Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-14T07:27:39.437Z Has data issue: false hasContentIssue false

Chapter 18 - The endocrine pancreas

from Section III - Anatomical endocrine pathology

Published online by Cambridge University Press:  13 April 2017

Ozgur Mete
Affiliation:
University of Toronto
Sylvia L. Asa
Affiliation:
University of Toronto
Get access
Type
Chapter
Information
Endocrine Pathology , pp. 718 - 742
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Croliss, CE. Patten’s Human Embryology: Elements of Clinical Development. New York: McGraw-Hill, 1976.Google Scholar
Edlund, H. Pancreas: how to get there from the gut? Curr Opin Cell Biol 1999;11:663668.Google Scholar
Pan, FC, Wright, C. Pancreas organogenesis: from bud to plexus to gland. Dev Dyn 2011;240:530565.Google Scholar
Yee, NS, Lorent, K, Pack, M. Exocrine pancreas development in zebrafish. Dev Biol 2005;284:84101.Google Scholar
Herrera, PL. Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages. Development 2000;127:23172322.Google Scholar
Rovira, M, Scott, SG, Liss, AS, Jensen, J, Thayer, SP, Leach, SD. Isolation and characterization of centroacinar/terminal ductal progenitor cells in adult mouse pancreas. Proc Natl Acad Sci USA 2010;107:7580.Google Scholar
Carlson, BM. Human Embryology and Developmental Biology, 5th ed. Philadelphia PA: Elsevier-Saunders, 2014.Google Scholar
Klimstra, DS, Hruban, RH, Pitman, MB. Pancreas. In Mills, SE, ed. Histology for Pathologists, 3rd edn. Philadelphia PA: Lippincott Williams & Wilkins, 2007:723760.Google Scholar
Moore, KL. Clinically Oriented Anatomy. Baltimore, MD: Williams & Wilkins, 1980.Google Scholar
Pansky, B. Anatomy of the pancreas. Emphasis on blood supply and lymphatic drainage. Int J Pancreatol 1990;7:101108.Google Scholar
Cubilla, AL, Fortner, J, Fitzgerald, PJ. Lymph node involvement in carcinoma of the head of the pancreas area. Cancer 1978;41:880887.Google Scholar
Heitz, PU, Beglinger, C, Gyr, K. Anatomy and physiology of the exocrine pancreas. In Kloeppel, G, Heitz, PU, eds. Pancreatic Pathology. New York: Churchill-Livingstone, 1984:321.Google Scholar
Stamm, BH. Incidence and diagnostic significance of minor pathologic changes in the adult pancreas at autopsy: a systematic study of 112 autopsies in patients without known pancreatic disease. Hum Pathol 1984;15:677683.Google Scholar
Birnstingl, MA. A study of pancreaticography. Br J Surg 1959;47:128139.Google Scholar
Williams, JA, Goldfine, ID. The insulin–acinar relationship. In Go, VL, Brooks, FP, DiMagno, EP, Gardner, JD, Lebenthal, E, Scheele, GA, eds. The Exocrine Pancreas: Biology, Pathobiology, and Diseases. New York: Raven Press, 1986:347360.Google Scholar
Rahier, J, Wallon, J, Henquin, JC. Cell populations in the endocrine pancreas of human neonates and infants. Diabetologia 1981;20:540546.Google Scholar
Wittingen, J, Frey, CF. Islet concentration in the head, body, tail and uncinate process of the pancreas. Ann Surg 1974;179:412414.Google Scholar
Stefan, Y, Grasso, S, Perrelet, A, Orci, L. A quantitative immunofluorescent study of the endocrine cell populations in the developing human pancreas. Diabetes 1983;32:293301.Google Scholar
Grube, D, Bohn, R. The microanatomy of human islets of Langerhans, with special reference to somatostatin (D-) cells. Arch Histol Jpn 1983;46:327353.Google Scholar
Ehrie, MG, Swartz, FJ. Diploid, tetraploid and octaploid beta cells in the islets of Langerhans of the normal human pancreas. Diabetes 1974;23:583588.Google Scholar
Malaisse-Lagae, F, Stefan, Y, Cox, J, Perrelet, A, Orci, L. Identification of a lobe in the adult human pancreas rich in pancreatic polypeptide. Diabetologia 1979;17:361365.Google Scholar
Stefan, Y, Grasso, S, Perrelet, A, Orci, L. The pancreatic polypeptide-rich lobe of the human pancreas: definitive identification of its derivation from the ventral pancreatic primordium. Diabetologia 1982;23:141142.Google Scholar
Pelletier, G. Identification of four cell types in the human endocrine pancreas by immunoelectron microscopy. Diabetes 1977;26:749756.Google Scholar
Kloppel, G, Lenzen, S. Anatomy and physiology of the endocrine pancreas. In Kloppel, G, Heitz, PU, eds. Pancreatic Pathology. New York: Churchill-Livingstone, 1984:133153.Google Scholar
Orci, L, Baetens, D, Ravazzola, M, Stefan, Y, Malaisse-Lagae, F. Pancreatic polypeptide and glucagon: non-random distribution in pancreatic islets. Life Sci 1976;19:18111815.Google Scholar
Orci, L, Malaisse-Lagae, F, Baetens, D, Perrelet, A. Pancreatic-polypeptide-rich regions in human pancreas. Lancet 1978;2:12001201.Google Scholar
