex olfactory areas in primates. Chemical Senses 26, 595604.CrossRefGoogle ScholarPubMed
Rolls, E.T., 2005. Taste, olfactory, and food texture processing in the brain, and the control of food intake. Physiology & Behavior 85, 4556.CrossRefGoogle ScholarPubMed
Salata, J.A., Raj, J.M., Doty, R.L., 1991. Differential sensitivity of tongue areas and palate to electrical stimulation: A suprathreshold cross-modal matching study. Chemical Senses 16, 483489.CrossRefGoogle Scholar
Small, D.M., Zatorre, R.J., Dagher, A., Evans, A.C., Jones-Gotman, M., 2001. Changes in brain activity related to eating chocolate: From pleasure to aversion. Brain, 124, 17201733.CrossRefGoogle ScholarPubMed
Small, D.M., Voss, J., Mak, Y.E., et al. 2004. Experience-dependent neural integration of taste and smell in the human brain. Journal of Neurophysiology 92, 18921903.CrossRefGoogle ScholarPubMed
Small, D.M., Prescott, J., 2005. Odor/taste integration and the perception of flavor. Experimental Brain Research 166 (3–4), 345357.CrossRefGoogle ScholarPubMed
Smutzer, G., Lam, S., Hastings, L., et al. 2008. A test for measuring gustatory function. The Laryngoscope 118(8), 14111416.CrossRefGoogle ScholarPubMed
Snyder, D., Fast, K., Bartoshuk, L.M., 2004. Valid comparisons of suprathreshold sensations. Journal of Consciousness Studies 11(7–8), 96112.Google Scholar
Soter, A., Kim, J., Jackman, A., et al. 2008. Accuracy of self-report in detecting taste dysfunction. Laryngoscope 118, 611617.CrossRefGoogle ScholarPubMed
Spetter, M.S., Smeets, P.A., De, G.C., Viergever, M.A., 2010. Representation of sweet and salty taste intensity in the brain. Chemical Senses 35, 831840.CrossRefGoogle ScholarPubMed
Stevens, J.C., Marks, L.E., 1980. Cross-modality matching functions generated by magnitude estimation. Perception & Psychophysics 27, 379389.CrossRefGoogle ScholarPubMed
Stinton, N., Atif, M.A., Barkat, N., Doty, R.L., 2010. Influence of smell loss on taste function. Behavioral Neuroscience 124, 256264.CrossRefGoogle ScholarPubMed
Veldhuizen, M.G., Albrecht, J., Zelano, C., et al. 2011. Identification of human gustatory cortex by activation likelihood estimation. Human Brain Mapping 32, 22562266.CrossRefGoogle ScholarPubMed
Veldhuizen, M.G., Douglas, D., Aschenbrenner, K., Gitelman, D.R., Small, D.M., 2011. The anterior insular cortex represents breaches of taste identity expectation. Journal of Neuroscience 31, 1473514744.CrossRefGoogle ScholarPubMed
von Bekesy, G., 1965. The effect of adaptation on the taste threshold observed with a semiautomatic gustometer. Journal of General Physiology 48, 481488.CrossRefGoogle Scholar
Watson, D., Clark, L.A., Tellegen, A., 1988. Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology 54, 10631070.CrossRefGoogle ScholarPubMed
Wen, X.Y., 2010. Salt taste sensitivity, physical activity and gastric cancer. Asian Pacific Journal of Cancer Prevention 11, 14731477.Google ScholarPubMed
Woods, A.T., Lloyd, D.M., Kuenzel, J., et al. 2011. Expected taste intensity affects response to sweet drinks in primary taste cortex. Neuroreport 22, 365369.CrossRefGoogle ScholarPubMed
Zald, D.H., Pardo, J.V., 2000. Cortical activation induced by intraoral stimulation with water in humans. Chemical Senses 25, 267275.CrossRefGoogle ScholarPubMed
Zuniga, J.R., Davis, S.H., Englehardt, R.A., et al. 1993. Taste performance on the anterior human tongue varies with fungiform taste bud density. Chemical Senses 18, 449460.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×