Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-09T21:29:37.265Z Has data issue: false hasContentIssue false

14 - Bone cell mechanobiology using micro- and nano-techniques

from Part II - Recent progress in cell mechanobiology

Published online by Cambridge University Press:  05 November 2015

Yu Sun
Affiliation:
University of Toronto
Deok-Ho Kim
Affiliation:
University of Washington
Craig A. Simmons
Affiliation:
University of Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Integrative Mechanobiology
Micro- and Nano- Techniques in Cell Mechanobiology
, pp. 245 - 265
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ajubi, N. E., Klein-Nulend, J., Nijweide, P. J., Vrijheid-Lammers, T., Alblas, M. J. and Burger, E. H. 1996. “Pulsating fluid flow increases prostaglandin production by cultured chicken osteocytes–a cytoskeleton-dependent process.” Biochemical and Biophysical Research Communications 225: 6268.CrossRefGoogle ScholarPubMed
Bergmann, P. and Schoutens, A. 1995. “Prostaglandins and bone.” Bone 16: 485488.Google ScholarPubMed
Bonewald, L. F. and Johnson, M. L. 2008. “Osteocytes, mechanosensing and Wnt signaling.” Bone 42: 606–15.CrossRefGoogle ScholarPubMed
Boyle, W. J., Simonet, W. S. and Lacey, D. L. 2003. “Osteoclast differentiation and activation.” Nature 423: 337342.CrossRefGoogle ScholarPubMed
Burr, D. 2002. “Targeted and nontargeted remodeling.” Bone 30: 24.CrossRefGoogle ScholarPubMed
Burr, D. B., Forwood, M. R., Fyhrie, D. P., Martin, R. B., Schaffler, M. B. and Turner, C. H. 1997. “Bone microdamage and skeletal fragility in osteoporotic and stress fractures.” Journal of Bone and Mineral Research 12: 615.CrossRefGoogle ScholarPubMed
Cane, V., Marotti, G., Volpi, G., Zaffe, D., Palazzini, S., Remaggi, F. and Muglia, M. A. 1982. “Size and density of osteocyte lacunae in different regions of long bones.” Calcified Tissue International 34: 558563.CrossRefGoogle ScholarPubMed
Chen, J.-H., Liu, C., You, L. and Simmons, C. A. 2010. “Boning up on Wolff’s Law: mechanical regulation of the cells that make and maintain bone.” Journal of Biomechanics 43: 108118.CrossRefGoogle ScholarPubMed
Cheung, W. Y., Liu, C., Tonelli-Zasarsky, R. M. L., Simmons, C. A. and You, L. 2011. “Osteocyte apoptosis is mechanically regulated and induces angiogenesis in vitro.” Journal of Orthopaedic Research 29: 523530.CrossRefGoogle ScholarPubMed
Cowin, S. C., Gailani, G. and Benalla, M. 2009. “Hierarchical poroelasticity: movement of interstitial fluid between porosity levels in bones.” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367: 34013444.CrossRefGoogle ScholarPubMed
Doty, S. B. 1981. “Morphological evidence of gap junctions between bone cells.” Calcified Tissue International 33: 509512.CrossRefGoogle ScholarPubMed
Feng, X., Du, W., Luo, Q. and Liu, B. F. 2009. “Microfluidic chip: next-generation platform for systems biology.” Anal Chim Acta 650: 8397.CrossRefGoogle ScholarPubMed
Fox, S., Chambers, T. and Chow, J. 1996. “Nitric oxide is an early mediator of the increase in bone formation by mechanical stimulation.” American Journal of Physiology-Endocrinology and Metabolism 33: E955.CrossRefGoogle Scholar
Fratzl, P., Gupta, H. S., Paschalis, E. P. and Roschger, P. 2004. “Structure and mechanical quality of the collagen-mineral nano-composite in bone.” Journal of Materials Chemistry 14: 21152123.CrossRefGoogle Scholar
