Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-15T23:43:50.157Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  24 March 2017

David A. Rosenbaum
Affiliation:
Pennsylvania State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Knowing Hands
The Cognitive Psychology of Manual Control
, pp. 279 - 312
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, R. A., Davoli, C. C., Du, F., Knapp, W. K., & Paull, D. (2008). Altered vision near the hands. Cognition, 107, 10351047.CrossRefGoogle ScholarPubMed
Abrams, R. A., Meyer, D. E., & Kornblum, S. (1990). Eye-hand coordination: Oculomotor control in rapid aimed limb movements. Journal of Experimental Psychology: Human Perception and Performance, 16, 248267.Google ScholarPubMed
Adalbjornsson, C. F., Fischman, M. G., & Rudisill, M. E. (2008). The end-state comfort effect in young children. Research Quarterly for Exercise and Sport, 79, 3641.CrossRefGoogle ScholarPubMed
Adams, J. A. (1971). A closed-loop theory of motor learning. Journal of Motor Behavior, 3, 111149.CrossRefGoogle ScholarPubMed
Adams, J. A. (1984). Learning of movement sequences. Psychological Bulletin, 96, 328.CrossRefGoogle Scholar
Adams, J. A., Goetz, E. T., & Marshall, P. H. (1972). Response feedback and motor learning. Journal of Experimental Psychology, 92, 391.CrossRefGoogle ScholarPubMed
Adolph, K. E. & Robinson, S. R. (2013). The road to walking: What learning to walk tells us about development. In Zelazo, P. D. (Ed.), Oxford Handbook of Developmental Psychology (pp. 403443). New York: Oxford University Press.Google Scholar
Adolph, K. E., Vereijken, B., & Denny, M. A. (1998). Learning to crawl. Child Development, 69, 12991312.CrossRefGoogle ScholarPubMed
Aflalo, T., Kellis, S., Klaes, C., Lee, B., Shi, Y., Pejsa, K., Shanfield, K., Hayes-Jackson, S., Aisen, M., Heck, C., Liu, C., & Andersen, R. A. (2015). Decoding motor imagery from the posterior parietal cortex of a tetraplegic human. Science, 348, 906910.CrossRefGoogle ScholarPubMed
Alexander, R. M. (1991). Optimum timing of muscle activation for simple models of throwing. Journal of Theoretical Biology, 150, 349372.CrossRefGoogle ScholarPubMed
Anderson, J. & Bingham, G. P. (2011). Locomoting-to-reach: Information variables and control strategies for nested actions. Experimental Brain Research, 214, 631644.CrossRefGoogle ScholarPubMed
Anderson, J. R. (1978). Arguments concerning representations for mental imagery. Psychological Review, 85, 249277.CrossRefGoogle Scholar
Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89, 369406.CrossRefGoogle Scholar
Anderson, J. R. (2015). Cognitive Psychology and Its Implications (Eighth Edition). New York: Worth Publishers.Google Scholar
Anguera, J. A., Reuter-Lorenz, P. A., Willingham, D. T., & Seidler, R. D. (2010). Contributions of spatial working memory to visuomotor learning. Journal of Cognitive Neuroscience, 22, 19171930.CrossRefGoogle ScholarPubMed
Annett, M. (1995). The right shift theory of a genetic balanced polymorphism for cerebral-dominance and cognitive processing. Current Psychology of Cognition, 14, 427480.Google Scholar
Aruin, A. S., Almeida, G. L., & Latash, M. L. (1996). Organization of a simple two-joint synergy in individuals with Down syndrome. American Journal of Mental Retardation, 101, 256268.Google ScholarPubMed
Arutyunyan, G. H., Gurfinkel, V. S., & Mirskii, M. L. (1968). Investigation of aiming at a target. Biophysics, 13, 536538.Google Scholar
Asatryan, D. G. & Feldman, A. G. (1965). Functional tuning of the nervous system with control of movement or maintenance of a steady posture. 1. Mechanographic analysis of the work of the joint on execution of a postural task. Biophysics, 10, 925935.Google Scholar
Atkinson, R. C. & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In Spence, K. W. & Spence, J. T. (Eds.), The Psychology of Learning and Motivation (Vol. 2). London: Academic Press.Google Scholar
