Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-04-30T10:28:22.728Z Has data issue: false hasContentIssue false

Chapter 12 - Imprint and aspiration cytology of lymph nodes: neoplastic and miscellany

Published online by Cambridge University Press:  14 April 2016

Pauline M. Chou
Affiliation:
Northwestern University Medical School, Illinois
Paolo Gattuso
Affiliation:
Rush University, Chicago
Vijaya B. Reddy
Affiliation:
Rush University, Chicago
Miguel Reyes-Mugica
Affiliation:
University of Pittsburgh
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Bernasconi, P., Calatroni, S., Giardini, I., et al. ABL1 amplification in T-cell acute lymphoblastic leukemia. Cancer Genet Cytogenet 2005; 162: 146150.CrossRefGoogle ScholarPubMed
Coustan-Smith, E., Mullighan, C. G., Onciu, M., et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukemia. Lancet Oncol 2009; 10: 147156.CrossRefGoogle Scholar
Harrison, C. J., Moorman, A. V., Schwab, C., et al. An international study of intrachromosomal amplification of chromosome 21 (iAMP21): cytogenetic characterization and outcome. Leukemia 2013. doi: 10.1038/leu.2013.317.CrossRefGoogle Scholar
Heerema, N. A., Carroll, A. J., Devidas, M., et al. Intrachromosomal amplification of chromosome 21 is associated with inferior outcomes in children with acute lymphoblastic leukemia treated in contemporary standard-risk Children’s Oncology Group studies: a report from the Children’s Oncology Group. J Clin Oncol 2013; 31: 33973402.CrossRefGoogle ScholarPubMed
Onciu, M., Lorsbach, R. B., Henry, E. C., Behm, F. G.. Terminal deoxynucleotidyl transferase-positive lymphoid cells in reactive lymph nodes from children with malignant tumors: incidence, distribution pattern, and immunophenotype in 26 patients. Am J Clin Pathol 2002; 118: 248254.CrossRefGoogle ScholarPubMed
Park, S. Case study interpretation: Houston. Case 3. Early T-cell precursor-acute lymphoblastic leukemia. Cytometry B Clin Cytom 2011; 80: 261263.CrossRefGoogle ScholarPubMed
Rand, V., Parker, H., Russell, L. J., et al. Genomic characterization implicates iAMP21 as a likely primary genetic event in childhood B-cell precursor acute lymphoblastic leukemia. Blood 2011; 117: 68486855.CrossRefGoogle ScholarPubMed
Strauchen, J. A., Miller, L. K.. Terminal deoxynucleotidyl transferase-positive cells in human tonsils. Am J Clin Pathol 2001; 116: 1216.CrossRefGoogle ScholarPubMed
Zhang, J., Ding, L., Holmfeldt, L., et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 2012; 481: 157163.CrossRefGoogle ScholarPubMed