Fritton, S. P., McLeod, K. J. and Rubin, C. T. 2000. “Quantifying the strain history of bone: spatial uniformity and self-similarity of low-magnitude strains.” Journal of Biomechanics 33: 317325.CrossRefGoogle ScholarPubMed
Frost, H. M. 1990. “Skeletal structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff’s law: the bone modeling problem.” Anatomical Record 226: 403413.CrossRefGoogle ScholarPubMed
Fukumoto, S. and Martin, T. J. 2009. “Bone as an endocrine organ.” Trends in Endocrinology and Metabolism 20: 230236.CrossRefGoogle ScholarPubMed
Gailani, G. B., Benalla, M., Mahamud, R., Cowin, S. C. and Cardoso, L. L. 2009. “Experimental protocol for the measurement of the permeability of a single osteon.” J Biomech Eng 131: 101007.CrossRefGoogle Scholar
Gardinier, J. D., Majumdar, S., Duncan, R. L. and Wang, L. 2009a. “Cyclic hydraulic pressure and fluid flow differentially modulate cytoskeleton re-organization in MC3T3 osteoblasts.” Cellular and Molecular Bioengineering 2: 133143.CrossRefGoogle ScholarPubMed
Gardinier, J. D., Majumdar, S., Duncan, R. L. and Wang, L. 2009b. “Cyclic hydraulic pressure and fluid flow differentially modulate cytoskeleton re-organization in MC3T3 osteoblasts.” Cell Mol Bioeng 2: 133143.CrossRefGoogle ScholarPubMed
Gardinier, J. D., Townend, C. W., Jen, K.-P., Wu, Q., Duncan, R. L. and Wang, L. 2010. “In situ permeability measurement of the mammalian lacunar-canalicular system.” Bone 46: 10751081.CrossRefGoogle ScholarPubMed
Genetos, D. C., Geist, D. J., Liu, D., Donahue, H. J. and Duncan, R. L. 2005. “Fluid shear-Induced ATP secretion mediates prostaglandin release in MC3T3-E1 osteoblasts.” Journal of Bone and Mineral Research 20.CrossRefGoogle ScholarPubMed
Genetos, D. C., Kephart, C. J., Zhang, Y., Yellowley, C. E. and Donahue, H. J. 2007. “Oscillating fluid flow activation of gap junction hemichannels induces ATP release from MLO-Y4 osteocytes.” Journal of Cellular Physiology 212: 207214.CrossRefGoogle ScholarPubMed
Guo, X. E., Takai, E., Jiang, X., Xu, Q., Whitesides, G. M., Yardley, J. T., Hung, C. T., et al. 2006. “Intracellular calcium waves in bone cell networks under single cell nanoindentation.” MCB Molecular and Cellular Biomechanics 3: 95107.Google ScholarPubMed
Hauge, E. M., Qvesel, D., Eriksen, E. F., Mosekilde, L. and Melsen, F. 2001. “Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers.” Journal of Bone and Mineral Research 16: 15751582.CrossRefGoogle ScholarPubMed
Hofbauer, L. C., Khosla, S., Dunstan, C. R., Lacey, D. L., Boyle, W. J. and Riggs, B. L. 2000. “The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption.” Journal of Bone and Mineral Research 15: 212.CrossRefGoogle ScholarPubMed
Hung, C. T., Pollack, S. R., Reilly, T. M. and Brighton, C. T. 1995. “Real-time calcium response of cultured bone cells to fluid flow.” Clinical Orthopaedics and Related Research: 256269.Google Scholar
Huo, B., Lu, X. L., Costa, K. D., Xu, Q. and Guo, X. E. 2010. “An ATP-dependent mechanism mediates intercellular calcium signaling in bone cell network under single cell nanoindentation.” Cell Calcium 47: 234–41.CrossRefGoogle ScholarPubMed
