Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-28T22:20:14.168Z Has data issue: false hasContentIssue false

13 - Hypereosinophilia: an illustrated approach to diagnosis and management

Published online by Cambridge University Press:  05 March 2016

Ruben A. Mesa
Affiliation:
Mayo Clinic Cancer Center, Arizona
Claire N. Harrison
Affiliation:
Guy’s and St Thomas’ Hospital, London
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Managing Myeloproliferative Neoplasms
A Case-Based Approach
, pp. 108 - 119
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brigden, M, Graydon, C. Eosinophilia detected by automated blood cell counting in ambulatory North American outpatients. Incidence and clinical significance. Arch Pathol Lab Med 1997;121:963967.Google ScholarPubMed
Rothenberg, ME. Eosinophilia. N Engl J Med 1998;338:15921600.CrossRefGoogle ScholarPubMed
Pardanani, A, Patnaik, MM, Tefferi, A. Eosinophilia: secondary, clonal and idiopathic. Br J Haematol 2006;133:468492.Google Scholar
Valent, P, Klion, D, Horny, HP, et al. Contemporary consensus proposal on criteria and classification of eosinophilic disorders and related syndromes. J Allergy Clin Immunol 2012;130:607612.CrossRefGoogle ScholarPubMed
Ganeva, M, Gancheva, T, Lazarova, R, et al. Carbamazepine-induced drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome: report of four cases and brief review. Int J Dermatol 2008;47:853860.CrossRefGoogle ScholarPubMed
Campos, LE, Pereira, LF. Pulmonary eosinophilia. J Bras Pneumol 2009;35:561573.CrossRefGoogle ScholarPubMed
Mendez-Sanchez, N, Chavez-Tapia, NC, Vazquez-Elizondo, G, et al. Eosinophilic gastroenteritis: a review. Dig Dis Sci 2007;52:29042911.CrossRefGoogle ScholarPubMed
Gotlib, J. World Health Organization-defined eosinophilic disorders: 2015 update on diagnosis, risk stratification, and management. Am J Hematol 2015;90:10771089.CrossRefGoogle ScholarPubMed
Kawasaki, A, Mizushima, Y, Matsui, S, et al. A case of T-cell lymphoma accompanying marked eosinophilia, chronic eosinophilic pneumonia and eosinophilic pleural effusion. A case report. Tumori 1991;77:527530.CrossRefGoogle ScholarPubMed
Endo, M, Usuki, K, Kitazume, K, et al. Hypereosinophilic syndrome in Hodgkin’s disease with increased granulocyte – macrophage colony-stimulating factor. Ann Hematol 1995;71:313314.CrossRefGoogle ScholarPubMed
Catovksy, D, Bernasconi, C, Verdonck, PJ, et al. The association of eosinophilia with lymphoblastic leukaemia or lymphoma: a study of seven patients. Br J Haematol 1980;45:523534.Google Scholar
Chusid, MJ, Dale, DC, West, BC, et al. The hypereosinophilic syndrome. Analysis of fourteen cases with review of the literature. Medicine 1975;54:127.CrossRefGoogle ScholarPubMed
Bain, BJ, Gilliland, DG, Horny, H-P, et al. Myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRA, PDGFRB, or FGFR1. In: Swerdlow, S, Harris, NL, Stein, H, Jaffe, ES, Theile, J, Vardiman, JW (eds.) World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. IARC Press: Lyon, France, 2008:6873.Google Scholar
Bain, BJ, Gilliland, DG, Horny, H-P, et al. Chronic eosinophilic leukaemia, not otherwise specified. In: Swerdlow, S, Harris, NL, Stein, H, Jaffe, ES, Theile, J, Vardiman, JW (eds.) World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. IARC Press: Lyon, France, 2008:5153.Google Scholar
Iurlo, A, Gianelli, U, Beghini, A, et al. Identification of KIT (M541L) somatic mutation in chronic eosinophilic leukemia, not otherwise specified, and its implication in low-dose imatinib response. Oncotarget 2014;5:4665-4670.CrossRefGoogle Scholar
Cools, J, DeAngelo, DJ, Gotlib, J, et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 2003;348:12011214.CrossRefGoogle ScholarPubMed