Rindi, G, Buffa, R, Sessa, F, Tortora, O, Solcia, E. Chromogranin A, B and C immunoreactivities of mammalian endocrine cells. Distribution, distinction from costored hormones/prohormones and relationship with the argyrophil component of secretory granules. Histochemistry 1986;85:1928.Google Scholar
Weidner, N, Tjoe, J. Immunohistochemical profile of monoclonal antibody O13: antibody that recognizes glycoprotein p30/32MIC2 and is useful in diagnosing Ewing’s sarcoma and peripheral neuroepithelioma. Am J Surg Pathol 1994;18:486494.Google Scholar
Hochwald, SN, Zee, S, Conlon, KC, Colleoni, R, Louie, O, Brennan, MF, et al. Prognostic factors in pancreatic endocrine neoplasms: an analysis of 136 cases with a proposal for low-grade and intermediate-grade groups. J Clin Oncol 2002;20:26332642.Google Scholar
Fellinger, EJ, Garin-Chesa, P, Triche, TJ, Huvos, AG, Rettig, WJ. Immunohistochemical analysis of Ewing’s sarcoma cell surface antigen p30/32MIC2. Am J Pathol 1991;139:317325.Google Scholar
Solcia, E, Capella, C, Kloppel, G. Atlas of Tumor Pathology, 3rd Series, Fascicle 20: Tumors of the Pancreas. Washington, DC: Armed Forces Institute of Pathology, 1997.Google Scholar
Chen, J, Baithun, SI, Pollock, DJ, Berry, CL. Argyrophilic and hormone immunoreactive cells in normal and hyperplastic pancreatic ducts and exocrine pancreatic carcinoma. Virchows Arch A Pathol Anat Histopathol 1988;413:399405.Google Scholar
Adsay, NV, Basturk, O, Saka, B, Bagci, P, Ozdemir, D, Balci, S, et al. Whipple made simple for surgical pathologists: orientation, dissection, and sampling of pancreaticoduodenectomy specimens for a more practical and accurate evaluation of pancreatic, distal common bile duct, and ampullary tumors. Am J Surg Pathol. 2014;38:480–93.Google Scholar
Hruban, RH, Pitman, MB, Klimstra, DS. Atlas of Tumor Pathology, 4th Series, Fascicle 6: Tumors of the pancreas. Bethesda, MD: ARP Press, 2007.Google Scholar
Klimstra, DS, Modlin, IR, Coppola, D, Lloyd, RV, Suster, S. The pathologic classification of neuroendocrine tumors: a review of nomenclature, grading, and staging systems. Pancreas 2010;39:707712.Google Scholar
Klimstra, DS, Modlin, IR, Adsay, NV, Chetty, R, Deshpande, V, Gonen, M, et al. Pathology reporting of neuroendocrine tumors: application of the Delphic consensus process to the development of a minimum pathology data set. Am J Surg Pathol 2010;34:300313.Google Scholar
Klimstra, DS. Pathology reporting of neuroendocrine tumors: essential elements for accurate diagnosis, classification, and staging. Semin Oncol 2013;40:2336.Google Scholar
In’t Veld, P. Insulitis in human type 1 diabetes: the quest for an elusive lesion. Islets 2011;3:131138.Google Scholar
Gianani, R, Campbell-Thompson, M, Sarkar, SA, Wasserfall, C, Pugliese, A, Solis, JM, et al. Dimorphic histopathology of long-standing childhood-onset diabetes. Diabetologia 2010;53:690698.Google Scholar
Itoh, N, Hanafusa, T, Miyazaki, A, Miyagawa, J, Yamagata, K, Yamamoto, K, et al. Mononuclear cell infiltration and its relation to the expression of major histocompatibility complex antigens and adhesion molecules in pancreas biopsy specimens from newly diagnosed insulin-dependent diabetes mellitus patients. J Clin Invest 1993;92:23132322.Google Scholar
Butler, AE, Galasso, R, Meier, JJ, Basu, R, Rizza, RA, Butler, PC. Modestly increased beta cell apoptosis but no increased beta cell replication in recent-onset type 1 diabetic patients who died of diabetic ketoacidosis. Diabetologia 2007;50:23232331.Google Scholar
Clark, A, de Koning, EJ, Hattersley, AT, Hansen, BC, Yajnik, CS, Poulton, J. Pancreatic pathology in non-insulin dependent diabetes (NIDDM). Diabetes Res Clin Pract 1995;28(suppl):S39S47.Google Scholar
Rindi, G, Solcia, E. Endocrine hyperplasia and dysplasia in the pathogenesis of gastrointestinal and pancreatic endocrine tumors. Gastroenterol Clin North Am 2007;36:851865, vi.Google Scholar
Weidenheim, KM, Hinchey, WW, Campbell, WG Jr. Hyperinsulinemic hypoglycemia in adults with islet-cell hyperplasia and degranulation of exocrine cells of the pancreas. Am J Clin Pathol 1983;79:1424.Google Scholar
Ueda, Y, Kurihara, K, Kondoh, T, Okanoue, T, Chiba, T. Islet-cell hyperplasia causing hyperinsulinemic hypoglycemia in an adult. J Gastroenterol 1998;33:125128.Google Scholar
Kim, YW, Park, YK, Park, JH, Lee, SM, Lee, J, Ko, SW, et al. Islet cell hyperplasia of the pancreas presenting as hyperinsulinemic hypoglycemia in an adult. Yonsei Med J 2000;41:426429.Google Scholar