Jacobs, C. R., Yellowley, C. E., Davis, B. R., Zhou, Z., Cimbala, J. M. and Donahue, H. J. 1998. “Differential effect of steady versus oscillating flow on bone cells.” Journal of Biomechanics 31: 969976.CrossRefGoogle ScholarPubMed
Johnson, D. L., Mcallister, T. N. and Frangos, J. A. 1996. “Fluid flow stimulates rapid and continuous release of nitric oxide in osteoblasts.” American Journal of Physiology-Endocrinology And Metabolism 34: E205.CrossRefGoogle Scholar
Kamel, M. A., Picconi, J. L., Lara-Castillo, N. and Johnson, M. L. 2010. “Activation of β-catenin signaling in MLO-Y4 osteocytic cells versus 2T3 osteoblastic cells by fluid flow shear stress and PGE2: Implications for the study of mechanosensation in bone.” Bone 47: 872881.CrossRefGoogle Scholar
Kamioka, H., Sugawara, Y., Murshid, S. A., Ishihara, Y., Honjo, T. and Takano-Yamamoto, T. 2006. “Fluid shear stress induces less calcium response in a single primary osteocyte than in a single osteoblast: implication of different focal adhesion formation.” Journal of Bone and Mineral Research 21: 10121021.CrossRefGoogle Scholar
Kato, Y., Windle, J. J., Koop, B. A., Mundy, G. R. and Bonewald, L. F. 1997. “Establishment of an osteocyte-like cell line, MLO-Y4.” Journal of Bone and Mineral Research 12: 20142023.CrossRefGoogle ScholarPubMed
Kennedy, O. D., Herman, B. C., Laudier, D. M., Majeska, R. J., Sun, H. B. and Schaffler, M. B. 2012. “Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations.” Bone 50: 11151122.CrossRefGoogle ScholarPubMed
Kidd, L. J., Stephens, A. S., Kuliwaba, J. S., Fazzalari, N. L., Wu, A. C. K. and Forwood, M. R. 2010. “Temporal pattern of gene expression and histology of stress fracture healing.” Bone 46: 369378.CrossRefGoogle ScholarPubMed
King, G. J. and Holtrop, M. E. 1975. “Actin-like filaments in bone cells of cultured mouse calvaria as demonstrated by binding to heavy meromyosin.” Journal of Cell Biology 66: 445451.CrossRefGoogle ScholarPubMed
Klein-Nulend, J., van der Plas, A., Semeins, C. M., Ajubi, N. E., Frangos, J. A., Nijweide, P. J. and Burger, E. H. 1995. “Sensitivity of osteocytes to biomechanical stress in vitro.” FASEB Journal 9: 441445.CrossRefGoogle ScholarPubMed
Kleinnulend, J., Semeins, C., Ajubi, N., Nijweide, P. and Burger, E. 1995. “Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts-correlation with prostaglandin upregulation.” Biochemical and Biophysical Research Communications 217: 640648.CrossRefGoogle Scholar
Knothe Tate, M. L. and Knothe, U. 2000. “An ex vivo model to study transport processes and fluid flow in loaded bone.” Journal of Biomechanics 33: 247254.CrossRefGoogle Scholar
Knothe Tate, M. L., Steck, R., Forwood, M. R. and Niederer, P. 2000. “In vivo demonstration of load-induced fluid flow in the rat tibia and its potential implications for processes associated with functional adaptation.” Journal of Experimental Biology 203: 27372745.CrossRefGoogle ScholarPubMed
Kou, S., Pan, L., van Noort, D., Meng, G., Wu, X., Sun, H., Xu, J. and Lee, I. 2011. “A multishear microfluidic device for quantitative analysis of calcium dynamics in osteoblasts.” Biochem Biophys Res Commun 408: 350355.CrossRefGoogle ScholarPubMed
Lacey, D., Timms, E., Tan, H.-L., Kelley, M., Dunstan, C., Burgess, T., Elliott, R., et al. 1998. “Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation.” Cell 93: 165176.CrossRefGoogle ScholarPubMed
