Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-01T13:18:23.426Z Has data issue: false hasContentIssue false

13 - The Linguistic Abilities of Birds

Published online by Cambridge University Press:  22 June 2017

Carel ten Cate
Affiliation:
Universiteit Leiden
Susan D. Healy
Affiliation:
University of St Andrews, Scotland
Get access
Type
Chapter
Information
Avian Cognition , pp. 249 - 269
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aslin, R. N. and Newport, E. L. (2014). Distributional language learning: mechanisms and models of category formation. Language Learning, 64 (2), 86105.CrossRefGoogle Scholar
Aslin, R. N., Saffran, J. R. and Newport, E. L. (1998). Computation of conditional probability statistics by 8-month-old infants. Psychological Science, 9, 321324.Google Scholar
Beckers, G. J. L. (2011). Bird speech perception and vocal production: a comparison with humans. Human Biology, 83, 191212.CrossRefGoogle ScholarPubMed
Berwick, R. C., Okanoya, K., Beckers, G. J. L. and Bolhuis, J. J. (2011). Songs to syntax: the linguistics of birdsong. Trends in Cognitive Science, 15, 113121.Google Scholar
Bolhuis, J. J. and Everaert, M. (2013). Birdsong, Speech, and Language: Exploring the Evolution of Mind and Brain. Cambridge MA: MIT Press.Google Scholar
Brainard, M. S. and Fitch, W. T. (2014). Communication and language: animal communication and human language. Current Opinion in Neurobiology, 28, VVIII.Google Scholar
Catchpole, C. K. and Slater, P. J. B. (2008). Bird song: Biological themes and variations, 2nd edn. Cambridge: Cambridge University Press.Google Scholar
Chen, J. and ten Cate, C. (2015). Zebra finches can use positional and transitional cues to distinguish vocal element strings. Behavioural Processes, 117, 2934.CrossRefGoogle ScholarPubMed
Chen, J., van Rossum, D. and ten Cate, C. (2015). Artificial grammar learning in zebra finches and human adults: XYX versus XXY. Animal Cognition, 18, 151164.CrossRefGoogle ScholarPubMed
Chomsky, N. (1957). Syntactic Structures. The Hague/Paris: Mouton. p. 15.Google Scholar
Comins, J. A. and Gentner, T. Q. (2010). Working memory for patterned sequences of auditory objects in a songbird. Cognition, 117, 3853.Google Scholar
Comins, J. A. and Gentner, T. Q. (2013). Perceptual categories enable pattern generalization in songbirds. Cognition, 128 (2), 113118. DOI:10.1016/j.cognition.2013.03.014Google Scholar
Comins, J. and Gentner, T. Q. (2014). Auditory temporal pattern learning in songbirds using maximal stumulus diversity and minimal repetition. Animal Cognition, 17, 10231030. DOI:10.1007/s10071–014–0732–5Google Scholar
Crockford, C. and Boesch, C. (2005). Call combinations in wild chimpanzees. Behaviour, 142, 397421.Google Scholar
Darwin, C. (1871). The descent of man, and selection in relation to sex. London: Murray, p. 55.Google Scholar
de la Mora, D. M. and Toro, J. M. (2013). Rule learning over consonants and vowels in a non-human animal. Cognition, 126, 307312.Google Scholar
Dooling, R. J., Best, C. T. and Brown, S. D. (1995). Discrimination of synthetic full-formant and sinewave /ra-la/ continua by budgerigars (Melopsittacus undulatus) and zebra finches (Taeniopygia guttata). Journal of the Acoustical Society of America, 97, 18391846.CrossRefGoogle ScholarPubMed
Dooling, R. J. and Brown, S. D. (1990). Speech perception by budgerigars (Melopsittacus undulatus): spoken vowels. Perception and Psychophysics, 47, 568574.Google Scholar