Secondary Sources

Nelson, B. P., Treaba, D., Goolsby, C., et al. Surface immunoglobulin positive lymphoblastic leukemia in adults: a genetic spectrum. Leuk Lymphoma 2006; 47: 13521359.CrossRefGoogle ScholarPubMed
Salaverria, I., Martin-Guerrero, I., Wagener, R., et al. A recurrent 11q aberration pattern characterizes a subset of MYC-negative high-grade B-cell lymphomas resembling Burkitt lymphoma. Blood 2014; 123: 11871198.CrossRefGoogle ScholarPubMed
Seegmiller, A. C., Kroft, S. H., Karandikar, N. J., McKenna, R. W.. Characterization of immunophenotypic aberrancies in 200 cases of B acute lymphoblastic leukemia. Am J Clin Pathol 2009; 132: 940949.CrossRefGoogle ScholarPubMed
Attarbaschi, A., Beishuizen, A., Mann, G., et al. Children and adolescents with follicular lymphoma have an excellent prognosis with either limited chemotherapy or with a “watch and wait” strategy after complete resection. Ann Hematol 2013; 92: 15371541.CrossRefGoogle ScholarPubMed
Liu, Q., Salaverria, I., Pittaluga, S., et al. Follicular lymphomas in children and young adults: a comparison of the pediatric variant with usual follicular lymphoma. Am J Surg Pathol 2013; 37: 333343.CrossRefGoogle Scholar
Louissant, A. Jr, Ackerman, A. M., Dias-Santagata, D., et al. Pediatric-type nodal follicular lymphoma: an indolent clonal proliferation in children and adults with high proliferation index and no BCL2 rearrangement. Blood 2012; 120: 23952404.CrossRefGoogle Scholar
Attygalle, A. D., Liu, H., Shirali, S., et al. Atypical marginal zone hyperplasia of mucosa-associated lymphoid tissue: a reactive condition of childhood showing immunoglobulin lambda light-chain restriction. Blood 2004; 104: 33433438.CrossRefGoogle ScholarPubMed
Kroft, S. H. Monoclones, monotypes, and neoplasia pitfalls in lymphoma diagnosis. Am J Clin Pathol 2004; 121: 457459.CrossRefGoogle ScholarPubMed
Swerdlow, S. H. Pediatric follicular lymphomas, marginal zone lymphomas, and marginal zone hyperplasia. Am J Clin Pathol 2004; 122 (Suppl 1): S98S109.Google ScholarPubMed
Taddesse-Heath, L., Pittaluga, S., Sorbara, L., et al. Marginal zone B-cell lymphoma in children and young adults. Am J Surg Pathol 2003; 27: 522531.CrossRefGoogle ScholarPubMed
Chan, J. K. C., Lamant, L., Algar, E., et al. ALK+ histiocytosis: a novel type of systemic histiocytic proliferative disorder of early infancy. Blood 2008; 112: 29652968.CrossRefGoogle ScholarPubMed
Foyil, K. V., Bartlett, N. L.. Brentuximab vedotin and crizotinib in anaplastic large-cell lymphoma. Cancer J 2012; 18: 450456.CrossRefGoogle ScholarPubMed
Jaffe, E. S. Mature T-cell and NK-cell lymphomas in the pediatric age group. Am J Clin Pathol 2004; 122 (Suppl 1): S110121.Google ScholarPubMed
Nava, V. E., Jaffe, E. S.. The pathology of NK-cell lymphomas and leukemias. Adv Anat Pathol 2005; 12: 2734.CrossRefGoogle ScholarPubMed
Swerdlow, S. H., Jaffe, E. S., Brousset, P., et al. Cytotoxic T-cell and NK-cell lymphomas: current questions and controversies. Am J Surg Pathol 2014. doi: 10.1097/PAS.0000000000000295.CrossRefGoogle Scholar
Dharnidharka, V. R., Green, M., Webber, S. A., eds., Post-Transplant Lymphoproliferative Disorders. Berlin, Heidelberg, Springer Verlag, 2010.CrossRefGoogle Scholar
Nelson, B. P., Wolniak, K. L., Evens, A., et al. Early posttransplant lymphoproliferative disease. Am J Clin Pathol 2012; 138: 568578.CrossRefGoogle ScholarPubMed
Buonocore, S., Valente, A. L., Nightingale, D., et al. Histiocytic sarcoma in a 3-year-old male: a case report. Pediatrics 2005; 116: 322325.CrossRefGoogle Scholar
Copie-Bergman, C., Wotherspoon, A. C., Norton, A. J., et al. True histiocytic lymphoma: a morphologic, immunohistochemical, and molecular genetic study of 13 cases. Am J Surg Pathol 1998; 22: 13861392.CrossRefGoogle ScholarPubMed
Hornick, J. L., Jaffe, E. S., Fletcher, C. D.. Extranodal histiocytic sarcoma: clinicopathologic analysis of 14 cases of a rare epithelioid malignancy. Am J Surg Pathol 2004; 28: 11331144.CrossRefGoogle ScholarPubMed
Miliauskas, J. R. Fine-needle aspiration cytology: true histiocytic lymphoma/histiocytic sarcoma. Diagn Cytopathol 2003; 29: 233235.CrossRefGoogle ScholarPubMed
Nguyen, T. T., Schwartz, E. J., West, R. B., et al. Expression of CD163 (hemoglobin scavenger receptor) in normal tissues, lymphomas, carcinomas, and sarcomas is largely restricted to the monocyte/macrophage lineage. Am J Surg Pathol 2005; 29: 617624.CrossRefGoogle Scholar
Pileri, S. A., Grogan, T. M., Harris, N. L., et al. Tumours of histiocytes and accessory dendritic cells: an immunohistochemical approach to classification from the International Lymphoma Study Group based on 61 cases. Histopathology 2002; 41: 129.CrossRefGoogle Scholar