Lau, E., Al-Dujaili, S., Guenther, A., Liu, D., Wang, L. and You, L. 2010. “Effect of low-magnitude, high-frequency vibration on osteocytes in the regulation of osteoclasts.” Bone 46: 15081515.CrossRefGoogle ScholarPubMed
Liu, C., Zhao, Y., Cheung, W. Y., Gandhi, R., Wang, L. and You, L. 2010. “Effects of cyclic hydraulic pressure on osteocytes.” Bone 46: 14491456.CrossRefGoogle ScholarPubMed
Lu, X. L., Huo, B., Chiang, V. and Guo, X. E. 2012. “Osteocytic network is more responsive in calcium signaling than osteoblastic network under fluid flow.” J Bone Miner Res 27: 563574.CrossRefGoogle ScholarPubMed
Mak, A. F. T., Qin, L., Hung, L. K., Cheng, C. W. and Tin, C. F. 2000. “A histomorphometric observation of flows in cortical bone under dynamic loading.” Microvascular Research 59: 290300.CrossRefGoogle ScholarPubMed
Malone, A. M. D., Anderson, C. T., Tummala, P., Kwon, R. Y., Johnston, T. R., Stearns, T. and Jacobs, C. R. 2007. “Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism.” Proceedings of the National Academy of Sciences of the United States of America 104: 1332513330.CrossRefGoogle ScholarPubMed
Martin, R. 2007. “Targeted bone remodeling involves BMU steering as well as activation.” Bone 40: 15741580.CrossRefGoogle ScholarPubMed
Matsuo, K. and Irie, N. 2008. “Osteoclast-osteoblast communication.” Archives of Biochemistry and Biophysics 473: 201209.CrossRefGoogle ScholarPubMed
McGarry, J. G., Klein-Nulend, J. and Prendergast, P. J. 2005. “The effect of cytoskeletal disruption on pulsatile fluid flow-induced nitric oxide and prostaglandin E2 release in osteocytes and osteoblasts.” Biochemical and Biophysical Research Communications 330: 341348.CrossRefGoogle ScholarPubMed
McNamara, L., Majeska, R., Weinbaum, S., Friedrich, V. and Schaffler, M. 2009. “Attachment of osteocyte cell processes to the bone matrix.” The Anatomical Record 292: 355363.CrossRefGoogle Scholar
Mi, L. Y., Basu, M., Fritton, S. P. and Cowin, S. C. 2005a. “Analysis of avian bone response to mechanical loading. Part two: Development of a computational connected cellular network to study bone intercellular communication.” Biomechanics and Modeling in Mechanobiology 4: 132146.CrossRefGoogle ScholarPubMed
Mi, L. Y., Fritton, S. P., Basu, M. and Cowin, S. C. 2005b. “Analysis of avian bone response to mechanical loading-Part one: Distribution of bone fluid shear stress induced by bending and axial loading.” Biomechanics and Modeling in Mechanobiology 4: 118131.CrossRefGoogle ScholarPubMed
Mullender, M., El Haj, A. J., Yang, Y., Van Duin, M. A., Burger, E. H. and Klein-Nulend, J. 2004. “Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue.” Medical and Biological Engineering and Computing 42: 1421.CrossRefGoogle ScholarPubMed
Murray, D. and Rushton, N. 1990. “The effect of strain on bone cell prostaglandin E2 release: a new experimental method.” Calcified Tissue International 47: 3539.CrossRefGoogle Scholar
Neuman, W. F., Neuman, M. W., Diamond, A. G., Menanteau, J. and Gibbons, W. S. 1982. “Blood: bone disequilibrium. VI. Studies of the solubility characteristics of brushite: apatite mixtures and their stabilization by noncollagenous proteins of bone.” Calcified Tissue International 34: 149157.CrossRefGoogle ScholarPubMed