Doupe, A. J. and Kuhl, P. K. (1999). Birdsong and human speech: Common themes and mechanisms. Annual Review of Neuroscience, 22, 567631. DOI:10.1146/annurev.neuro.22.1.567Google Scholar
Elie, J. E. and Theunissen, F. E. (2015). The vocal repertoire of the domesticated zebra finch: a data-driven approach to decipher the information-bearing acoustic features of communication signals. Animal Cognition, 19, 285315.Google Scholar
Endress, A. D. and Bonatti, L. L. (2007). Rapid learning of syllable classes from a perceptually continuous speech stream. Cognition, 105, 247299.Google Scholar
Endress, A. D., Dehaene-Lambertz, G. and Mehler, J. (2007). Perceptual constraints and the learnability of simple grammars. Cognition, 105, 577614. DOI:10.1016/j.cognition.2006.12.014Google Scholar
Endress, A. D. and Mehler, J. (2009). Primitive computations in speech processing. Quarterly Journal of Experimental Psychology, 62, 21872209.Google Scholar
Endress, A. D., Nespor, M. and Mehler, J. (2009). Perceptual and memory constraints on language acquisition. Trends in Cognitive Science, 13, 348353. DOI:10.1016/j.tics.2009.05.005CrossRefGoogle ScholarPubMed
Fitch, W. T. (2010). The evolution of language. Cambridge: Cambridge University Press.Google Scholar
Frank, M. C., Slemmer, J. A., Marcus, G. F. and Johnson, S. P. (2009). Information from multiple modalities helps 5-month-olds learn abstract rules. Developmental Science, 12(4), 504509.Google Scholar
Gentner, T. Q., Fenn, K. M., Margoliash, D. and Nusbaum, H. C. (2006). Recursive syntactic pattern learning by songbirds. Nature, 440, 12041207.CrossRefGoogle ScholarPubMed
Gerken, L. (2006). Decisions, decisions: infant language learning when multiple generalizations are possible. Cognition, 98 (3), B67B74. DOI:10.1016/j.cognition.2005.03.003Google Scholar
Haesler, S., Rochefort, C., Licznerski, P., Osten, P. and Scharff, C. (2007). Incomplete and inaccurate vocal imitation after knockdown of FoxP2 in songbird basal ganglia nucleus Area X. PLoS Biology, 5, e321.Google Scholar
Hauser, M. D., Chomsky, N. and Fitch, W. T. (2002a). The faculty of language: what is it, who has it, and how did it evolve? Science, 298, 15691579.Google Scholar
Hauser, M. D. and Glynn, D. (2009). Can free-ranging rhesus monkeys (Macaca mulatta) extract artificially created rules comprised of natural vocalizations? Journal of Comparative Psychology, 123, 161167.Google Scholar
Hauser, M. D., Weiss, D. and Marcus, G. F. (2002b). Rule learning by cottontop tamarins. Cognition, 86, B15B22.CrossRefGoogle Scholar
Hauser, M. D., Weiss, D. and Marcus, G. F. (2010). Retraction of: Rule learning by cottontop tamarins. Cognition, 86, B15–B22. Cognition, 117, 106.Google Scholar
Hauser, M. D., Yang, C., Berwick, , et al. (2014). The mystery of language evolution. Frontiers in Psychology, 5, 401. DOI:10.3389/fpsyg.2014.00401CrossRefGoogle ScholarPubMed
Hedwig, D., Mundry, R., Robbins, M. M. and Boesch, C. (2015). Contextual correlates of syntactic variation in mountain and western gorilla close-distance vocalizations: indications for lexical or phonological syntax? Animal Cognition, 18, 423435.Google Scholar
Henson, R. N. (1998). Short-term memory for serial order: The start-end model. Cognitive Psychology, 36, 73137.Google Scholar
Herbranson, W. T. and Shimp, C. P. (2008). Artificial grammar learning in pigeons. Learning and Behavior, 36, 116137.Google Scholar
Herrnstein, R. J. (1990). Levels of stimulus control: a functional approach. Cognition, 37, 133166.Google Scholar
Hienz, R. D., Sachs, M. B. and Sinnott, J. M. (1981). Discrimination of steady-state vowel by blackbirds and pigeons. Journal of the Acoustic Society of America, 70, 699706.Google Scholar