Pardanani, A, Ketterling, RP, Brockman, SR, et al. CHIC2 deletion, a surrogate for FIP1L1-PDGFRA fusion, occurs in systemic mastocytosis associated with eosinophilia and predicts response to imatinib mesylate therapy. Blood 2003;102:30933096.CrossRefGoogle ScholarPubMed
Klion, AD, Noel, P, Akin, C, et al. Elevated serum tryptase levels identify a subset of patients with a myeloproliferative variant of idiopathic hypereosinophilic syndrome associated with tissue fibrosis, poor prognosis, and imatinib responsiveness. Blood 2003;101:46604666.CrossRefGoogle ScholarPubMed
Inhorn, RC, Aster, JC, Roach, SA, et al. A syndrome of lymphoblastic lymphoma, eosinophilia, and myeloid hyperplasia/malignancy associated with t(8;13)(p11;q11): description of a distinct clinicopathologic entity. Blood 1995;85:18811887.CrossRefGoogle Scholar
Reiter, A, Walz, C, Watmore, A, et al. The t(8;9)(p22;p24) is a recurrent abnormality in chronic and acute leukemia that fuses PCM1 to JAK2. Cancer Res 2005;65:26622667.CrossRefGoogle Scholar
Vu, HA, Xinh, PT, Masusa, M, et al. FLT3 is fused to ETV6 in a myeloproliferative disorder with hypereosinophilia and a t(12;13)(p13;q12) translocation. Leukemia 2006;20:14141421.CrossRefGoogle Scholar
Schaller, JL, Burkland, GA. Case report: rapid and complete control of idiopathic hypereosinophilia with imatinib mesylate. Med Genet Med 2001;3:9.Google ScholarPubMed
Gleich, GJ, Leiferman, KM, Pardanani, A, et al. Treatment of hypereosinophilic syndrome with imatinib mesilate. Lancet 2002;359:15771578.CrossRefGoogle ScholarPubMed
Ault, P, Cortes, J, Koller, C, et al. Response of idiopathic hypereosinophilic syndrome to treatment with imatinib mesylate. Leuk Res 2002;26:881884.CrossRefGoogle ScholarPubMed
Klion, AD, Robyn, J, Akin, C, et al. Molecular remission and reversal of myelofibrosis in response to imatinib mesylate treatment in patients with the myeloproliferative variant of hypereosinophilic syndrome. Blood 2004;103:473478.CrossRefGoogle ScholarPubMed
Helbig, G, Stella-Hołowiecka, B, Majewski, M, et al. A single weekly dose of imatinib is sufficient to induce and maintain remission of chronic eosinophilic leukaemia in FIP1L1-PDGFRA-expressing patients. Br J Haematol 2008;141:200204.CrossRefGoogle ScholarPubMed
Baccarani, M, Cilloni, D, Rondoni, M, et al. The efficacy of imatinib mesylate in patients with FIP1L1-PDGFRalpha-positive hypereosinophilic syndrome. Results of a multicenter prospective study. Haematologica 2007;92:11731179.CrossRefGoogle ScholarPubMed
Jovanovic, JV, Score, J, Waghorn, K, et al. Low-dose imatinib mesylate leads to rapid induction of major molecular responses and achievement of complete molecular remission in FIP1L1-PDGFRA-positive chronic eosinophilic leukemia. Blood 2007;109:46354640.CrossRefGoogle ScholarPubMed
Cross, DM, Cross, NC, Burgstaller, S, et al. Durable responses to imatinib in patients with PDGFRB fusion gene-positive and BCR-ABL-negative chronic myeloproliferative disorders. Blood 2007;109:6164.Google Scholar
Gotlib, J, Cools, J. Five years since the discovery of the FIPL1-PDGFRA: what we have learned about the fusion and other molecularly defined eosinophilias. Leukemia 2008;22:19992010.CrossRefGoogle Scholar
Pardanani, A, Reeder, T, Porrata, L, et al. Imatinib therapy for hypereosinophilic syndrome and other eosinophilic disorders. Blood 2003;101:33913397.CrossRefGoogle ScholarPubMed
Pitini, V, Arrigo, C, Azzarello, D, et al. Serum concentration of cardiac troponin T in patients with hypereosinophilic syndrome treated with imatinib is predictive of adverse outcomes. Blood 2003;102:34563457.CrossRefGoogle ScholarPubMed
Klion, AD, Robyn, J, Maric, I, et al. Relapse following discontinuation of imatinib mesylate therapy for FIP1L1/PDGFRA-positive chronic eosinophilic leukemia: implications for optimal dosing. Blood 2007;110:35523556.CrossRefGoogle ScholarPubMed
