Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-17T14:43:01.825Z Has data issue: false hasContentIssue false

6 - Estuarine Deposited Sediments: Sampling and Analysis

Published online by Cambridge University Press:  30 August 2017

R. J. Uncles
Affiliation:
Plymouth Marine Laboratory
S. B. Mitchell
Affiliation:
University of Portsmouth
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adachi, H., Yamano, H., Miyajima, T., Nakaoka, M., 2010. A simple and robust procedure for coring unconsolidated sediment in shallow water. Journal of Oceanography 66, 865872.Google Scholar
Agrawal, Y. C., McCave, I. N., Riley, J. B., 2007. Laser diffraction size analysis. In: Syvitski, J. P. M. (ed.), Principles, Methods and Application of Particle Size Analysis (3rd ed.). Cambridge: Cambridge University Press, pp. 119128.Google Scholar
Allen, T. A., 1990. Particle Size Measurement (4th edition). London: Chapman and Hall.CrossRefGoogle Scholar
Allen, J. R. L., Thornley, D. M., 2004. Laser granulometry of Holocene estuarine silts: Effects of hydrogen peroxide treatment. Holocene 14, 290295.Google Scholar
Amos, C. L., Sutherland, T. F., Radzijewski, B., Doucette, M., 1996. A rapid technique to determine bulk density of fine-grained sediments by X-ray computed tomography. Journal of Sedimentary Research. Section A, Sedimentary Petrology and Processes 66, 10231025.CrossRefGoogle Scholar
Apitz, S. E., 2010. Waste or resource? Classifying and scoring dredged material management strategies in terms of the waste hierarchy. Journal of Soils and Sediments 10, 16571668.CrossRefGoogle Scholar
Apitz, S. E., 2012. Conceptualizing the role of sediment in sustaining ecosystem services: Sediment-ecosystem regional assessment (SEcoRA). Science of the Total Environment 415, 930.CrossRefGoogle ScholarPubMed
Barnett, P. R. O., Watson, J., Connelly, D., 1984. A multiple corer for taking virtually undisturbed samples from shelf, bathyal and abyssal sediments. Oceanologica Acta 7, 399408.Google Scholar
Bartholdy, J., Pedersen, J. B. T., Bartholdy, A. T., 2010. Autocompaction of shallow silty salt marsh clay. Sedimentary Geology 223, 310319.CrossRefGoogle Scholar
Beuselinck, L., Govers, G., Poesen, J., Degraer, G., 1998. Grain-size analysis by laser diffractometry: Comparison with the sieve-pipette method. Catena 32, 193208.Google Scholar
Birch, G. F., Chang, C. H., Lee, J. H., Churchill, L. J., 2013. The use of vintage surficial sediment data and sedimentary cores to determine past and future trends in estuarine metal contamination (Sydney estuary, Australia). Science of the Total Environment 454, 542561.Google Scholar
Blomqvist, S., 1991. Quantitative sampling of soft-bottom sediments – problems and solutions. Marine Ecology Progress Series 72, 295304.CrossRefGoogle Scholar
Blott, S. J., Pye, K., 2001. GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms 26, 12371248.Google Scholar
Blott, S. J., Pye, K., 2006. Particle size distribution analysis of sand-sized particles by laser diffraction: an experimental investigation of instrument sensitivity and the effects of particle shape. Sedimentology 53, 671685.Google Scholar
Blott, S. J., Pye, K., 2008. Particle shape: A review and new methods of characterization and classification. Sedimentology 55, 3163.CrossRefGoogle Scholar
Blott, S. J., Pye, K., 2012. Particle size scales and classification of sediment types based on particle size distributions: Review and recommended procedures. Sedimentology 59, 20712096.CrossRefGoogle Scholar
Brady, N. C., 1984. The Nature and Properties of Soils, 9. New York: Macmillan Publishing Co.Google Scholar