Starke, A, Saddig, C, Kirch, B, Tschahargane, C, Goretzki, P. Islet hyperplasia in adults: challenge to preoperatively diagnose non-insulinoma pancreatogenic hypoglycemia syndrome. World J Surg 2006;30:670679.Google Scholar
Asa, SL. Pancreatic endocrine tumors. Modern Pathol 2011;24(Suppl 2):S66S77.Google Scholar
Chetty, R, Kennedy, M, Ezzat, S, Asa, SL. Pancreatic endocrine pathology in von Hippel–Lindau disease: an expanding spectrum of lesions. Endocr Pathol 2004; 15:141148.Google Scholar
Anlauf, M, Schlenger, R, Perren, A, Bauersfeld, J, Koch, CA, Dralle, H, et al. Microadenomatosis of the endocrine pancreas in patients with and without the multiple endocrine neoplasia type 1 syndrome. Am J Surg Pathol 2006;30:560574.Google Scholar
Perigny, M, Hammel, P, Corcos, O, Larochelle, O, Giraud, S, Richard, S, et al. Pancreatic endocrine microadenomatosis in patients with von Hippel–Lindau disease: characterization by VHL/HIF pathway proteins expression. Am J Surg Pathol 2009;33:739748.Google Scholar
Laidlaw, GF. Nesidioblastoma, the islet tumor of the pancreas. Am J Pathol 1938;14:125134.Google Scholar
Ouyang, D, Dhall, D, Yu, R. Pathologic pancreatic endocrine cell hyperplasia. World J Gastroenterol 2011;17:137143.Google Scholar
Shah, JH, Maguire, DJ, Brown, D, Cotterill, A. The role of ATP sensitive channels in insulin secretion and the implications in persistent hyperinsulinemic hypoglycaemia of infancy (PHHI). Adv Exp Med Biol 2007;599:133138.Google Scholar
Kapoor, RR, James, C, Hussain, K. Hyperinsulinism in developmental syndromes. Endocr Dev 2009;14:95113.Google Scholar
Paloyan, E, Lawrence, AM, Straus, FH 2nd, Paloyan, D, Harper, PV, Cummings, D. Alpha cell hyperplasia in calcific pancreatitis associated with hyperparathyroidism. JAMA 1967;200:757761.Google Scholar
Henopp, T, Anlauf, M, Schmitt, A, Schlenger, R, Zalatnai, A, Couvelard, A, et al. Glucagon cell adenomatosis: a newly recognized disease of the endocrine pancreas. J Clin Endocrinol Metab 2009;94:213217.Google Scholar
Zhou, C, Dhall, D, Nissen, NN, Chen, CR, Yu, R. Homozygous P86S mutation of the human glucagon receptor is associated with hyperglucagonemia, alpha cell hyperplasia, and islet cell tumor. Pancreas 2009;38:941946.Google Scholar
Yu, R, Nissen, NN, Dhall, D, Heaney, AP. Nesidioblastosis and hyperplasia of alpha cells, microglucagonoma, and nonfunctioning islet cell tumor of the pancreas: review of the literature. Pancreas 2008;36:428431.Google Scholar
Mansour, JC, Chen, H. Pancreatic endocrine tumors. J Surg Res 2004;120:139161.Google Scholar
Rindi, G, Falconi, M, Klersy, C, Albarello, L, Boninsegna, L, Buchler, MW, et al. TNM staging of neoplasms of the endocrine pancreas: results from a large international cohort study. J Natl Cancer Inst 2012;104:764777.Google Scholar
Ellison, TA, Wolfgang, CL, Shi, C, Cameron, JL, Murakami, P, Mun, LJ, et al. A single institution’s 26-year experience with nonfunctional pancreatic neuroendocrine tumors: a validation of current staging systems and a new prognostic nomogram. Ann Surg 2014;259:204212.Google Scholar
Klimstra, DS, Arnold, R, Capella, C, Klöppel, G, Komminoth, P, Solcia, E, et al. Neuroendocrine neoplasms of the pancreas. In Bosman, F, Carneiro, F, eds. World Health Organization Classification of Tumours, Pathology and Genetics of Tumours of the Digestive System. Lyon: International Agency for Research on Cancer, 2010:322330.Google Scholar
Rindi, G, Arnold, R, Capella, C, Klimstra, DS, Klöppel, G, Komminoth, P, et al. Nomenclature and classification of digestive neuroendocrine tumours. In Bosman, F, Carneiro, F, eds. World Health Organization Classification of Tumours, Pathology and Genetics of Tumours of the Digestive System. Lyon: International Agency for Research on Cancer, 2010:1012.Google Scholar
Bosman, F, Carneiro, F. World Health Organization Classification of Tumours, Pathology and Genetics of Tumours of the Digestive System. Lyon: International Agency for Research on Cancer, 2010.Google Scholar
Rindi, G, Leiter, AB, Kopin, AS, Bordi, C, Solcia, E. The “normal” endocrine cell of the gut: changing concepts and new evidences. Ann N Y Acad Sci 2004;1014:112.Google Scholar
Rindi, G, Wiedenmann, B. Neuroendocrine neoplasms of the gut and pancreas: new insights. Nature reviews. Endocrinology 2012;8:5464.Google Scholar
Falconi, M, Bartsch, DK, Eriksson, B, Kloppel, G, Lopes, JM, O’Connor, JM, et al. ENETS Consensus Guidelines for the management of patients with digestive neuroendocrine neoplasms of the digestive system: well-differentiated pancreatic non-functioning tumors. Neuroendocrinology 2012;95:120134.Google Scholar
