Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-29T11:29:43.063Z Has data issue: false hasContentIssue false

11 - Cognition and biomarkers in major depressive disorder: endophenotype or epiphenomenon?

from Part II - Underlying biological substrates associated with cognitive dysfunction in major depressive disorder

Published online by Cambridge University Press:  05 March 2016

Roger S. McIntyre
Affiliation:
University of Toronto
Danielle S. Cha
Affiliation:
University of Toronto
Get access
Type
Chapter
Information
Cognitive Impairment in Major Depressive Disorder
Clinical Relevance, Biological Substrates, and Treatment Opportunities
, pp. 145 - 159
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders (5th edn.). Arlington, VA: American Psychiatric Publishing.Google Scholar
Amico, F., Carballedo, A., Lisiecka, D., Fagan, A. J., Boyle, G., & Frodl, T. (2012). Functional anomalies in healthy individuals with a first degree family history of major depressive disorder. Biology of Mood & Anxiety Disorders, 2(1): 1.CrossRefGoogle ScholarPubMed
Austin, M. P., Mitchell, P., & Goodwin, G. M. (2001). Cognitive deficits in depression: Possible implications for functional neuropathology. British Journal of Psychiatry, 178(3): 200206.CrossRefGoogle ScholarPubMed
Barch, D. M., Sheline, Y. I., Csernansky, J. G., & Snyder, A. Z. (2003). Working memory and prefrontal cortex dysfunction: Specificity to schizophrenia compared with major depression. Biological Psychiatry, 53(5): 376384.CrossRefGoogle ScholarPubMed
Beblo, T., Baumann, B., Bogerts, B., Wallesch, C.-W., & Herrmann, M. (1999). Neuropsychological correlates of major depression: A short-term follow-up. Cognitive Neuropsychiatry, 4(4): 333341.Google Scholar
Beck, A. T. (2008). The evolution of the cognitive model of depression and its neurobiological correlates. American Journal of Psychiatry, 165(8): 969977.Google Scholar
Berman, K. F., Doran, A. R., Pickar, D., & Weinberger, D. R. (1993). Is the mechanism of prefrontal hypofunction in depression the same as in schizophrenia? Regional cerebral blood flow during cognitive activation. British Journal of Psychiatry, 162(2): 183192.Google Scholar
Bhagwagar, Z., Cowen, P. J., Goodwin, G. M., & Harmer, C. J. (2004). Normalization of enhanced fear recognition by acute SSRI treatment in subjects with a previous history of depression. American Journal of Psychiatry, 161(1): 166168.Google Scholar
Bhardwaj, A., Wilkinson, P., Srivastava, C., & Sharma, M. (2010). Cognitive deficits in euthymic patients with recurrent depression. Journal of Nervous and Mental Disease, 198(7): 513515.Google Scholar
Biringer, E., Mykletun, A., Sundet, K., Kroken, R., Stordal, K. I., & Lund, A. (2007). A longitudinal analysis of neurocognitive function in unipolar depression. Journal of Clinical and Experimental Neuropsychology, 29(8): 879891.Google Scholar
Burt, D. B., Zembar, M. J., & Niederehe, G. (1995). Depression and memory impairment: A meta-analysis of the association, its pattern, and specificity. Psychological Bulletin, 117(2): 285305.Google Scholar
Chan, S. W. Y., Goodwin, G. M., & Harmer, C. J. (2007). Highly neurotic never-depressed students have negative biases in information processing. Psychological Medicine, 37(9): 12811291.Google Scholar
Christensen, M. V., Kyvik, K. O., & Kessing, L. V. (2006). Cognitive function in unaffected twins discordant for affective disorder. Psychological Medicine, 36(8): 11191129.Google Scholar
Costafreda, S. G., Brammer, M., David, A. S., & Fu, C. H. Y. (2008). Predictors of amygdala activation during the processing of emotional stimuli: A meta-analysis of 385 PET and fMRI studies. Brain Research Reviews, 58(1): 5770.Google Scholar