Hurford, J. R. (2012). The origins of grammar – Language in the light of evolution. Oxford: Oxford University Press.Google Scholar
Janik, V. M. and Slater, P. J. B. (1997). Vocal learning in mammals. Advances in the Study of Behavior, 26, 5999.Google Scholar
Jarvis, E. (2004). Learned birdsong and the neurobiology of human language. Annals of the New York Academy of Sciences, 1016, 749777.Google Scholar
Johnson, S. P., Fernandes, K. J., Frank, M. C., et al. (2009). Abstract rule learning for visual sequences in 8- and 11-month-olds. Infancy, 14, 218.Google Scholar
Kershenbaum, A., Bowles, A. E., Freeberg, T. M., et al. (2014). Animal vocal sequences: not the Markov chains we thought they were. Proceedings of the Royal Society B, 281, 20141370.Google Scholar
Kluender, K. R., Diehl, R. L. and Killeen, P. R. (1987). Japanese quail can learn phonetic categories. Science, 237, 11951197.Google Scholar
Kluender, K. R., Lotto, A. J., Holt, L. L. and Bloedel, S. L. (1998). Role of experience for language-specific functional mappings of vowel sounds. Journal of the Acoustic Society of America, 104, 35683582.Google Scholar
Kriengwatana, B., Escudero, P. and ten Cate, C. (2015a). Revisiting vocal perception in non-human animals: a review of vowel discrimination, speaker voice recognition, and speaker normalization. Frontiers in Psychology, 5, 1543. DOI:10.3389/fpsyg.2014.01543Google Scholar
Kriengwatana, B., Escudero, P., Kerkhoven, A. H. and ten Cate, C. (2015b). A general auditory bias for handling speaker variability in speech? Evidence in humans and songbirds. Frontiers in Psychology, 6, 1243.Google Scholar
Kuhl, P. K. and Miller, J. D. (1978). Speech perception by the chinchilla: Identification functions for synthetic VOT stimuli. Journal of the Acoustic Society of America, 63, 905917.Google Scholar
Liberman, A. M., Cooper, F. S., Shankweiler, D. P. and Studdert-Kennedy, M. (1967). Perception of the speech code. Psychological Review, 74, 431461.Google Scholar
Lieberman, P., Klatt, D. H. and Wilson, W. H. (1969). Vocal tract limitations on the vowel repertoires of rhesus monkey and other non-human primates. Science, 164, 11851187.Google Scholar
Lu, K. and Vicario, D. S. (2014). Statistical learning of recurring sound patterns encodes auditory objects in songbird forebrain. Proceedings of the National Academy of Sciences USA, 111, 1455314558.Google Scholar
Marcus, G. F., Fernandes, K. J. and Johnson, S. P. (2007). Infant rule learning facilitated by speech. Psychological Science, 18, 387391.Google Scholar
Marcus, G. F., Vijayan, S., Bandi Rao, S. and Vishton, P. M. (1999). Rule learning by seven-month-old infants. Science, 283, 7780.Google Scholar
Murphy, R. A., Mondragon, E. and Murphy, V. A. (2008). Rule learning by rats. Science, 319, 18491851.Google Scholar
Njegovan, M. and Weisman, R. (1997). Pitch discrimination in field- and isolation-reared black-capped chickadees (Parus atricapillus). Journal of Comparative Psychology, 111, 294301.Google Scholar
Ohms, V.R., Beckers, G.J.L, ten Cate, C. and Suthers, R.A. (2012). Vocal tract articulation revisited: the case of the monk parakeet. Journal of Experimental Biology, 215, 8592.Google Scholar
Ohms, V. R., Gill, A., van Heijningen, C. A. A., Beckers, G. J. L. and ten Cate, C. (2010b). Zebra finches exhibit speaker-independent phonetic perception of human speech. Proceedings of the Royal Society B, 277, 10031009.Google Scholar