Vos, J. A., Abbondanzo, S. L., Barekman, C. L., et al. Histiocytic sarcoma: a study of five cases including the histiocyte marker CD163. Mod Pathol 2005; 18: 693704.CrossRefGoogle ScholarPubMed
Bastida, P., García-Miñaúr, S., Ezquieta, B., et al. Myeloproliferative disorder in Noonan syndrome. J Pediatr Hematol Oncol 2011; 33: e4345.CrossRefGoogle ScholarPubMed
Loh, M. L. Childhood myelodysplastic syndrome: focus on the approach to diagnosis and treatment of juvenile myelomonocytic leukemia. Hematology Am Soc Hematol Educ Program 2012; 2012: 357362.Google Scholar
Loh, M. L. Recent advances in the pathogenesis and treatment of juvenile myelomonocytic leukaemia. Br J Haematol 2011; 152: 677687.CrossRefGoogle ScholarPubMed
Boman, F., Boccon-Gibod, L.. Benign epithelial cells and Tamm–Horsfall protein in lymph nodes from nephrectomy specimens with nephroblastoma: a diagnostic pitfall. Ann Pathol 2004; 24: 632636.CrossRefGoogle ScholarPubMed
Weeks, D. A., Beckwith, J. B., Mierau, G. W.. Benign nodal lesions mimicking metastases from pediatric renal neoplasms: a report of the National Wilms Tumor Study Pathology Center. Hum Pathol 1990; 21: 12391244.CrossRefGoogle ScholarPubMed
Lucas, D. R., Bentley, G., Dan, M. E., et al. Ewing sarcoma vs lymphoblastic lymphoma: a comparative immunohistochemical study. Am J Clin Pathol 2001; 115: 1117.CrossRefGoogle ScholarPubMed
Bournaud, C., Charrié, A., Nozières, C., et al. Thyroglobulin measurement in fine-needle aspirates of lymph nodes in patients with differentiated thyroid cancer: a simple definition of the threshold value, with emphasis on potential pitfalls of the method. Clin Chem Lab Med 2012; 48: 11711177.CrossRefGoogle Scholar
Nosé, V. Familial thyroid cancer: a review. Mod Pathol 2011; 24 (Suppl 2): S19S33.CrossRefGoogle ScholarPubMed
Kollur, S. M., El Haq, I. A.. Fine-needle aspiration cytology of metastatic nasophayngeal carcinoma in lymph nodes: comparison with metastatic squamous-cell carcinoma, and Hodgkin’s and non-Hodgkin’s lymphoma. Diagn Cytopathol 2003; 28: 1822.CrossRefGoogle Scholar
Viguer, J. M., Jiménez-Heffernan, J. A., López-Ferrer, P., et al. Fine-needle aspiration cytology of metastatic nasophayngeal carcinoma. Diagn Cytopathol 2005; 32: 233237.CrossRefGoogle Scholar
Essner, R. Sentinel lymph node biopsy and melanoma biology. Clin Cancer Res 2006;12(7 Pt 2): S2320sS2325.CrossRefGoogle ScholarPubMed
Gradilone, A., Ribuffo, D., Silvestri, I., et al. Detection of melanoma cells in sentinel lymph nodes by reverse transcriptase-polymerase chain reaction: prognostic significance. Ann Surg Oncol 2004; 11: 983937.CrossRefGoogle ScholarPubMed
Mocellin, S., Hoon, D. S., Pilati, P., Rossi, C. R., Nitti, D.. Sentinel lymph node molecular ultrastaging in patients with melanoma: a systematic review and meta-analysis of prognosis. J Clin Oncol 2007; 25: 15881595.CrossRefGoogle ScholarPubMed
Mu, E., Lange, J. R., Strouse, J. J.. Comparison of the use and results of sentinel lymph node biopsy in children and young adults with melanoma. Cancer 2012; 118: 27002707.CrossRefGoogle Scholar
Pasquali, S., Spillane, A. Contemporary controversies and perspectives in the staging and treatment of patients with lymph node metastasis from melanoma, especially with regards positive sentinel lymph node biopsy. Cancer Treat Rev 2014; 40: 893899.CrossRefGoogle ScholarPubMed
Romanini, A., Manca, G., Pellegrino, D., et al. Molecular staging of the sentinel lymph node in melanoma patients: correlation with clinical outcome. Ann Oncol 2005; 16: 18321840.CrossRefGoogle ScholarPubMed
Scoggins, C. R., Ross, M. I., Reintgen, D. S., et al. Prospective multi-institutional study of reverse transcriptase polymerase chain reaction for molecular staging of melanoma. J Clin Oncol 2006; 24: 2849–57.CrossRefGoogle ScholarPubMed
Biddle, D. A., Evans, H. L., Kemp, B. L., et al. Intraparenchymal nevus cell aggregates in lymph nodes: a possible diagnostic pitfall with malignant melanoma and carcinoma. Am J Surg Pathol 2003; 27: 673681.CrossRefGoogle ScholarPubMed
Holt, J. B., Sangueza, O. P., Levine, E. A., et al. Nodal melanocytic nevi in sentinel lymph nodes: correlation with melanoma-associated cutaneous nevi. Am J Clin Pathol 2004; 121: 5863.CrossRefGoogle ScholarPubMed
Ohgami, R. S., Chisholm, K. M., Ma, L., et al. E-cadherin is a specific marker for erythroid differentiation and has utility, in combination with CD117 and CD34, for enumerating myeloblasts in hematopoietic neoplasms. Am J Clin Pathol 2014; 141: 656664.CrossRefGoogle ScholarPubMed
O’Malley, D. P., Kim, Y. S., Perkins, S. L., et al. Morphologic and immunohistochemical evaluation of splenic hematopoietic proliferations in neoplastic and benign disorders. Mod Pathol 2005; 18: 15501561.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×