Burningham, H., French, J., 2006. Morphodynamic behaviour of a mixed sand-gravel ebb-tidal delta: Deben estuary, Suffolk, UK. Marine Geology 225, 2344.CrossRefGoogle Scholar
Caeiro, S., Painho, M., Goovaerts, P., Costa, H., Sousa, S., 2003. Spatial sampling design for sediment quality assessment in estuaries. Environmental Modelling and Software 18, 853859.Google Scholar
Clifton, J., McDonald, P., Plater, A., Oldfield, F., 1999. An investigation into the efficiency of particle size separation using Stokes' Law. Earth Surface Processes and Landforms 24, 725730.3.0.CO;2-W>CrossRefGoogle Scholar
Coakley, J. P., Syvitski, J. M. P., 2007. SediGraph Technique. In: Syvitski, J. P. M., 2007. Principles, Methods and Application of Particle Size Analysis. Cambridge: Cambridge University Press, 129142.Google Scholar
Di Stefano, C., Ferro, V., Mirabile, S., 2010. Comparison between grain-size analyses using laser diffraction and sedimentation methods. Biosystems Engineering 106, 205215.Google Scholar
Environment Canada, 1994. Guidance Document on Collection and Preparation of Sediments for Physicochemical Characterisation and Biological Testing. Ottawa: Environmental Protection Series. Environment Canada.Google Scholar
Eshel, G., Levy, G. J., Mingelgrin, U., Singer, M. J., 2004. Critical evaluation of the use of laser diffraction for particle-size distribution analysis. Soil Science Society of America Journal 68, 736743.Google Scholar
Flemming, B. W., 2000. A revised textural classification of gravel-free muddy sediments on the basis of ternary diagrams. Continental Shelf Research 20, 11251137.CrossRefGoogle Scholar
Folk, R. L., 1954. The distinction between grain size and mineral composition in sedimentary-rock nomenclature. Journal of Geology 62, 344359.CrossRefGoogle Scholar
Gee, G. W., Or, D., 2002. Particle-size analysis. In: Dane, J. H., Topp, G. C. (eds.), Soil Science Society of America Book Series. Vol. 5, Methods of Soil Analysis. Part 4. Physical methods, 255293. Madison, WI: Soil Science Society of America.Google Scholar
Glew, J. R., 1991. Miniature gravity corer for recovering short sediment cores. Paleolimnology 5, 285287.Google Scholar
Glew, J. R., Smol, J. P., Last, W. M., 2002. Sediment core collection and extrusion. In: Last, W. S., Smol, J. P. (eds.), Tracking Environmental Change Using Lake Sediments, Basin Analysis, Coring, and Chronological Techniques Developments in Paleoenvironmental Research. London: Kluwer Academic Publishers. 73105.CrossRefGoogle Scholar
Goossens, D., 2008. Techniques to measure grain-size distributions of loamy sediments: A comparative study of ten instruments for wet analysis. Sedimentology 55, 6596.CrossRefGoogle Scholar
Grabowski, R. C., Wharton, G., Davies, G. R., Droppo, I. G., 2012. Spatial and temporal variations in the erosion threshold of fine riverbed sediments. Journal of Soils and Sediments 12, 11741188. doi:10.1007/s11368-012-0534-9.CrossRefGoogle Scholar
Graham, D. J., Midgley, N. G., 2000. Graphical representation of particle shape using triangular diagrams: An Excel spreadsheet method. Earth Surface Processes and Landforms 25, 14731477.Google Scholar
Gray, A. B., Pasternack, G. B., Watson, E. B., 2010. Hydrogen peroxide treatment effects on the particle size distribution of alluvial and marsh sediments. Holocene 20, 293301.CrossRefGoogle Scholar
IAEA, 2003. Collection and Preparation of Bottom Sediment Samples for Analysis of RadioNuclides and Trace Elements. Vienna: International Atomic Energy Agency.Google Scholar