Augustyn, J. S. & Rosenbaum, D. A. (2006). Metacognitive control of action: Preparation for aiming reflects knowledge of Fitts’ Law. Psychonomic Bulletin & Review, 12, 911916.CrossRefGoogle Scholar
Aviezer, H., Trope, Y., & Todorov, A. (2012). Body cues, not facial expressions, discriminate between intense positive and negative emotions. Science, 338, 12251229.CrossRefGoogle Scholar
Aziz-Zadeh, L., Maeda, F., Zaidel, E., Mazziotta, J., & Iacoboni, M. (2002). Lateralization in motor facilitation during action observation: A TMS study. Experimental Brain Research, 144, 127131.CrossRefGoogle ScholarPubMed
Baader, A. P., Kazennikov, O., & Wiesendanger, M. (2005). Coordination of bowing and fingering in violin playing. Cognitive Brain Research, 23, 436443.CrossRefGoogle ScholarPubMed
Baber, C. (2003). Cognition and Tool Use: Forms of Engagement in Human and Animal Use of Tools. London: Taylor & Francis.Google Scholar
Baddeley, A. D. & Hitch, G. (1974). Working memory. In Bower, G. H. (Ed.), Psychology of Learning and Motivation (Vol. 8 pp. 4789). New York: Academic Press.Google Scholar
Barceló-Coblijn, L. & Gomila, A. (2012). Evidence of recursion in tool use. Behavioral and Brain Sciences, 35, 219220.CrossRefGoogle ScholarPubMed
Bargh, J. A. (2014). Our unconscious mind. Scientific American, 310, 3037.CrossRefGoogle ScholarPubMed
Barliya, A., Omlor, L., Giese, M. A., & Flash, T. (2009). An analytical formulation of the law of intersegmental coordination during human locomotion. Experimental Brain Research, 193, 371385.CrossRefGoogle ScholarPubMed
Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617624.CrossRefGoogle ScholarPubMed
Bartlett, F. (1932). Remembering: An Experimental and Social Study. Cambridge: Cambridge University Press.Google Scholar
Basmajian, J. V. (1974). Muscles Alive: Their Functions Revealed By Electromyography (Third Edition). Baltimore: Williams & Wilkins.Google Scholar
Baughman, R. H. (2005). Playing nature’s game with artificial muscles. Science, 308, 6365.CrossRefGoogle ScholarPubMed
Beilock, S. L. (2015). How The Body Knows Its Mind: The Surprising Power of The Physical Environment To Influence How You Think and Feel. New York: Simon & Schuster.Google Scholar
Beilock, S. L., Carr, T. H., MacMahon, C., & Starkes, J. L. (2002). When paying attention becomes counterproductive: Impact of divided versus skill-focused attention on novice and experienced performance of sensorimotor skills. Journal of Experimental Psychology: Applied, 8, 616.Google ScholarPubMed
Beilock, S. L. & Goldin-Meadow, S. (2010). Gesture changes thought by grounding it in action. Psychological Science, 21, 16051610.CrossRefGoogle ScholarPubMed
Beilock, S. L. & Holt, L. (2007). Embodied preference judgments: Can likeability be driven by the motor system? Psychological Science, 18, 5157.CrossRefGoogle ScholarPubMed
Bekkering, H. & Neggers, S. F. (2002). Visual search is modulated by action intentions. Psychological Science, 13, 370374.CrossRefGoogle ScholarPubMed
Belluck, P. (2012). Footprints to cognitive decline and Alzheimer’s are seen in gait. New York Times, July 17, p. D5.Google Scholar
Bernstein, N. (1967). The Coordination and Regulation of Movements. London: Pergamon Press.Google Scholar
Bertenthal, B. I., Rose, J. L., & Bai, D. L. (1997). Perception-action coupling in the development of visual control of posture. Journal of Experimental Psychology: Human Perception and Performance, 23, 16311643.Google ScholarPubMed
Bick, P. A. & Kinsbourne, M. (1987). Auditory hallucinations and subvocal speech in schizophrenic patients. American Journal of Psychiatry, 144, 222225.Google ScholarPubMed
Bingham, G. P., Schmidt, R. C., & Rosenblum, L. D. (1989). Hefting for a maximum distance throw: A smart perceptual mechanism. Journal of Experimental Psychology: Human Perception and Performance, 15, 507528.Google ScholarPubMed
Biryukova, E. V. & Bril, B. (2008). Organization of goal-directed action at a high level of motor skill: The case of stone knapping in India. Motor Control, 12, 181209.CrossRefGoogle Scholar