Rindi, G, Kloppel, G, Alhman, H, Caplin, M, Couvelard, A, de Herder, WW, et al. TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch 2006;449:395401.Google Scholar
Goodell, PP, Krasinskas, AM, Davison, JM, Hartman, DJ. Comparison of methods for proliferative index analysis for grading pancreatic well-differentiated neuroendocrine tumors. Am J Clin Pathol 2012;137:576582.Google Scholar
McCall, CM, Shi, C, Cornish, TC, Klimstra, DS, Tang, LH, Basturk, O, et al. Grading of well-differentiated pancreatic neuroendocrine tumors is improved by the inclusion of both Ki67 proliferative index and mitotic rate. Am J Surg Pathol 2013;37:16711677.Google Scholar
Couvelard, A, Deschamps, L, Ravaud, P, Baron, G, Sauvanet, A, Hentic, O, et al. Heterogeneity of tumor prognostic markers: a reproducibility study applied to liver metastases of pancreatic endocrine tumors. Mod Pathol 2009;22:273281.Google Scholar
Yang, Z, Tang, LH, Klimstra, DS. Effect of tumor heterogeneity on the assessment of Ki67 labeling index in well-differentiated neuroendocrine tumors metastatic to the liver: implications for prognostic stratification. Am J Surg Pathol 2011;35:853860.Google Scholar
Sobin, L, Gospodarowicz, M, Wittekind, C. TNM Classification of Malignant Tumours, 7th edn. Bognor Regis, UK: Wiley Blackwell, 2009.Google Scholar
Edge, SB, Byrd, DR, Compton, CC, Fritz, AG, Greene, FL, Trotti, A. AJCC Cancer Staging Manual. New York: Springer, 2010.Google Scholar
Franko, J, Feng, W, Yip, L, Genovese, E, Moser, AJ. Non-functional neuroendocrine carcinoma of the pancreas: incidence, tumor biology, and outcomes in 2158 patients. J Gastrointest Surg 2010;14:541548.Google Scholar
Basturk, O, Tang, L, Hruban, RH, Adsay, V, Yang, Z, Krasinskas, AM, et al. Poorly differentiated neuroendocrine carcinomas of the pancreas: a clinicopathologic analysis of 44 cases. Am J Surg Pathol 2014;38:437447.Google Scholar
Morohoshi, T, Held, G, Kloppel, G. Exocrine pancreatic tumours and their histological classification. A study based on 167 autopsy and 97 surgical cases. Histopathology 1983;7:645661.Google Scholar
O’Connor, TP, Wade, TP, Sunwoo, YC, Reimers, HJ, Palmer, DC, Silverberg, AB, et al. Small cell undifferentiated carcinoma of the pancreas. Report of a patient with tumor marker studies. Cancer 1992;70:15141519.Google Scholar
Fischer, L, Kleeff, J, Esposito, I, Hinz, U, Zimmermann, A, Friess, H, et al. Clinical outcome and long-term survival in 118 consecutive patients with neuroendocrine tumours of the pancreas. Br J Surg 2008;95:627635.Google Scholar
Pape, UF, Jann, H, Muller-Nordhorn, J, Bockelbrink, A, Berndt, U, Willich, SN, et al. Prognostic relevance of a novel TNM classification system for upper gastroenteropancreatic neuroendocrine tumors. Cancer 2008;113:256265.Google Scholar
Scarpa, A, Mantovani, W, Capelli, P, Beghelli, S, Boninsegna, L, Bettini, R, et al. Pancreatic endocrine tumors: improved TNM staging and histopathological grading permit a clinically efficient prognostic stratification of patients. Mod Pathol 2010;23:824833.Google Scholar
de Herder, WW, Niederle, B, Scoazec, JY, Pauwels, S, Kloppel, G, Falconi, M, et al. Well-differentiated pancreatic tumor/carcinoma: insulinoma. Neuroendocrinology 2006;84:183188.Google Scholar
Mathur, A, Gorden, P, Libutti, SK. Insulinoma. Surg Clin North Am 2009;89:11051121.Google Scholar
Oberg, K. Pancreatic endocrine tumors. Semin Oncol 2010;37:594618.Google Scholar
Vanderveen, K, Grant, C. Insulinoma. Cancer Treat Res 2010;153:235252.Google Scholar
Jensen, RT. Pancreatic endocrine tumors: recent advances. Ann Oncol 1999;10(suppl 4):170176.Google Scholar
Kent, RB 3rd, van Heerden, JA, Weiland, LH. Nonfunctioning islet cell tumors. Ann Surg 1981;193:185190.Google Scholar
Debas, HT, Mulvihill, SJ. Neuroendocrine gut neoplasms. Important lessons from uncommon tumors. Arch Surg 1994;129:965–71; discussion 71–72.Google Scholar
Caudill, JL, Humphrey, SK, Salomao, DR. Islet cell tumor of the pancreas: increasing diagnosis after instituting ultrasonography-guided fine needle aspiration. Acta Cytol 2008;52:4551.Google Scholar
Chatzipantelis, P, Salla, C, Konstantinou, P, Karoumpalis, I, Sakellariou, S, Doumani, I. Endoscopic ultrasound-guided fine-needle aspiration cytology of pancreatic neuroendocrine tumors: a study of 48 cases. Cancer 2008;114:255262.Google Scholar
Larghi, A, Capurso, G, Carnuccio, A, Ricci, R, Alfieri, S, Galasso, D, et al. Ki-67 grading of nonfunctioning pancreatic neuroendocrine tumors on histologic samples obtained by EUS-guided fine-needle tissue acquisition: a prospective study. Gastrointest Endosc 2012;76:570577.Google Scholar