Inglett, P. W., Viollier, E., Roychoudhury, A. N., Van Cappellen, P., 2004. A new idea in marsh coring: The wedge. Soil Science Society of America Journal 68, 705708.Google Scholar
Jahnke, R. A., Knight, L. H., 1997. A gravity-driven, hydraulically damped multiple piston corer for sampling fine-grained sediments. Deep Sea Research, Part I 44, 713718.Google Scholar
Jones, B., Phimester, K. F., Hunter, I. G., Blanchon, P., 1992. A quick, inexpensive, self-contained coring system for use underwater. Journal of Sedimentary Petrology 62, 725728.Google Scholar
Kersten, M., Smedes, F., 2002. Normalization procedures for sediment contaminants in spatial and temporal trend monitoring. Journal of Environmental Monitoring 4, 109115.Google Scholar
Konert, M., Vandenberghe, J., 1997. Comparison of laser grain size analysis with pipette and sieve analysis: A solution for the underestimation of the clay fraction. Sedimentology 44, 523535.Google Scholar
Kornijów, R., 2013. A new sediment slicer for rapid sectioning of the uppermost sediment cores from marine and freshwater habitats. Journal of Paleolimnology 49, 301304.Google Scholar
Krumbein, W. C., 1938. Size frequency distribution of sediments and the normal phi curve. Journal of Sedimentary Petrology 8, 8490.Google Scholar
Krumbein, W. C., Pettijohn, F. J., 1938. Manual of Sedimentary Petrography. New York: Plenum.Google Scholar
Kuenen, P. H., 1968. Settling convection and grain size analysis. Journal of sedimentary Petrology 38, 817831.Google Scholar
Kunze, G. W., Dixon, J. B., 1982. Pre-treatment for mineralogical analysis. In: Klute, A. (ed.), Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods – Agronomy Monograph no. 9, Madison, WI: Soil Science Society of America, Inc., pp. 91100.Google Scholar
Lane, C. M., Taffs, K. H., 2002. The LOG corer – a new device for obtaining short cores in soft lacustrine sediments. Journal of Paleolimnology 27, 145150.Google Scholar
Lewis, D. W., 1984. Practical Sedimentology. New York: Hutchinson Ross Publishing Company.Google Scholar
Lira, C., Pina, P., 2009. Automated grain shape measurements applied to beach sands. Journal of Coastal Research SI56, 1527–1531.Google Scholar
Loizeau, J. L., Arbouille, D., Santiago, S., Vernet, J. P., 1994. Evaluation of a wide range laser diffraction grain-size analyzer for use with sediments. Sedimentology 41, 353361.Google Scholar
Loring, D. H., 1991. Normalisation of heavy metal data from estuarine and coastal sediments. ICES Journal of Marine Science 48, 101115.Google Scholar
Lu, N., Ristow, G. H., Likos, W. J., 2000. The accuracy of hydrometer analysis for fine-grained clay particles. Geotechnical Testing Journal 23, 487495.Google Scholar
Macreadie, P. I., Hughes, A. R., Kimbro, D. L., 2013. Loss of 'blue carbon' from coastal salt marshes following habitat disturbance. PLoS ONE 8, 7, e69244.Google Scholar
Matthews, M. D., 2007. The effect of grain shape and density on size measurement. In: Syvitski, J. P. M. (ed.). Principles, Methods and Application of Particle Size Analysis. Cambridge: Cambridge University Press, 2233.Google Scholar
Mazik, K., Curtis, N., Fagan, M. J., Taft, S., Elliott, M., 2008. Accurate quantification of the influence of benthic macro- and meio-fauna on the geometric properties of estuarine muds by micro computer tomography. Journal of Experimental Marine Biology and Ecology 354, 192201.CrossRefGoogle Scholar
McCave, I. N., Bryant, R. J., Cook, H. F., Coughanowr, C. A., 1986. Evaluation of a laser-diffraction analyzer for use with natural sediments. Journal of Sedimentary Petrology 56, 561564.CrossRefGoogle Scholar