Pardanani, A, Ketterling, RP, Li, CY, et al. FIP1L1-PDGFRA in eosinophilic disorders: prevalence in routine clinical practice, long-term experience with imatinib therapy, and a critical review of the literature. Leuk Res 2006;30:965970.CrossRefGoogle Scholar
Von Bubnoff, N, Sandherr, M, Schlimok, G, et al. Myeloid blast crisis evolving during imatinib treatment of an FIP1L1-PDGFRalpha-positive chronic myeloproliferative disease with prominent eosinophilia. Leukemia 2004;19:286287.CrossRefGoogle Scholar
Ohnishi, H, Kandabashi, K, Maeda, Y, et al. Chronic eosinophilic leukaemia with FIP1L1-PDGFRA fusion and T6741 mutation that evolved from Langerhans cell histiocytosis with eosinophilia after chemotherapy. Br J Haematol 2006;134:547549.CrossRefGoogle ScholarPubMed
Lierman, E Michaux, L, Beullens, E, et al. FIP1L1-PDGFRalpha D842V, a novel panresistant mutant, emerging after treatment of FIP1L1-PDGFRalpha T674I eosinophilic leukemia with single agent sorafenib. Leukemia 2009;23:845851.CrossRefGoogle ScholarPubMed
Cools, J, Stover, EH, Boulton, CL, et al. PKC412 overcomes resistance to imatinib in a murine model of FIP1L1-PDGFRalpha-induced myeloproliferative disease. Cancer Cell 2003;3:459469.CrossRefGoogle Scholar
Lierman, E, Folens, C, Stover, EH, et al. Sorafenib is a potent inhibitor of FIP1L1-PDGFRalpha and the imatinib-resistant FIP1L1-PDGFRalpha T674I mutant. Blood 2006;108:13741376.CrossRefGoogle ScholarPubMed
Stover, EH, Chen, J, Lee, BH, et al. The small molecule tyrosine kinase inhibitor AMN107 inhibits TEL-PDGFRbeta and FIP1L1-PDGFRalpha in vitro and in vivo. Blood 2005;106:32063213.CrossRefGoogle ScholarPubMed
von Bubnoff, N, Gorantla, SP, Thone, S, et al. The FIP1L1-PDGFRA T674I mutation can be inhibited by the tyrosine kinase inhibitor AMN107 (nilotinib). Blood 2006;107:49704971.CrossRefGoogle ScholarPubMed
Metzgeroth, G, Erben, P, Martin, H, et al. Limited clinical activity of nilotinib and sorafenib in FIP1L1-PDGFRA positive chronic eosinophilic leukemia with imatinib-resistant T674I mutation. Leukemia 2012;26:162164.CrossRefGoogle ScholarPubMed
Chen, J, DeAngelo, DJ, Kutok, JL, et al. PKC412 inhibits the zinc finger 198-fibroblast growth factor receptor 1 fusion tyrosine kinase and is active in treatment of stem cell myeloproliferative disorder. Proc Natl Acad Sci U S A 2004;101:1447914484.CrossRefGoogle ScholarPubMed
Ogbogu, PU, Bochner, BS, Butterfield, JH, et al. Hypereosinophilic syndromes: a multicenter, retrospective analysis of clinical characteristics and response to therapy. J Allergy Clin Immunol 2009. 124:13191325.CrossRefGoogle ScholarPubMed
Quiquandon, I, Claisse, JF, Capiod, JC, et al. Alpha-interferon and hypereosinophilic syndrome with trisomy 8: karyotypic remission. Blood 1995;85:22842285.CrossRefGoogle ScholarPubMed
Luciano, L, Catalano, L, Sarrantonio, C, et al. αIFN–induced hematologic and cytogenetic remission in chronic eosinophilic leukemia with t(1;5). Haematologica 1999;84:651653.Google ScholarPubMed
Yamada, O, Kitahara, K, Imamura, K, et al. Clinical and cytogenetic remission induced by interferon-α in a patient with chronic eosinophilic leukemia associated with a unique t(3;9;5) translocation. Am J Hematol 1998;58:137141.3.0.CO;2-T>CrossRefGoogle Scholar
Malbrain, ML, Van den Bergh, H, Zachee, P. Further evidence for the clonal nature of the idiopathic hypereosinophilic syndrome: complete haematological and cytogenetic remission induced by interferon-alpha in a case with a unique chromosomal abnormality. Br J Haematol 1996;92:176183.CrossRefGoogle Scholar
Butterfield, JH, Gleich, GJ. Response of six patients with idiopathic hypereosinophilic syndrome to interferon alpha. J Allergy Clin Immunol 1994;94:13181326.CrossRefGoogle Scholar