Larghi, A, Lugli, F, Sharma, V, Carnuccio, A, Anastasi, F, Fusco, A, et al. Pancreatic metastases from a bronchopulmonary carcinoid diagnosed by endoscopic ultrasonography-guided fine-needle tissue acquisition. Pancreas 2012;41:502504.Google Scholar
McLean, AM, Fairclough, PD. Endoscopic ultrasound in the localisation of pancreatic islet cell tumours. Best practice and research. Clin Endocrinol Metab 2005;19:177193.Google Scholar
Rosch, T, Lightdale, CJ, Botet, JF, Boyce, GA, Sivak, MV Jr., Yasuda, K, et al. Localization of pancreatic endocrine tumors by endoscopic ultrasonography. N Engl J Med 1992;326:17211726.Google Scholar
Sundin, A, Vullierme, MP, Kaltsas, G, Plöckinger, U, Mallorca Consensus Conference Participants, European Neuroendocrine Tumor Society. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: radiological examinations. Neuroendocrinology 2009;90:167183.Google Scholar
Quaia, E, Stacul, F, Gaiani, S, Ricci, P, Passariello, R, Curzio, D, et al. Comparison of diagnostic performance of unenhanced vs SonoVue: enhanced ultrasonography in focal liver lesions characterization. The experience of three Italian centers. Radiol Med 2004;108:7181.Google Scholar
D’Onofrio, M, Mansueto, G, Falconi, M, Procacci, C. Neuroendocrine pancreatic tumor: value of contrast enhanced ultrasonography. Abdom Imaging 2004;29:246258.Google Scholar
Ichikawa, T, Peterson, MS, Federle, MP, Baron, RL, Haradome, H, Kawamori, Y, et al. Islet cell tumor of the pancreas: biphasic CT versus MR imaging in tumor detection. Radiology 2000;216:163171.Google Scholar
Owen, NJ, Sohaib, SA, Peppercorn, PD, Monson, JP, Grossman, AB, Besser, GM, et al. MRI of pancreatic neuroendocrine tumours. Br J Radiol 2001;74:968973.Google Scholar
Ricke, J, Klose, KJ. Imaging procedures in neuroendocrine tumours. Digestion 2000;62(suppl 1):3944.Google Scholar
Koukouraki, S, Strauss, LG, Georgoulias, V, Eisenhut, M, Haberkorn, U, Dimitrakopoulou-Strauss, A. Comparison of the pharmacokinetics of 68Ga-DOTATOC and [18F]FDG in patients with metastatic neuroendocrine tumours scheduled for 90Y-DOTATOC therapy. Eur J Nucl Med Mol Imaging 2006;33:11151122.Google Scholar
al-Kaisi, N, Weaver, MG, Abdul-Karim, FW, Siegler, E. Fine needle aspiration cytology of neuroendocrine tumors of the pancreas. A cytologic, immunocytochemical and electron microscopic study. Acta Cytol 1992;36:655660.Google Scholar
Bell, DA. Cytologic features of islet-cell tumors. Acta Cytol 1987;31:485492.Google Scholar
Collins, BT, Cramer, HM. Fine-needle aspiration cytology of islet cell tumors. Diagn Cytopathol 1996;15:3745.Google Scholar
Koss, LG, Melamed, MR. Koss’ Diagnostic Cytology and its Histopathologic Bases. Philadelphia, PA: Lippincott Williams & Wilkins, 2006.Google Scholar
Carstens, PH, Cressman, FK Jr. Malignant oncocytic carcinoid of the pancreas. Ultrastruct Pathol 1989;13:6975.Google Scholar
Gotchall, J, Traweek, ST, Stenzel, P. Benign oncocytic endocrine tumor of the pancreas in a patient with polyarteritis nodosa. Hum Pathol 1987;18:967969.Google Scholar
Hoang, MP, Hruban, RH, Albores-Saavedra, J. Clear cell endocrine pancreatic tumor mimicking renal cell carcinoma: a distinctive neoplasm of von Hippel–Lindau disease. Am J Surg Pathol 2001;25:602609.Google Scholar
Perez-Montiel, MD, Frankel, WL, Suster, S. Neuroendocrine carcinomas of the pancreas with “rhabdoid” features. Am J Surg Pathol 2003;27:642649.Google Scholar
Scoazec, JY, Couvelard, A, Monges, G, Leteurtre, E, Belleanee, G, Guyetant, S, et al. Well-differentiated grade 3 digestive neuroendocrine tumors: myth or reality? The PRONET study group. J Clin Oncol 2012;30:(suppl):abstract 4129.Google Scholar
Hijioka, S, Hosoda, W, Mizuno, N, Hara, K, Imaoka, H, Bhatia, V, et al. Does the WHO 2010 classification of pancreatic neuroendocrine neoplasms accurately characterize pancreatic neuroendocrine carcinomas? J Gastroenterol 2014;50:564572.Google Scholar
Rindi, G, Petrone, G, Inzani, F. The 2010 WHO classification of digestive neuroendocrine neoplasms: a critical appraisal four years after its introduction. Endocr Pathol 2014;25:186192.Google Scholar
Lloyd, RV, Mervak, T, Schmidt, K, Warner, TF, Wilson, BS. Immunohistochemical detection of chromogranin and neuron-specific enolase in pancreatic endocrine neoplasms. Am J Surg Pathol 1984;8:607614.Google Scholar
Mukai, K, Grotting, JC, Greider, MH, Rosai, J. Retrospective study of 77 pancreatic endocrine tumors using the immunoperoxidase method. Am J Surg Pathol 1982;6:387399.Google Scholar