Ohms, V. R., Snelderwaard, P. C., ten Cate, C. and Beckers, G. J. L. (2010a). Vocal tract articulation in zebra finches. PLoS One, 5, e11923.Google Scholar
Pepperberg, I. M. (2013). Phonological awareness in grey parrots: creation of new labels from existing vocalizations. In Birdsong, Speech, and Language: Exploring the Evolution of Mind and Brain, eds. Bolhuis, J. J. and Everaert, M.. Cambridge MA: MIT Press, pp. 261274.Google Scholar
Pfenning, A. R., Hara, E., Whitney, O., et al. (2014). Convergent transcriptional specializations in the brains of humans and song-learning birds. Science, 346, 1256846. DOI:10.1126/science.1256846Google Scholar
Ravignani, A., Westphal-Fitch, G., Aust, U., Schlumpp, M. M. and Fitch, W. T. (2015). More than one way to see it: Individual heuristics in avian visual computation. Cognition, 143, 1324.Google Scholar
Saffran, J. R., Aslin, R. N. and Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274, 19261928.Google Scholar
Saffran, J. R., Pollak, S. D., Seibel, R. L. and Shkolnik, A. (2007). Dog is a dog is a dog: infant rule learning is not specific to language. Cognition, 105, 669680.Google Scholar
Savage-Rumbaugh, E. S., Murphy, J., Sevick, R. A., et al. (1993). Language comprehension in ape and child. Monographs of the Society for Research in Child Development, 58, 1221.Google Scholar
Seki, Y., Suzuki, K., Osawa, A. M. and Okanoya, K. (2013). Songbirds and humans apply different strategies in a sound sequence discrimination task. Frontiers in Psychology, 4, 447.Google Scholar
Shettleworth, S. J. (2010). Cognition, Evolution and Behavior. 2nd edn. Oxford: Oxford University Press.Google Scholar
Smirnova, A., Zorina, Z., Obozova, T. and Wasserman, E. (2015). Crows spontaneously exhibit analogical reasoning. Current Biology, 25, 256260. DOI:10.1016/j.cub.2014.11.063Google Scholar
Spierings, M., de Weger, A. and ten Cate, C. (2015). Pauses enhance chunk recognition in song element strings by zebra finches. Animal Cognition, 18, 867874.Google Scholar
Spierings, M. J. and ten Cate, C. (2014). Zebra finches are sensitive to prosodic features of human speech. Proceedings of the Royal Society B, 281, 20140480. http://dx.doi.org/10.1098/rspb.2014.0480Google Scholar
Spierings, M. and ten Cate, C. (2016). Budgerigars and zebra finches differ in how they generalize in an artificial grammar learning experiment. Proceedings of the National Academy of Sciences USA, 113, E3977E3984. DOI:10.1073/pnas.1600483113Google Scholar
Stobbe, N., Westphal-Fitch, G., Aust, U. and Fitch, W. T. (2012). Visual artificial grammar learning: comparative research on humans, kea (Nestor notabilis) and pigeons (Columba livia). Philosophical Transactions of the Royal Society London B, 367, 19952006.Google Scholar
Stoeger, A. S., Mietchen, D., Oh, S., et al. (2012). An asian elephant imitates human speech. Current Biology, 22, 21442148. DOI:10.1016/j.cub.2012.09.022Google Scholar
Suzuki, T. N., Wheatcroft, D. and Griesser, M. (2016). Experimental evidence for compositional syntax in bird calls. Nature Communications, 7, 10986. DOI:10.1038/ncomms10986Google Scholar
Takahasi, M., Yamada, H. and Okanoya, K. (2010). Statistical and prosodic cues for song segmentation learning by Bengalese finches (Lonchura striata var. domestica). Ethology, 116(6), 481489. DOI:10.1111/j.1439–0310.2010.01772.xGoogle Scholar
ten Cate, C. (2014). On the phonetic and syntactic processing abilities of birds: From song to speech and artificial grammars. Current Opinion in Neurobiology, 28, 157164. DOI:10.1016/j.conb.2014.07.019Google Scholar