Davidson, R. (2000). Affective style, psychopathology, and resilience: Brain mechanisms and plasticity. American Psychologist, 55(11): 11961214.Google Scholar
Disner, S. G., Beevers, C. G., Haigh, E. A. P., & Beck, A. T. (2011). Neural mechanisms of the cognitive model of depression. Nature Reviews Neuroscience, 12(8): 467477.CrossRefGoogle ScholarPubMed
Douglas, K. M. & Porter, R. J. (2009). Longitudinal assessment of neuropsychological function in major depression. Australian and New Zealand Journal of Psychiatry, 43(12): 11051117.Google Scholar
Douglas, K. M., Porter, R. J., Knight, R. G., & Maruff, P. (2011). Neuropsychological changes and treatment response in severe depression. British Journal of Psychiatry, 198(2): 115122.CrossRefGoogle ScholarPubMed
Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., … Weinberger, D. R. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112(2): 257269.Google Scholar
Foland-Ross, L. C. & Gotlib, I. H. (2012). Cognitive and neural aspects of information processing in major depressive disorder: An integrative perspective. Frontiers in Psychology, 3: 489.Google Scholar
Frodl, T., Meisenzahl, E. M., Zetzsche, T., Born, C., Groll, C., Jager, M., … Moller, H J. (2002). Hippocampal changes in patients with a first episode of major depression. American Journal of Psychiatry, 159(7): 11121118.Google Scholar
Glahn, D. C., Curran, J. E., Winkler, A. M., Carless, M. A., Kent, J. W., Charlesworth, J. C., … Blangero, J. (2012). High dimensional endophenotype ranking in the search for major depression risk genes. Biological Psychiatry, 71(1): 614.Google Scholar
Gollan, J. K., Pane, H. T., McCloskey, M. S., & Coccaro, E. F. (2008). Identifying differences in biased affective information processing in major depression. Psychiatry Research, 159(1–2): 1824.CrossRefGoogle ScholarPubMed
Gorwood, P., Corruble, E., Falissard, B., & Goodwin, G. M. (2008). Toxic effects of depression on brain function: Impairment of delayed recall and the cumulative length of depressive disorder in a large sample of depressed outpatients. American Journal of Psychiatry, 165(6): 731739.Google Scholar
Gotlib, I. H. & Joormann, J. (2010). Cognition and depression: Current status and future directions. Annual Review of Clinical Psychology, 27(6): 285312.Google Scholar
Gottesman, I. I. & Gould, T. D. (2003). The endophenotype concept in psychiatry: Etymology and strategic intentions. American Journal of Psychiatry, 160(4): 636645.Google Scholar
Greicius, M. D., Flores, B. H., Menon, V., Glover, G. H., Solvason, H. B., Kenna, H., … Schatzberg, A. F. (2007). Resting-state functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus. Biological Psychiatry, 62(5): 429437.CrossRefGoogle ScholarPubMed
Gualtieri, C. T., Johnson, L. G., & Benedict, K. B. (2006). Neurocognition in depression: Patients on and off medication versus healthy comparison subjects. Journal of Neuropsychiatry and Clinical Neurosciences, 18(2): 217225.CrossRefGoogle ScholarPubMed
Hariri, A. R., Goldberg, T. E., Mattay, V. S., Kolachana, V. S., Callicott, J. H., Egan, M. F., & Weinberger, D. R. (2003). Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. Journal of Neuroscience, 23(17): 66906694.Google Scholar
Hasler, G., Drevets, W. C., Manji, H. K., & Charney, D. S. (2004). Discovering endophenotypes for major depression. Neuropsychopharmacology, 29(10): 17651781.CrossRefGoogle ScholarPubMed
Hasselbalch, B. J., Knorr, U., Hasselbalch, S. G., Gade, A., & Kessing, L. V. (2012). Cognitive deficits in the remitted state of unipolar depressive disorder. Neuropsychology, 26(5): 642651.Google Scholar