Rindi, G, Bordi, C, La Rosa, S, Solcia, E, Delle Fave, G, Gruppo Italiano Patologi Apparato Digerente, et al. Gastroenteropancreatic (neuro)endocrine neoplasms: the histology report. Digest Liver Dis 2011;43(suppl 4):S356S360.Google Scholar
Larsson, LI, Grimelius, L, Hakanson, R, Rehfeld, JF, Stadil, F, Holst, J, et al. Mixed endocrine pancreatic tumors producing several peptide hormones. Am J Pathol 1975;79:271284.Google Scholar
Volante, M, Brizzi, MP, Faggiano, A, La Rosa, S, Rapa, I, Ferrero, A, et al. Somatostatin receptor type 2A immunohistochemistry in neuroendocrine tumors: a proposal of scoring system correlated with somatostatin receptor scintigraphy. Mod Pathol 2007;20:11721182.Google Scholar
Agaimy, A, Erlenbach-Wunsch, K, Konukiewitz, B, Schmitt, AM, Rieker, RJ, Vieth, M, et al. ISL1 expression is not restricted to pancreatic well-differentiated neuroendocrine neoplasms, but is also commonly found in well and poorly differentiated neuroendocrine neoplasms of extrapancreatic origin. Mod Pathol 2013;26:9951003.Google Scholar
Hermann, G, Konukiewitz, B, Schmitt, A, Perren, A, Kloppel, G. Hormonally defined pancreatic and duodenal neuroendocrine tumors differ in their transcription factor signatures: expression of ISL1, PDX1, NGN3, and CDX2. Virchows Arch 2011;459:147154.Google Scholar
Koo, J, Mertens, RB, Mirocha, JM, Wang, HL, Dhall, D. Value of Islet 1 and PAX8 in identifying metastatic neuroendocrine tumors of pancreatic origin. Mod Pathol 2012;25:893901.Google Scholar
Schmitt, AM, Riniker, F, Anlauf, M, Schmid, S, Soltermann, A, Moch, H, et al. Islet 1 (Isl1) expression is a reliable marker for pancreatic endocrine tumors and their metastases. Am J Surg Pathol 2008;32:420425.Google Scholar
Chandrasekharappa, SC, Guru, SC, Manickam, P, Olufemi, SE, Collins, FS, Emmert-Buck, MR, et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 1997;276:404407.Google Scholar
Verhoef, S, van Diemen-Steenvoorde, R, Akkersdijk, WL, Bax, NM, Ariyurek, Y, Hermans, CJ, et al. Malignant pancreatic tumour within the spectrum of tuberous sclerosis complex in childhood. Eur J Pediatr 1999;158:284287.Google Scholar
Latif, F, Tory, K, Gnarra, J, Yao, M, Duh, FM, Orcutt, ML, et al. Identification of the von Hippel–Lindau disease tumor suppressor gene. Science 1993;260:13171320.Google Scholar
Francalanci, P, Diomedi-Camassei, F, Purificato, C, Santorelli, FM, Giannotti, A, Dominici, C, et al. Malignant pancreatic endocrine tumor in a child with tuberous sclerosis. Am J Surg Pathol 2003;27:13861389.Google Scholar
Cupisti, K, Hoppner, W, Dotzenrath, C, Simon, D, Berndt, I, Roher, HD, et al. Lack of MEN1 gene mutations in 27 sporadic insulinomas. Eur J Clin Invest 2000;30:325329.Google Scholar
D’Adda, T, Pizzi, S, Azzoni, C, Bottarelli, L, Crafa, P, Pasquali, C, et al. Different patterns of 11q allelic losses in digestive endocrine tumors. Hum Pathol 2002;33:322329.Google Scholar
Gortz, B, Roth, J, Krahenmann, A, de Krijger, RR, Muletta-Feurer, S, Rutimann, K, et al. Mutations and allelic deletions of the MEN1 gene are associated with a subset of sporadic endocrine pancreatic and neuroendocrine tumors and not restricted to foregut neoplasms. Am J Pathol 1999;154:429436.Google Scholar
Hessman, O, Lindberg, D, Einarsson, A, Lillhager, P, Carling, T, Grimelius, L, et al. Genetic alterations on 3p, 11q13, and 18q in nonfamilial and MEN 1-associated pancreatic endocrine tumors. Genes Chromosomes Cancer 1999;26:258264.Google Scholar
Moore, PS, Missiaglia, E, Antonello, D, Zamo, A, Zamboni, G, Corleto, V, et al. Role of disease-causing genes in sporadic pancreatic endocrine tumors: MEN1 and VHL. Genes Chromosomes Cancer 2001;32:177181.Google Scholar
Jiao, Y, Shi, C, Edil, BH, de Wilde, RF, Klimstra, DS, Maitra, A, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 2011;331:11991203.Google Scholar
Corbo, V, Dalai, I, Scardoni, M, Barbi, S, Beghelli, S, Bersani, S, et al. MEN1 in pancreatic endocrine tumors: analysis of gene and protein status in 169 sporadic neoplasms reveals alterations in the vast majority of cases. Endocr Relat Cancer 2010;17:771783.Google Scholar
Chung, DC, Smith, AP, Louis, DN, Graeme-Cook, F, Warshaw, AL, Arnold, A. A novel pancreatic endocrine tumor suppressor gene locus on chromosome 3p with clinical prognostic implications. J Clin Invest 1997;100:404410.Google Scholar
Hruban, RH, Iacobuzio-Donahue, C, Wilentz, RE, Goggins, M, Kern, SE. Molecular pathology of pancreatic cancer. Cancer J 2001;7:251258.Google Scholar