Bizzi, E., Mussa-Ivaldi, F. A., & Giszter, S. (1991). Computations underlying the execution of movement: A biological perspective. Science, 253, 287291.CrossRefGoogle ScholarPubMed
Blakemore, S. J., Frith, C. D., & Wolpert, D. M. (1999). Spatio-temporal prediction modulates the perception of self-produced stimuli. Journal of Cognitive Neuroscience, 11, 551559.CrossRefGoogle ScholarPubMed
Block, M. E. (1991). Motor development in children with Down Syndrome: A review of the literature. Adapted Physical Activity Quarterly, 8, 179203.CrossRefGoogle Scholar
Bongers, R. M., Micheals, C. F., & Smitsman, A. W. (2004). Variations of tool and task characteristics reveal that tool-use postures are anticipated. Journal of Motor Behavior, 36, 305315.CrossRefGoogle ScholarPubMed
Bongers, R. M., Smitsman, A. W., & Michaels, C. F. (2003). Geometrics and dynamics of a rod determine how it is used for reaching. Journal of Motor Behavior, 35, 422.CrossRefGoogle ScholarPubMed
Borchers, S., Verheij, R., Smeets, J. B., & Himmelbach, M. (2014). The influence of object height on maximum grip aperture in empirical and modeled data. Journal of Experimental Psychology: Human Perception and Performance, 40, 889896.Google ScholarPubMed
Botvinick, M. (2004). Probing the neural basis of body “ownership.” Science, 305, 782783.CrossRefGoogle ScholarPubMed
Botvinick, M. & Cohen, J. (1998). Rubber hands “feel” touch that eyes see. Nature, 391, 756756.CrossRefGoogle ScholarPubMed
Botvinick, M. & Plaut, D. C. (2004). Doing without schema hierarchies: A recurrent connectionist approach to normal and impaired routine sequential action. Psychological Review, 111, 395429.CrossRefGoogle ScholarPubMed
Brashers-Krug, T., Shadmehr, R., & Bizzi, E. (1996). Consolidation in human motor memory. Nature, 382, 252255.CrossRefGoogle ScholarPubMed
Brass, M., Bekkering, H., & Prinz, W. (2001). Movement observation affects movement execution in a simple response task. Acta Psychologica, 106, 322.CrossRefGoogle Scholar
Breslin, C. M., & Fischman, M. G. (2015). The end-state comfort effect in the overturned glass task: Does height change the influence of reach extent and balance? Journal of Motor Learning and Development, 3, 2338.CrossRefGoogle Scholar
Breslin, G., Hodges, N., Kennedy, R., Hanlon, M., & Williams, A. M. (2010). An especial skill: Support for a learned parameters hypothesis. Acta Psychologica, 134, 5560.CrossRefGoogle ScholarPubMed
Brooks, L. R. (1968). Spatial and verbal components in the act of recall. Canadian Journal of Psychology, 22, 349368.CrossRefGoogle Scholar
Brown, L. E., Kroliczak, G., Demonet, J- F., & Goodale, M. A. (2008). A hand in blindsight: Hand placement near target improves size perception in the blind visual field. Neuropsychologia, 46, 786802.CrossRefGoogle Scholar
Brown, P. C., Roediger, H. L. III, & McDaniel, M. A. (2014). Make It Stick. Cambridge, MA: Belknap Press of Harvard University Press.Google Scholar
Brown, T. G. (1911). The intrinsic factors in the act of progression in the mammal. Proceedings of the Royal Society, London, 84, 308319.Google Scholar
Brown, T. G. (1914). On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. Journal of Physiology, 48, 1846.CrossRefGoogle Scholar
Bruce, D. (1994). Lashley and the problem of serial order. American Psychologist, 49, 2, 93103.CrossRefGoogle Scholar
Bruner, J. S., Goodnow, J., & Austin, J. (1956). A Study of Thinking. New York: Wiley.Google Scholar
Bryan, W. L. & Harter, N. (1897). Studies in the physiology and psychology of the telegraphic language. Psychological Review, 4, 2753.CrossRefGoogle Scholar
Bryan, W. L. & Harter, N. (1899). Studies on the telegraphic language: The acquisition of a hierarchy of habits. Psychological Review, 6, 345378.CrossRefGoogle Scholar
Bub, D. N., Masson, M. E. J., & Lin, T. (2013). Features of planned hand actions influence identification of graspable objects. Psychological Science, 24, 12691276.CrossRefGoogle ScholarPubMed