Herrera-Guzmán, I., Gudayol-Ferré, E., Herrera-Abarca, J. E., Herrera-Guzmán, D., Montelongo-Pedraza, P., Padrós Blázquez, F., … Guàrdia-Olmos, J. (2010). Major depressive disorder in recovery and neuropsychological functioning: Effects of selective serotonin reuptake inhibitor and dual inhibitor depression treatments on residual cognitive deficits in patients with major depressive disorder in recovery. Journal of Affective Disorders, 123(1–3): 341350.Google Scholar
Hollon, S. D., Shelton, S. C., Wisniewski, S., Warden, D., Biggs, M. M., Friedman, E. S., … Rush, A. J. (2006). Presenting characteristics of depressed outpatients as a function of recurrence: Preliminary findings from the STAR*D clinical trial. Journal of Psychiatric Research, 40(1): 5969.Google Scholar
Huxley, T. H. H. (1874). On the hypothesis that animals are automata, and its history, Fortnightly Review, NS 16: 555580.Google Scholar
Iris, F. (2008). Biological modeling in the discovery and validation of cognitive dysfunctions biomarkers. In Turck, C. (ed.), Biomarkers for Psychiatric Disorders (pp. 473522). Boston, MA: Springer.Google Scholar
Joormann, J. & Gotlib, I. H. (2006). Is this happiness I see? Biases in the identification of emotional facial expressions in depression and social phobia. Journal of Abnormal Psychology, 115(4): 705714.Google Scholar
Kennedy, S. H., Downar, J., Evans, K. R., Feilotter, H., Lam, R. W., MacQueen, G. M., … Soares, C. (2012). The Canadian Biomarker Integration Network in Depression (CAN-BIND): Advances in response prediction. Current Pharmaceutical Design, 18(36): 59765989.Google Scholar
Koenen, K. C., Moffitt, T. E., Roberts, A. L., Martin, L. T., Kubzansky, L., Harrington, H., … Caspi, A. (2009). Childhood IQ and adult mental disorders: A test of the cognitive reserve hypothesis. American Journal of Psychiatry, 166(1): 5057.Google Scholar
Labermaier, C., Masana, M., & Müller, M. B. (2013). Biomarkers predicting antidepressant treatment response: How can we advance the field? Disease Markers, 35(1): 2331.CrossRefGoogle ScholarPubMed
Landrø, N. I., Stiles, T. C., & Sletvold, H. (2001). Neuropsychological function in nonpsychotic unipolar major depression. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 14(4): 233240.Google Scholar
Lazarus, R. S. (1984). On the primacy of cognition. American Psychologist, 39(2): 124129.CrossRefGoogle Scholar
Lee, R. S. C., Hermens, D. F., Porter, M. A., & Redoblado-Hodge, M. A. (2012). A meta-analysis of cognitive deficits in first-episode major depressive disorder. Journal of Affective Disorders, 140(2): 113124.Google Scholar
LeMoult, J., Joormann, J., Sherdell, L., Wright, Y., & Gotlib, I. H. (2009). Identification of emotional facial expressions following recovery from depression. Journal of Abnormal Psychology, 118(4): 828833.Google Scholar
Leppänen, J. M., Milders, M., Bell, J. S., Terriere, E., & Hietanen, J. K. (2004). Depression biases the recognition of emotionally neutral faces. Psychiatry Research, 128(2): 123133.CrossRefGoogle ScholarPubMed
Leuchter, A. F., Cook, I. A., Hamilton, S. P., Narr, K. L., Toga, A., Hunter, A. M., … Lebowitz, B. D. (2010). Biomarkers to predict antidepressant response. Current Psychiatry Reports, 12(6), 553562.Google Scholar
Lisiecka, D. M., Carballedo, A., Fagan, A. J., Connolly, G., Meaney, J., & Frodl, T. (2012). Altered inhibition of negative emotions in subjects at family risk of major depressive disorder. Journal of Psychiatric Research, 46(2): 181188.Google Scholar
Luby, J. L., Barch, D. M., Belden, A., Gaffrey, M. S., Tillman, R., Babb, C., … Botteron, K. N. (2012). Maternal support in early childhood predicts larger hippocampal volumes at school age. Proceedings of the National Academy of Sciences of the United States of America, 109(8): 28542859.Google Scholar