Perren, A, Komminoth, P, Saremaslani, P, Matter, C, Feurer, S, Lees, JA, et al. Mutation and expression analyses reveal differential subcellular compartmentalization of PTEN in endocrine pancreatic tumors compared to normal islet cells. Am J Pathol 2000;157:10971103.Google Scholar
Roldo, C, Missiaglia, E, Hagan, JP, Falconi, M, Capelli, P, Bersani, S, et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol 2006;24:46774684.Google Scholar
Serrano, J, Goebel, SU, Peghini, PL, Lubensky, IA, Gibril, F, Jensen, RT. Alterations in the p16INK4a/CDKN2A tumor suppressor gene in gastrinomas. J Clin Endocrinol Metab 2000;85:41464156.Google Scholar
Yachida, S, Vakiani, E, White, CM, Zhong, Y, Saunders, T, Morgan, R, et al. Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors. Am J Surg Pathol 2012;36:173184.Google Scholar
Furlan, D, Cerutti, R, Uccella, S, La Rosa, S, Rigoli, E, Genasetti, A, et al. Different molecular profiles characterize well-differentiated endocrine tumors and poorly differentiated endocrine carcinomas of the gastroenteropancreatic tract. Clin Cancer Res 2004;10:947957.Google Scholar
Jonkers, YM, Claessen, SM, Perren, A, Schmitt, AM, Hofland, LJ, de Herder, W, et al. DNA copy number status is a powerful predictor of poor survival in endocrine pancreatic tumor patients. Endocr Relat Cancer 2007;14:769779.Google Scholar
Pizzi, S, Azzoni, C, Bassi, D, Bottarelli, L, Milione, M, Bordi, C. Genetic alterations in poorly differentiated endocrine carcinomas of the gastrointestinal tract. Cancer 2003;98:12731282.Google Scholar
Rigaud, G, Missiaglia, E, Moore, PS, Zamboni, G, Falconi, M, Talamini, G, et al. High resolution allelotype of nonfunctional pancreatic endocrine tumors: identification of two molecular subgroups with clinical implications. Cancer Res 2001;61:285292.Google Scholar
Missiaglia, E, Dalai, I, Barbi, S, Beghelli, S, Falconi, M, della Peruta, M, et al. Pancreatic endocrine tumors: expression profiling evidences a role for AKT-mTOR pathway. J Clin Oncol 2010;28:245255.Google Scholar
de Wilde, RF, Heaphy, CM, Maitra, A, Meeker, AK, Edil, BH, Wolfgang, CL, et al. Loss of ATRX or DAXX expression and concomitant acquisition of the alternative lengthening of telomeres phenotype are late events in a small subset of MEN-1 syndrome pancreatic neuroendocrine tumors. Mod Pathol 2012;25:10331039.Google Scholar
Corbo, V, Beghelli, S, Bersani, S, Antonello, D, Talamini, G, Brunelli, M, et al. Pancreatic endocrine tumours: mutational and immunohistochemical survey of protein kinases reveals alterations in targetable kinases in cancer cell lines and rare primaries. Ann Oncol 2012;23:127134.Google Scholar
Marinoni, I, Kurrer, AS, Vassella, E, Dettmer, M, Rudolph, T, Banz, V, et al. Loss of DAXX and ATRX are associated with chromosome instability and reduced survival of patients with pancreatic neuroendocrine tumors. Gastroenterology 2014;146:453460 e5.Google Scholar
Malpeli, G, Amato, E, Dandrea, M, Fumagalli, C, Debattisti, V, Boninsegna, L, et al. Methylation-associated down-regulation of RASSF1A and up-regulation of RASSF1C in pancreatic endocrine tumors. BMC Cancer 2011;11:351.Google Scholar
Stefanoli, M, La Rosa, S, Sahnane, N, Romualdi, C, Pastorino, R, Marando, A, et al. Prognostic relevance of aberrant DNA methylation in G1 and G2 pancreatic neuroendocrine tumors. Neuroendocrinology 2014;100:2634.Google Scholar
Jensen, RT, Cadiot, G, Brandi, ML, de Herder, WW, Kaltsas, G, Komminoth, P, et al. ENETS consensus guidelines for the management of patients with digestive neuroendocrine neoplasms: functional pancreatic endocrine tumor syndromes. Neuroendocrinology 2012;95:98119.Google Scholar
Kulke, MH, Anthony, LB, Bushnell, DL, de Herder, WW, Goldsmith, SJ, Klimstra, DS, et al. NANETS treatment guidelines: well-differentiated neuroendocrine tumors of the stomach and pancreas. Pancreas 2010;39:735752.Google Scholar
Oberg, K, Knigge, U, Kwekkeboom, D, Perren, A. Neuroendocrine gastro-entero-pancreatic tumors: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 2012;23(suppl 7):vii124130.Google Scholar
Yao, JC, Shah, MH, Tetsuhide, I, Lombard Bohas, C, Wolin, EM, Van Cutsem, E, et al. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med 2011;364:514523.Google Scholar
Raymond, E, Dahan, L, Raoul, JL, Bang, YJ, Borbath, I, Lombard-Bohas, C, et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med 2011;364:501513.Google Scholar
Caplin, ME, Pavel, M, Cwikla, JB, Phan, AT, Raderer, M, Sedlackova, E, et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Engl J Med 2014;371:224233.Google Scholar
Caplin, ME, Pavel, M, Ruszniewski, P. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Engl J Med 2014;371:15561557.Google Scholar