Nicolella, P., Moravits, D. M., Lankford, J. and Bonewald, L. F. 2004. “Bone matrix strain is amplified at osteocyte lacunae in cortical bone.” Journal of Bone and Mineral Research 19: S72S72.Google Scholar
Owen, M. and Triffitt, J. 1976. “Extravascular albumin in bone tissue.” The Journal of Physiology 257: 293307.CrossRefGoogle ScholarPubMed
Pederson, L., Ruan, M., Westendorf, J. J., Khosla, S. and Oursler, M. J. 2008. “Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate.” Proceedings of the National Academy of Sciences 105: 2076420769.CrossRefGoogle ScholarPubMed
Perez-Amodio, S., Beertsen, W. and Everts, V. 2004. “(Pre-)osteoclasts induce retraction of osteoblasts before their fusion to osteoclasts.” Journal of Bone and Mineral Research 19: 17221731.CrossRefGoogle ScholarPubMed
Ponik, S. M., Triplett, J. W. and Pavalko, F. M. 2007. “Osteoblasts and osteocytes respond differently to oscillatory and unidirectional fluid flow profiles.” Journal of Cellular Biochemistry 100: 794807.CrossRefGoogle ScholarPubMed
Prendergast, P. J. and Huiskes, R. 1996. “Microdamage and osteocyte-lacuna strain in bone: a microstructural finite element analysis.” Journal of Biomechanical Engineering-Transactions of the Asme 118: 240246.CrossRefGoogle Scholar
Price, C., Zhou, X., Li, W. and Wang, L. 2011. “Real-time measurement of solute transport within the lacunar-canalicular system of mechanically loaded bone: direct evidence for load-induced fluid flow.” Journal of Bone and Mineral Research 26: 277285.CrossRefGoogle ScholarPubMed
Raisz, L. G. 1999. “Physiology and pathophysiology of bone remodeling.” Clinical Chemistry 45: 13531358.Google ScholarPubMed
Raisz, L. G., Pilbeam, C. C. and Fall, P. M. 1993. “Prostaglandins: mechanisms of action and regulation of production in bone.” Osteoporosis International 3: 136140.CrossRefGoogle ScholarPubMed
Rath Stern, A., Stern, M., Van Dyke, M., Jähn, K., Prideaux, M. and Bonewald, L. 2012. “Isolation and culture of primary osteocytes from the long bones of skeletally mature and aged mice.” BioTechniques: 52.CrossRefGoogle Scholar
Rawlinson, S. C. F., Pitsillides, A. A. and Lanyon, L. E. 1996. “Involvement of different ion channels in osteoblasts’ and osteocytes’ early responses to mechanical strain.” Bone 19: 609614.CrossRefGoogle ScholarPubMed
Rho, J.-Y., Tsui, T. Y. and Pharr, G. M. 1997. “Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation.” Biomaterials 18: 13251330.CrossRefGoogle ScholarPubMed
Roach, H. 1994. “Why does bone matrix contain non-collagenous proteins? The possible roles of osteocalcin, osteonectin, osteopontin and bone sialoprotein in bone mineralisation and resorption.” Cell Biology International 18: 617628.CrossRefGoogle ScholarPubMed
Robinson, R. A. 1952. “An electron-microscopic study of the crystalline inorganic component of bone and its relationship to the organic matrix.” The Journal of Bone and Joint Surgery 34: 389476.CrossRefGoogle Scholar
Robling, A. G., Bellido, T. M. and Turner, C. H. 2006. “Mechanical loading reduces osteocyte expression of sclerostin protein.” Journal of Bone and Mineral Research 21: S72S72.Google Scholar
Rubin, C. T. and Lanyon, L. E. 1982. “Limb mechanics as a function of speed and gait: a study of functional strains in the radius and tibia of horse and dog.” Journal of Experimental Biology 101: 187211.CrossRefGoogle Scholar