Maalouf, F. T., Brent, D., Clark, L., Tavitian, L., McHugh, R. M., Sahakian, B. J., & Phillips, M. L. (2011). Neurocognitive impairment in adolescent major depressive disorder: state vs. trait illness markers. Journal of Affective Disorders, 133(3): 625632.Google Scholar
MacQueen, G. M., Galway, T. M., Hay, J., Young, L. T., & Joffe, J. T. (2002). Recollection memory deficits in patients with major depressive disorder predicted by past depressions but not current mood state or treatment status. Psychological Medicine, 32(2): 251258.Google Scholar
Majer, M., Ising, M., Künzel, H., Binder, E. B., Holsboer, F., & Modell, S. (2004). Impaired divided attention predicts delayed response and risk to relapse in subjects with depressive disorders. Psychological Medicine, 34(8): 14531463.CrossRefGoogle ScholarPubMed
Mannie, Z. N., Harmer, C. J., Cowen, P. J., & Norbury, R. (2010). A functional magnetic resonance imaging study of verbal working memory in young people at increased familial risk of depression. Biological Psychiatry, 67(5): 471477.Google Scholar
Marvel, C. L. & Paradiso, S. (2004). Cognitive and neurological impairment in mood disorders. Psychiatric Clinics of North America, 27(1): 1936, vii–viii.Google Scholar
McDermott, L. M. & Ebmeier, K. P. (2009). A meta-analysis of depression severity and cognitive function. Journal of Affective Disorders, 119(1–3): 18.Google Scholar
McIntyre, R. S., Cha, D. S., Soczynska, J. K., Woldeyohannes, H. O., Gallaugher, L. A., Kudlow, P., … Baskaran, A. (2013). Cognitive deficits and functional outcomes in major depressive disorder: determinants, substrates, and treatment interventions. Depression and Anxiety, 30(6): 515527.Google Scholar
McIntyre, R. S., Lophaven, S., & Olsen, C. K. (2014). A randomized, double-blind, placebo-controlled study of vortioxetine on cognitive function in depressed adults. International Journal of Neuropsychopharmacology, 17(10): 15571567.Google Scholar
Meneses, A. (1999). 5-HT system and cognition. Neuroscience and Biobehavioral Reviews, 23(8): 11111125.Google Scholar
Millan, M. J., Agid, Y., Brüne, M., Bullmore, E. T., Carter, C. S., Clayton, N. S., … Young, L. J. (2012). Cognitive dysfunction in psychiatric disorders: Characteristics, causes and the quest for improved therapy. Nature Reviews Drug Discovery, 11(2): 141168.Google Scholar
Neu, P., Kiesslinger, U., Schlattmann, P., & Reischies, F. M. (2001). Time-related cognitive deficiency in four different types of depression. Psychiatry Research, 103(2–3): 237247.Google Scholar
Paelecke-Habermann, Y., Pohl, J., & Leplow, B. (2005). Attention and executive functions in remitted major depression patients. Journal of Affective Disorders, 89(1–3): 125135.Google Scholar
Papakostas, G. I. (2014). Cognitive symptoms in patients with major depressive disorder and their implications for clinical practice. Journal of Clinical Psychiatry, 75(1): 814.CrossRefGoogle ScholarPubMed
Perlstein, W. M., Elbert, T., & Stenger, V. A. (2002). Dissociation in human prefrontal cortex of affective influences on working memory-related activity. Proceedings of the National Academy of Sciences of the United States of America, 99(3): 17361741.CrossRefGoogle ScholarPubMed
Pessoa, L. (2008). On the relationship between emotion and cognition. Nature Reviews Neuroscience, 9: 148158.Google Scholar
Peterson, B. S. & Weissman, M. M. (2011). A brain-based endophenotype for major depressive disorder. Annual Review of Medicine, 62: 461474.Google Scholar
Ramel, W., Goldin, P. R., Eyler, L. T., Brown, G. G., Gotlib, I. H., & McQuaid, J. R. (2007). Amygdala reactivity and mood-congruent memory in individuals at risk for depressive relapse. Biological Psychiatry, 61(2): 231239.CrossRefGoogle ScholarPubMed