Rinke, A, Muller, HH, Schade-Brittinger, C, Klose, KJ, Barth, P, Wied, M, et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol 2009;27:46564663.Google Scholar
Ekeblad, S, Skogseid, B, Dunder, K, Oberg, K, Eriksson, B. Prognostic factors and survival in 324 patients with pancreatic endocrine tumor treated at a single institution. Clin Cancer Res 2008;14:77987803.Google Scholar
Ferrone, CR, Tang, LH, Tomlinson, J, Gonen, M, Hochwald, SN, Brennan, MF, et al. Determining prognosis in patients with pancreatic endocrine neoplasms: can the WHO classification system be simplified? J Clin Oncol 2007;25:56095615.Google Scholar
La Rosa, S, Klersy, C, Uccella, S, Dainese, L, Albarello, L, Sonzogni, A, et al. Improved histologic and clinicopathologic criteria for prognostic evaluation of pancreatic endocrine tumors. Hum Pathol 2009;40:3040.Google Scholar
Schmitt, AM, Anlauf, M, Rousson, V, Schmid, S, Kofler, A, Riniker, F, et al. WHO 2004 criteria and CK19 are reliable prognostic markers in pancreatic endocrine tumors. Am J Surg Pathol 2007;31:16771682.Google Scholar
Reyes, CV, Wang, T. Undifferentiated small cell carcinoma of the pancreas: a report of five cases. Cancer 1981;47:25002502.Google Scholar
Morant, R, Bruckner, HW. Complete remission of refractory small cell carcinoma of the pancreas with cisplatin and etoposide. Cancer 1989;64:20072009.Google Scholar
Rindi, G, Klersy, C, Inzani, F, Fellegara, G, Ampollini, L, Ardizzoni, A, et al. Grading the neuroendocrine tumors of the lung: an evidence-based proposal. Endocr Relat Cancer 2014;21:116.Google Scholar
Travis, WD, Rush, W, Flieder, DB, Falk, R, Fleming, MV, Gal, AA, et al. Survival analysis of 200 pulmonary neuroendocrine tumors with clarification of criteria for atypical carcinoid and its separation from typical carcinoid. Am J Surg Pathol 1998;22:934944.Google Scholar
Righi, L, Volante, M, Tavaglione, V, Bille, A, Daniele, L, Angusti, T, et al. Somatostatin receptor tissue distribution in lung neuroendocrine tumours: a clinicopathologic and immunohistochemical study of 218 “clinically aggressive” cases. Ann Oncol 2010;21:548555.Google Scholar
den Bakker, MA, Willemsen, S, Grunberg, K, Noorduijn, LA, van Oosterhout, MF, van Suylen, RJ, et al. Small cell carcinoma of the lung and large cell neuroendocrine carcinoma interobserver variability. Histopathology 2010;56:356363.Google Scholar
Ha, SY, Han, J, Kim, WS, Suh, BS, Roh, MS. Interobserver variability in diagnosing high-grade neuroendocrine carcinoma of the lung and comparing it with the morphometric analysis. Korean J Pathol 2012;46:4247.Google Scholar
Sorbye, H, Welin, S, Langer, SW, Vestermark, LW, Holt, N, Osterlund, P, et al. Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): the NORDIC NEC study. Ann Oncol 2013;24:152160.Google Scholar
Velayoudom-Cephise, FL, Duvillard, P, Foucan, L, Hadoux, J, Chougnet, CN, Leboulleux, S, et al. Are G3 ENETS neuroendocrine neoplasms heterogeneous? Endocr Relat Cancer 2013;20:649657.Google Scholar
Falconi, M, Plöckinger, U, Kwekkeboom, DJ, Manfredi, R, Korner, M, Kvols, L, et al. Well-differentiated pancreatic nonfunctioning tumors/carcinoma. Neuroendocrinology 2006;84:196211.Google Scholar
Guettier, JM, Gorden, P. Insulin secretion and insulin-producing tumors. Exp Rev Endocrinol Metab 2010;5:217227.Google Scholar
Metz, DC, Jensen, RT. Gastrointestinal neuroendocrine tumors: pancreatic endocrine tumors. Gastroenterology 2008;135:14691492.Google Scholar
Pelosi, G, Bresaola, E, Bogina, G, Pasini, F, Rodella, S, Castelli, P, et al. Endocrine tumors of the pancreas: Ki-67 immunoreactivity on paraffin sections is an independent predictor for malignancy. A comparative study with proliferating-cell nuclear antigen and progesterone receptor protein immunostaining, mitotic index, and other clinicopathologic variables. Hum Pathol 1996;27:11241134.Google Scholar
La Rosa, S, Rigoli, E, Uccella, S, Novario, R, Capella, C. Prognostic and biological significance of cytokeratin 19 in pancreatic endocrine tumours. Histopathology 2007;50:597606.Google Scholar
Chaudhry, A, Gobl, A, Eriksson, B, Skogseid, B, Oberg, K. Different splice variants of CD44 are expressed in gastrinomas but not in other subtypes of endocrine pancreatic tumors. Cancer Res 1994;54:981986.Google Scholar
Rahman, A, Maitra, A, Ashfaq, R, Yeo, CJ, Cameron, JL, Hansel, DE. Loss of p27 nuclear expression in a prognostically favorable subset of well-differentiated pancreatic endocrine neoplasms. Am J Clin Pathol 2003;120:685690.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×