Bullock, D. & Grossberg, S. (1988). Neural dynamics of planned arm movements: emergent invariants and speed-accuracy properties during trajectory formation. Psychological Review, 95, 4990.CrossRefGoogle ScholarPubMed
Bullock, D. & Grossberg, S. (1989). VITE and FLETE: Neural modules for trajectory formation and postural control. In Hershberger, W. A. (Ed.), Volitional Action (pp. 253297). Amsterdam: North-Holland/Elsevier.CrossRefGoogle Scholar
Bullock, D. & Grossberg, S. (1991). Adaptive neural networks for control of movement trajectories invariant under speed and force rescaling. Human Movement Science, 10, 353.CrossRefGoogle Scholar
Bushnell, E. W. & Boudreau, J. P. (1993). Motor development and the mind: The potential role of motor abilities as a determinant of aspects of perceptual development. Child Development, 64, 10051021.CrossRefGoogle ScholarPubMed
Buxbaum, L. J., Shapiro, A. D., & Coslett, H. B. (2014). Critical brain regions for tool-related and imitative actions: A componential analysis. Brain, 137, 19711985.CrossRefGoogle ScholarPubMed
Buxbaum, L. J., Sirigu, A., Schwartz, M. F., & Klatzky, R. (2003). Cognitive representations of hand posture in ideomotor apraxia. Neuropsychologia, 41, 10911113.CrossRefGoogle ScholarPubMed
Caligiuri, M. P., Mohammed, L. A., Found, B., & Rogers, D. (2012). Nonadherence to the isochrony principle in forged signatures. Forensic Science International, 223, 228232.CrossRefGoogle Scholar
Candia, V., Wienbruch, C., Elbert, T., Rockstroh, B., & Ray, W. (2003). Effective behavioral treatment of focal hand dystonia in musicians alters somatosensory cortical organization. Proceedings of the National Academy of Sciences, 100, 79427946.CrossRefGoogle ScholarPubMed
Carello, C. & Turvey, M. T. (2004). Physics and psychology of the muscle sense. Current Directions in Psychological Science, 13, 2528.CrossRefGoogle Scholar
Carmichael, L., Hogan, H. P., & Walter, A. A. (1932). An experimental study of the effect of language on the reproduction of visually perceived form. Journal of Experimental Psychology, 15, 7386.CrossRefGoogle Scholar
Carpenter, W. B. (1852a). On the influence of suggestion in modifying and directing muscular movement, independently of volition. Proceedings of the Royal Institution of Great Britain, 147154.Google Scholar
Carpenter, W. B. (1852b). On the relation of mind and matter. British and Foreign Medico-Chirurgical Review, 10, 506518.Google Scholar
Carson, L. M. & Wiegand, R. L. (1979). Motor schema formation and retention in young children: A test of Schmidt’s schema theory. Journal of Motor Behavior, 11, 247251.CrossRefGoogle Scholar
Casasanto, D. (2011). Different bodies, different minds: The body-specificity of language and thought. Current Directions in Psychological Science, 20, 378383.CrossRefGoogle Scholar
Casasanto, D. & Chrysikou, E. G. (2011). When left is “right”: Motor fluency shapes abstract concepts. Psychological Science, 22, 419422.CrossRefGoogle ScholarPubMed
Casey, S., Emmorey, K., & Larrabee, H. (2012). The effects of learning American Sign Language on co-speech gesture. Bilingualism: Language and Cognition, 15, 677686.CrossRefGoogle ScholarPubMed
Chaffin, R. & Imreh, G. (2002). Practicing perfection: Piano performance as expert memory. Psychological Science, 13, 342349.CrossRefGoogle ScholarPubMed
Chalmers, D. J. (1995). Facing up to the problem of consciousness. Journal of Consciousness Studies, 2, 200219.Google Scholar
Chapman, K. M., Weiss, D. J. & Rosenbaum, D. A. (2010). Evolutionary roots of motor planning: The end-state comfort effect in lemurs (Lemur catta, Eulemur mongoz, Eulemur coronatus, Eulemur collaris, Hapalemur griseus, and Varecia rubra). Journal of Comparative Psychology, 124, 229232.CrossRefGoogle Scholar
Charpentier, A. (1891). Analyse experimentale de quelques elements de la sensation de poids [Experimental study of some aspects of weight perception]. Archives de Physiologie Normale et Pathologique, 3, 122135.Google Scholar