Raskin, J., Wiltse, C. G., Siegal, A., Sheikh, J., Xu, J., Dinkel, J. J., … Mohs, R. C. (2007). Efficacy of duloxetine on cognition, depression, and pain in elderly patients with major depressive disorder. American Journal of Psychiatry, 164(6): 900909.Google Scholar
Reppermund, S., Ising, M., Lucae, S., & Zihl, J. (2009). Cognitive impairment in unipolar depression is persistent and non-specific: Further evidence for the final common pathway disorder hypothesis. Psychological Medicine, 39(4): 603614.Google Scholar
Rock, P. L., Roiser, J. P., Riedel, W. J., & Blackwell, A. D. (2014). Cognitive impairment in depression: A systematic review and meta-analysis. Psychological Medicine, 44(10): 20292040.Google Scholar
Roiser, J. P. & Sahakian, B. J. (2013). Hot and cold cognition in depression. CNS Spectrums, 18(3): 139149.CrossRefGoogle ScholarPubMed
Sarosi, A., Gonda, X., Balogh, G., Domotor, E., Szekely, A., Hejjas, K., … Faludi, G. (2008). Association of the STin2 polymorphism of the serotonin transporter gene with a neurocognitive endophenotype in major depressive disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 32(7): 16671672.Google Scholar
Schlaepfer, T. E., Bewernick, B. H., Kayser, S., Mädler, B., & Coenen, V. A. (2013). Rapid effects of deep brain stimulation for treatment-resistant major depression. Biological Psychiatry, 73(12): 12041212.Google Scholar
Schmidt, H. D., Shelton, R. C., & Duman, R. S. (2011). Functional biomarkers of depression: Diagnosis, treatment, and pathophysiology. Neuropsychopharmacology, 36(12): 23752394.Google Scholar
Siegle, G. J., Steinhauer, S. R., Thase, M. E., Stenger, V. A., & Carter, C. S. (2002). Can’t shake that feeling: Event-related fMRI assessment of sustained amygdala activity in response to emotional information in depressed individuals. Biological Psychiatry, 51(9): 693707.Google Scholar
Sumner, J. A., Griffith, J. W., & Mineka, S. (2010). Overgeneral autobiographical memory as a predictor of the course of depression: A meta-analysis. Behaviour Research and Therapy, 48(7): 614625.CrossRefGoogle ScholarPubMed
Surguladze, S. A., Young, A. W., Senior, C., Brébion, G., Travis, M. J., & Phillips, M. L. (2004). Recognition accuracy and response bias to happy and sad facial expressions in patients with major depression. Neuropsychology, 18(2): 212218.Google Scholar
Tarbuck, A. F. & Paykel, E. S. (1995). Effects of major depression on the cognitive function of younger and older subjects. Psychological Medicine, 25(2): 285295.Google Scholar
Teicher, M. H., Anderson, C. M., & Polcari, A. (2012). Childhood maltreatment is associated with reduced volume in the hippocampal subfields CA3, dentate gyrus, and subiculum. Proceedings of the National Academy of Sciences of the United States of America, 109(9): E563E572.Google Scholar
Trichard, C., Martinot, J. L., Alagille, M., Masure, M. C., Hardy, P., Ginestet, D., & Féline, A. (1995). Time course of prefrontal lobe dysfunction in severely depressed in-patients: A longitudinal neuropsychological study. Psychological Medicine, 25(1): 7985.CrossRefGoogle ScholarPubMed
Van Oostrom, I., Franke, B., Vasquez, A. A., Rinck, M., Tendolkar, I., Verhagen, M., … Janzing, J. G. E. (2013). Never-depressed females with a family history of depression demonstrate affective bias. Psychiatry Research, 205(1–2): 5458.Google Scholar
Weiland-Fiedler, P., Erickson, K., Waldeck, T., Luckenbaugh, D. A., Pike, D., Bonne, O., … Neumeister, A. (2004). Evidence for continuing neuropsychological impairments in depression. Journal of Affective Disorders, 82(2): 253258.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×