ten Cate, C. (2016). Assessing the uniqueness of language: Animal grammatical abilities take center stage. Psychonomic Bulletin and Review. DOI:10.3758/s13423–016–1091–9Google Scholar
ten Cate, C. and Okanoya, K. (2012). Revisiting the syntactic abilities of non-human animals: natural vocalizations and artificial grammar learning. Philosophical Transactions of the Royal Society London B, 367, 19841994. DOI:10.1098/rstb.2012.0055Google Scholar
ten Cate, C., Spierings, M., Hubert, J. and Honing, H. (2016). Can birds perceive rhythmic patterns? A review and experiments on a songbird and a parrot species. Frontiers in Psychology, 7, 730.Google Scholar
Terrace, H. (2012). The comparative psychology of ordinal knowledge. In The Oxford Handbook of Comparative Cognition, eds. Zentall, T. R. and Wasserman, E. A.. Oxford: Oxford University Press, pp. 615651.Google Scholar
Thompson, R. K. R. and Oden, D. L. (2000). Categorical perception and conceptual judgments by nonhuman primates: The paleological monkey and the analogical ape. Cognitive Science, 24 (3), 363396. DOI:10.1207/s15516709cog2403_2Google Scholar
Toro, J. M. and Trobalon, J. B. (2005). Statistical computations over a speech stream in a rodent. Perception and Psychophysics, 67, 867875.Google Scholar
van Heijningen, C. A., Chen, J., van Laatum, I., van der Hulst, B. and ten Cate, C. (2013). Rule learning by zebra finches in an artificial grammar learning task: which rule? Animal Cognition, 16, 165175. DOI:10.1007/s10071–012–0559-xGoogle Scholar
van Heijningen, C. A., de Visser, J., Zuidema, W. and ten Cate, C. (2009). Simple rules can explain discrimination of putative recursive syntactic structures by a songbird species. Proceedings of the National Academy of Sciences USA, 106, 2053820543. DOI:10.1073/pnas.0908113106CrossRefGoogle ScholarPubMed
Vonk, J. (2015). Corvid cognition: something to crow about? Current Biology, 25, R69R71. DOI:10.1016/j.cub.2014.12.001Google Scholar
Vonk, J. and Povinelli, D. J. (2012). Similarity and difference in the conceptual systems of primates: the unobservability hypothesis. In The Oxford Handbook of Comparative Cognition, eds. Zentall, T. R. and Wasserman, E. A.. Oxford: Oxford University Press, pp. 552575.Google Scholar
Watson, S. K., Townsend, S. W., Schel, A. M., et al. (2015). Vocal learning in the functionally referential food grunts of chimpanzees. Current Biology, 25, 495499. DOI:10.1016/j.cub.2014.12.032CrossRefGoogle ScholarPubMed
Watumull, J., Hauser, M. D. and Berwick, R. C. (2014). Conceptual and methodological problems with comparative work on artificial language learning. Biolinguistics, 8, 120129.Google Scholar
Weary, D. M. and Krebs, J. R. (1992). Great tits classify songs by individual voice characteristics. Animal Behaviour, 43, 283287. DOI:10.1016/S0003–3472(05)80223–4Google Scholar
Weisman, R., Njegovan, M., Sturdy, , et al. (1998). Frequency-range discriminations: special and general abilities in zebra finches (Taeniopygia guttata) and humans (Homo sapiens). Journal of Comparative Psychology, 112, 244258.Google Scholar
Williams, H. and Staples, K. 1992. Syllable chunking in zebra finch (Taeniopygia guttata) song. Journal of Comparative Psychology, 106, 278286.Google Scholar
Wynne, C. D. L. and Udell, M. A. R. (2013). Animal Cognition; Evolution, Behavior and Cognition. Basingstoke: Palgrave Macmillan.Google Scholar
Zuberbühler, K. (2002). A syntactic rule in forest monkey communication. Animal Behaviour, 63, 293299.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×