Ryser, M. D., Nigam, N. and Sr. Komarova, S. V. 2009. “Mathematical modeling of spatio-temporal dynamics of a single bone multicellular unit.” Journal of Bone and Mineral Research 24: 860870.CrossRefGoogle ScholarPubMed
Sauren, Y. M., Mieremet, R. H., Groot, C. G. and Scherft, J. P. 1992. “An electron microscopic study on the presence of proteoglycans in the mineralized matrix of rat and human compact lamellar bone.” The Anatomical Record 232: 3644.CrossRefGoogle ScholarPubMed
Shapiro, F., Cahill, C., Malatantis, G. and Nayak, R. C. 1995. “Transmission electron-microscopic demonstration of vimentin in rat osteoblast and osteocyte cell-bodies and processes using the immunogold technique.” Anatomical Record 241: 3948.CrossRefGoogle ScholarPubMed
Sims, N. A. and Martin, T. J. 2014. “Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit.” BoneKey Reports: 3.CrossRefGoogle Scholar
Singhvi, R., Kumar, A., Lopez, G. P., Stephanopoulos, G. N., Wang, D. I. C., Whitesides, G. M. and Ingber, D. E. 1994. “Engineering cell shape and function.” Science 264: 696698.CrossRefGoogle ScholarPubMed
Song, S. H., Choi, J. and Jung, H. I. 2010. “A microfluidic magnetic bead impact generator for physical stimulation of osteoblast cell.” Electrophoresis 31: 27622770.CrossRefGoogle ScholarPubMed
Tami, A. E., Schaffler, M. B. and Knothe Tate, M. L. 2003. “Probing the tissue to subcellular level structure underlying bone’s molecular sieving function.” Biorheology 40: 577590.Google ScholarPubMed
Tasevski, V., Sorbetti, J. M., Chiu, S. S., Shrive, N. G. and Hart, D. A. 2005. “Influence of mechanical and biological signals on gene expression in human MG-63 cells: evidence for a complex interplay between hydrostatic compression and vitamin D3 or TGF-beta 1 on MMP-1 and MMP-3 mRNA level.” Biochemistry and Cell Biology 83: 96.CrossRefGoogle ScholarPubMed
Taylor, D., Hazenberg, J. G. and Lee, T. C. 2007. “Living with cracks: damage and repair in human bone.” Nature Materials 6: 263268.CrossRefGoogle ScholarPubMed
Teti, A. and Zallone, A. 2009. “Do osteocytes contribute to bone mineral homeostasis? Osteocytic osteolysis revisited.” Bone 44: 1116.CrossRefGoogle ScholarPubMed
Udagawa, N., Takahashi, N., Jimi, E., Matsuzaki, K., Tsurukai, T., Itoh, K., Nakagawa, N., et al. 1999. “Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor.” Bone 25: 517523.CrossRefGoogle Scholar
Van’t Hof, R. J. and Ralston, S. H. 2001. “Nitric oxide and bone.” Immunology 103: 255261.CrossRefGoogle ScholarPubMed
Van Bezooijen, R. L., Winkler, D., Hayes, T., Karperien, M., Visser, A., van der Wee-Pals, L., Hamersma, H., et al. 2002. “Sclerostin: an osteocyte-expressed BMP antagonist the inhibits bone formation by mature osteoblasts.” Journal of Bone and Mineral Research 17: S144S144.Google Scholar
Verborgt, O., Gibson, G. J. and Schaffler, M. B. 2000. “Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo.” Journal of Bone and Mineral Research 15: 6067.CrossRefGoogle ScholarPubMed
Wang, L., Fritton, S. P., Cowin, S. C. and Weinbaum, S. 1999. “Fluid pressure relaxation depends upon osteonal microstructure: modeling an oscillatory bending experiment.” Journal of Biomechanics 32: 663672.CrossRefGoogle ScholarPubMed