Milligan, T. G., Kranck, K., 2007. Electroresistance particle size analyzers. In: Syvitski, J. P. M., 2007. Principles, Methods and Application of Particle Size Analysis. Cambridge: Cambridge University Press, 109118.Google Scholar
Milligan, T. G., Law, B. A., 2013. Contaminants at the sediment-water interface: Implications for environmental impact assessment and effects monitoring. Environmental Science & Technology 47, 58285834.Google Scholar
Molinaroli, E., De Falco, G., Matteucci, G., Guerzoni, S., 2011. Sedimentation and time-of-transition techniques for measuring grain-size distributions in lagoonal flats: Comparability of results. Sedimentology 58, 14071413.Google Scholar
Mudroch, A., MacKnight, S. D. (eds.), 1994. Handbook of Techniques for Aquatic Sediments Sampling. Boca Raton, FL: CRC.Google Scholar
Muschenheim, D. K., Milligan, T. G., 1996. Flocculation and accumulation of fine drilling waste particles on the Scotian Shelf. Marine Pollution Bulletin 32, 740745.Google Scholar
O’Shea, F., 2016. Personal Communication. School of Geography, Queen Mary University of London, Mile End, London E1 4NS, UK.Google Scholar
Otvos, E. G., 2000. Beach ridges – definitions and significance. Geomorphology 32, 83108.Google Scholar
Pedersen, T. F., Malcolm, S. J., Sholkovitz, E. R., 1985. A lightweight gravity corer for undisturbed sampling of soft sediments. Canadian Journal of Earth Sciences 22, 133135.Google Scholar
Percival, J. B., Lindsay, P. J., 1997. Measurement of physical properties of sediments. In: Mudroch, A., Azcue, J. M., Mudroch, P. (eds.), Manual of Physico-Chemical Analysis of Aquatic Sediments. Boca Raton, FL: CRC Press, 738.Google Scholar
Poppe, L. J., Eliason, A. H., Fredericks, J. J., Rendigs, R. R., Blackwood, D., Polloni, C. F., 2003. Grain-size analysis of marine sediments: Methodology and data processing. U. S. Geological Survey Open-File Report 00–358.Google Scholar
Poppe, L. J., Eliason, A. H., Hastings, M. E., 2003. A Visual Basic program to classify sediments based on gravel-sand-silt-clay ratios. Computers and Geosciences 29, 805809.Google Scholar
Pye, K., Blott, S. J., 2004. Particle size analysis of sediments, soils and related particulate materials for forensic purposes using laser granulometry. Forensic Science International 144, 1927.Google Scholar
Rodriguez, J. G., Uriarte, A., 2009. Laser diffraction and dry-sieving grain size analyses undertaken on fine- and medium-grained sandy marine sediments: A note. Journal of Coastal Research 25, 257264.Google Scholar
Sansone, F. J., Hollibaugh, J. T., Vink, S. M., Chambers, R. M., Joye, S. B., Popp, B. N., 1994. Diver-operated piston corer for nearshore use. Estuaries 17, 716720.Google Scholar
Schuenemeyer, J. H., Drew, L. J., 2011. Statistics for Earth and Environmental Scientists. Hoboken, NJ: John Wiley and Sons. doi:10.1002/9780470650707.Google Scholar
Shepard, F. P., 1954. Nomenclature based on sand-silt-clay ratios. Journal of Sedimentary Petrology 24, 151158.Google Scholar
Shideler, G. L., 1976. Comparison of electronic particle counting and pipette techniques in routine mud analysis. Journal of Sedimentary Petrology 46, 10171025.Google Scholar
Simpson, S. L., Batley, G. E., Chariton, A. A., Stauber, J. L., King, C. K., Chapman, J. C., Hyne, R. V., Gale, S. A., Roach, A. C., Maher, W. A., 2005. Handbook for Sediment Quality Assessment. Bangor: CSIRO.Google Scholar
Sneed, E .D., Folk, R. L., 1958. Pebbles in the Lower Colorado River, Texas: A study in particle morphogenesis. The Journal of Geology 66, 114150.CrossRefGoogle Scholar