Ceretelli, S, Capochiani, E, Petrini, M. Interferon-alpha in the idiopathic hypereosinophilic syndrome: consideration of five cases. Ann Hematol 1998;77:161164.CrossRefGoogle ScholarPubMed
Yoon, TY, Ahn, GB, Chang, SH. Complete remission of hypereosinophilic syndrome after interferon-alpha therapy: report of a case and literature review. J Dermatol 2000;27:110115.CrossRefGoogle ScholarPubMed
Jabbour, E, Kantarjian, H, Cortes, J, et al. PEG-IFN-α-2b therapy in BCR-ABL-negative myeloproliferative disorders. Final result of a phase 2 study. Cancer 2007;110:20122018.CrossRefGoogle ScholarPubMed
Kiladjian, JJ, Cassinat, B, Chevret, S, et al. Pegylated interferon-alpha-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood 2008;112:30653072.CrossRefGoogle ScholarPubMed
Quintas-Cardama, A, Kantarjian, H, Manshouri, T, et al. Pegylated interferon-alpha-2a yields high rates of hematologic and molecular response in patients with advanced essential thrombocythemia and polycythemia vera. J Clin Oncol 2009;27:54185424.CrossRefGoogle ScholarPubMed
Butterfield, JH. Success of short-term, higher-dose imatinib mesylate to induce clinical response in FIP1L1-PDGFRalpha-negative hypereosinophilic syndrome. Leuk Res 2009; 33:11271129.CrossRefGoogle ScholarPubMed
Verstovsek, S, Tefferi, A, Kantarjian, H, et al. Alemtuzumab therapy for hypereosinophilic syndrome and chronic eosinophilic leukemia. Clin Cancer Res 2009;15:368373.CrossRefGoogle ScholarPubMed
Strati, P, Cortes, J, Faderl, S, et al. Long-term follow-up of patients with hypereosinophilic syndrome treated with alemtuzumab, an anti-CD52 antibody. Clin Lymphoma Myeloma Leuk 2013;13(3):287–91.CrossRefGoogle ScholarPubMed
Hart, TK, Cook, RM, Zia-Amirhosseini, P, et al. Preclinical efficacy and safety of mepolizumab (SB – 240563), a humanized monoclonal antibody to IL-5, in cynomolgus monkeys. J Allergy Clin Immunol 2001;108:250257.CrossRefGoogle ScholarPubMed
Rothenberg, ME, Klion, AD, Roufosse, FE, et al. Treatment of patients with the hypereosinophilic syndrome with mepolizumab. N Engl J Med 2008;358:12151228.CrossRefGoogle ScholarPubMed
Roufosse, FE, Kahn, JE, Gleich, GJ, et al. Long-term safety of mepolizumab for the treatment of hypereosinophilic syndromes. J Allergy Clin Immunol 2013;131:461467CrossRefGoogle ScholarPubMed
Roufosse, F, Cogan, E, Goldman, M. Recent advances in pathogenesis and management of hypereosinophilic syndromes. Allergy 2004;59:673689.CrossRefGoogle ScholarPubMed
Bank, I, Amariglio, N, Reshef, A, et al. The hypereosinophilic syndrome associated with CD4+CD3– helper type 2 (Th2) lymphocytes. Leuk Lymphoma 2001;42: 123133.CrossRefGoogle ScholarPubMed
Simon, HU, Plotz, SG, Dummer, R, et al. Abnormal clones of T cells producing interleukin-5 in idiopathic hypereosinophilia. N Engl J Med 1999;341:11121120.CrossRefGoogle Scholar
Brugnoni, D, Airo, P, Tosoni, C, et al. CD3–CD4+ cells with a Th2-like pattern of cytokine production in the peripheral blood of a patient with cutaneous T cell lymphoma. Leukemia 1997;11:19831985.CrossRefGoogle ScholarPubMed
Roumier, AS, Grardel, N, Lai, JL, et al. Hypereosinophilia with abnormal T cells, trisomy 7, and elevated TARC serum level. Haematologica 2003;88:ECR24.Google ScholarPubMed
Roufosse, F. Hypereosinophilic syndrome variants: diagnostic and therapeutic considerations. Haematologica 2009;94:11881193.CrossRefGoogle ScholarPubMed
Cogan, E, Schandene, L, Crusiaux, A, et al. Brief report: clonal proliferation of type 2 helper T cells in a man with the hypereosinophilic syndrome. N Engl J Med 1994;330:535538.CrossRefGoogle Scholar
Helbig, G, Wieczorkiewicz, A, Dziaczkowska-Suszek, J, et al. T-cell abnormalities are present at high frequencies at high frequencies in patients with hypereosinophilic syndrome. Haematologica 2009;94:12361241.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×