Wang, L., Wang, Y., Han, Y., Henderson, S. C., Majeska, R. J., Weinbaum, S. and Schaffler, M. B. 2005. “In situ measurement of solute transport in the bone lacunar-canalicular system.” Proceedings of the National Academy of Sciences of the United States of America 102: 1191111916.CrossRefGoogle ScholarPubMed
Wang, Y., McNamara, L. M., Schaffler, M. B. and Weinbaum, S. 2007. “A model for the role of integrins in flow induced mechanotransduction in osteocytes.” Proceedings of the National Academy of Sciences of the United States of America 104: 1594115946.CrossRefGoogle Scholar
Weinbaum, S., Cowin, S. C. and Zeng, Y. 1994. “A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses.” J Biomech 27: 339360.CrossRefGoogle Scholar
Weinger, J. M. and Holtrop, M. E. 1974. “An ultrastructural study of bone cells: the occurrence of microtubules, microfilaments and tight junctions.” Calcified Tissue Research 14: 1529.CrossRefGoogle ScholarPubMed
Xiong, J. and O’Brien, C. A. 2012. “Osteocyte RANKL: new insights into the control of bone remodeling.” Journal of Bone and Mineral Research 27: 499505.CrossRefGoogle ScholarPubMed
You, J., Yellowley, C. E., Donahue, H. J., Zhang, Y., Chen, Q. and Jacobs, C. R. 2000. “Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow.” Journal of Biomechanical Engineering 122: 387393.CrossRefGoogle ScholarPubMed
You, L., Cowin, S. C., Schaffler, M. B. and Weinbaum, S. 2001. “A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix.” Journal of Biomechanics 34: 13751386.CrossRefGoogle Scholar
You, L., Temiyasathit, S., Coyer, S. R., García, A. J. and Jacobs, C. R. 2008a. “Bone cells grown on micropatterned surfaces are more sensitive to fluid shear stress.” Cellular and Molecular Bioengineering 1: 182188.CrossRefGoogle Scholar
You, L., Temiyasathit, S., Lee, P., Kim, C. H., Tummala, P., Yao, W., Kingery, W., et al. 2008b. “Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading.” Bone 42: 172179.CrossRefGoogle ScholarPubMed
You, L., Temiyasathit, S., Tao, E., Prinz, F. and Jacobs, C. R. 2008c. “3D microfluidic approach to mechanical stimulation of osteocyte processes.” Cellular and Molecular Bioengineering 1: 103107.CrossRefGoogle Scholar
You, L. D., Weinbaum, S., Cowin, S. C. and Schaffler, M. B. 2004. “Ultrastructure of the osteocyte process and its pericellular matrix.” Anatomical Record Part A-Discoveries in Molecular Cellular and Evolutionary Biology 278: 505513.CrossRefGoogle ScholarPubMed
Zhang, D., Weinbaum, S. and Cowin, S. 1998. “On the calculation of bone pore water pressure due to mechanical loading.” International Journal of Solids and Structures 35: 4981.CrossRefGoogle Scholar
Zhang, K., Barragan-Adjemian, C., Ye, L., Kotha, S., Dallas, M., Lu, Y., Zhao, S., et al. 2006. “E11/gp38 selective expression in osteocytes: regulation by mechanical strain and role in dendrite elongation.” Molecular and Cellular Biology 26: 45394552.CrossRefGoogle ScholarPubMed
Zhang, X., Liu, X., Sun, J., He, S., Lee, I. and Pak, H. K. 2008. “Real-time observations of mechanical stimulus-induced enhancements of mechanical properties in osteoblast cells.” Ultramicroscopy 108: 13381341.CrossRefGoogle ScholarPubMed
Zhao, S., Kato, Y., Zhang, Y., Harris, S., Ahuja, S. S. and Bonewald, L. F. 2002. “MLO-Y4 osteocyte-like cells support osteoclast formation and activation.” Journal of Bone and Mineral Research 17: 20682079.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×