Solan, M., Kennedy, R., 2002. Observation and quantification of in situ animal-sediment relations using time-lapse sediment profile imagery (t-SPI). Marine Ecology Progress Series 228, 179191.CrossRefGoogle Scholar
St-Onge, G., Mulder, T., Francus, P., Long, B., 2007. Continuous Physical Properties of Cored Marine Sediments, Developments in Marine Geology, Volume 1. Amsterdam: Elsevier, 6398.Google Scholar
Stoodley, J., 1998. A monolith sampler for saltmarsh sediments. Journal of Sedimentary Research 68, 10461047.Google Scholar
Syvitski, J. P. M., 2007. Principles, Methods and Application of Particle Size Analysis. Cambridge: Cambridge University Press.Google Scholar
Teasdale, P. A., Collins, P. E. F., Firth, C. R., Cundy, A. B., 2011. Recent estuarine sedimentation rates from shallow intertidal environments in western Scotland: Implications for future sea-level trends and coastal wetland development. Quaternary Science Reviews 30, 109129.Google Scholar
Turner, R. E., Milan, C. S., Swenson, E. M., 2006. Recent volumetric changes in salt marsh soils. Estuarine Coastal and Shelf Science 69, 352359.Google Scholar
Urbanski, J., Wochna, A., Herman, A., 2011. Automated granulometric analysis and grain-shape estimation of beach sediments using object-based image analysis. Journal of Coastal Research SI64, 1745–1749.Google Scholar
U.S. EPA, 2001. Methods for Collection, Storage and Manipulation of Sediments for Chemical and Toxicological Analyses: Technical Manual. EPA 823-B-01-002. Washington, DC: U.S. Environmental Protection Agency, Office of Water.Google Scholar
U.S. EPA, 2005. Collection of Undisturbed Surface Sediments: Sampler Design and Initial Evaluation Testing. EPA/600/R-05/076. Las Vegas, NV: U.S. Environmental Protection Agency.Google Scholar
Weaver, P. P. E., Schultheiss, P. J., 1990. Current methods for obtaining, logging and splitting marine sediment cores. Marine Geophysical Research 12, 85100.Google Scholar
Webster, R., 1999. Sampling, estimating and understanding soil pollution. In: Gómez-Hernández, J., Soares, A., Froidevaux, R. (eds.), GeoEnvII 98—Geostatistics for Environmental Applications. Quantitative Geology and Geostatistics. Dordrecht: Kluwer Academic Publishers.Google Scholar
Wen, B. P., Aydin, A., Duzgoren-Aydin, N. S., 2002. A comparative study of particle size analyses by sieve-hydrometer and laser diffraction methods. Geotechnical Testing Journal 25, 434442.Google Scholar
Wentworth, C. K., 1922. A scale of grade and class terms for clastic sediments. Journal of Geology 30, 377392.Google Scholar
Winterwerp, J. C., van Kesteren, W. G. M., 2004. Introduction to the Physics of Cohesive Sediment in the Marine Environment. Vol. 56, Developments in Sedimentology. Oxford: Elsevier.Google Scholar
Wright, H. E., 1991. Coring tips. Journal of Paleolimnology 6, 3750.Google Scholar
Wright, H. E., 1993. Core compression. Limnology and Oceanography 38, 699701.Google Scholar
Xu, J. R., Wang, Y. S., Yin, J. P., Lin, J. P., 2011. New series of corers for taking undisturbed vertical samples of soft bottom sediments. Marine Environmental Research 71, 312316.Google Scholar
Ysebaert, T., Herman, P. M. J., Meire, P., Craeymeersch, J., Verbeek, H., Heip, C. H. R., 2003. Large-scale spatial patterns in estuaries: Estuarine macrobenthic communities in the Schelde estuary, NW Europe. Estuarine Coastal and Shelf Science 57, 335355.Google Scholar
Zingg, T., 1935. Beitrag zur schotteranalyse. Swiss Bulletin of Minerology and Petrology 15, 39140.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×