Chemin, B., Mouraux, A., & Nozaradan, S. (2014). Body movement selectively shapes the neural representation of musical rhythms. Psychological Science, 25, 21472159.CrossRefGoogle ScholarPubMed
Chomsky, N. (1959). A review of B. F. Skinner’s verbal behavior. Language, 35, 2658.CrossRefGoogle Scholar
Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Foster, J. D., Nuyujukian, P., Ryu, S. I., & Shenoy, K. V. (2012). Neural population dynamics during reaching. Nature, 487, 5156.CrossRefGoogle ScholarPubMed
Cisek, P. & Kalaska, J. (2010). Neural mechanisms for interacting with a world full of action choices. Annual Review of Neuroscience, 33, 269298.CrossRefGoogle ScholarPubMed
Clar, C., Tsertsvadze, A., Hundt, G. L., Clarke, A., & Sutcliffe, P. (2014). Clinical effectiveness of manual therapy for the management of musculoskeletal and non-musculoskeletal conditions: Systematic review and update of UK evidence report. Chiropractic & Manual Therapies, 22, 1246.CrossRefGoogle ScholarPubMed
Clark, A. J., Parakh, R., Smilek, D., & Roy, E. A. (2012). The slip induction task: Creating a window into cognitive control failures. Behavior Research Methods, 44, 558574.CrossRefGoogle ScholarPubMed
Clarke, K. A. & Primo, D. M. (2012). Overcoming “Physics Envy.” The New York Times Sunday Review, April 1, p. 9.Google Scholar
Claxton, L. J., Keen, R., & McCarty, M. E. (2003). Evidence of motor planning in infant reaching behavior. Psychological Science, 14, 354356.CrossRefGoogle ScholarPubMed
Clifton, R. K., Rochat, P., Litovsky, R. Y., & Perris, E. E. (1991). Object representation guides infant reaching in the dark. Journal of Experimental Psychology: Human Perception and Performance, 17, 323329.Google ScholarPubMed
Coelho, C. J., Przyblya, A., Yadav, V., & Sainburg, R. L. (2013). Hemispheric differences in the control of limb dynamics: A link between arm performance and arm selection patterns. Journal of Neurophysiology, 109, 825838.CrossRefGoogle ScholarPubMed
Coelho, C. J. & Rosenbaum, D. A. (2013). Is handedness just response bias? Psychonomic Bulletin & Review, 20, 957962.CrossRefGoogle ScholarPubMed
Cohen, R. G., Nutt, J. G., & Horak, F. B. (2011). Errors in postural preparation lead to increased choice reaction times for step initiation in older adults. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 66, 705713.CrossRefGoogle ScholarPubMed
Cohen, R. G. & Rosenbaum, D. A. (2007). Directional bias of limb tremor prior to voluntary movement. Psychological Science, 18, 812.CrossRefGoogle ScholarPubMed
Cohen, R. G. & Rosenbaum, D. A. (2004). Where grasps are made reveals how grasps are planned: Generation and recall of motor plans. Experimental Brain Research, 157, 486495.CrossRefGoogle ScholarPubMed
Cohen, R. G. & Rosenbaum, D. A. (2011). Prospective and retrospective effects in human motor control: Planning grasps for object rotation and translation. Psychological Research, 75, 341349.CrossRefGoogle ScholarPubMed
Cole, J. (2013). Capable of whatever man’s ingenuity suggests: Agency, deafferentation, and the control of movement. In Rachman, Z. (Ed.), The Hand, An Organ of The Mind: What The Manual Tells The Mental (pp. 325). Cambridge, MA: MIT Press.Google Scholar
Collard, R. & Povel, D-J. (1982). Theory of serial pattern production: Tree traversals. Psychological Review, 85, 693707.CrossRefGoogle Scholar
Contreras-Vidal, J. L., Teulings, H., & Stelmach, G. (1998). Elderly subjects are impaired in spatial coordination in fine motor control. Acta Psychologica, 100, 2535.CrossRefGoogle ScholarPubMed
Cooper, L. A. & Shepard, R. N. (1984). Turning something over in the mind. Scientific American, 251, 106–07.CrossRefGoogle ScholarPubMed
Cooper, R. & Shallice, T. (2000). Contention scheduling and the control of routine activities. Cognitive Neuropsychology, 17, 297338.CrossRefGoogle ScholarPubMed
Corkin, S. (2002). What’s new with the amnesic patient H.M.? Nature Reviews Neuroscience, 3, 153160CrossRefGoogle ScholarPubMed
Cos, I., Duque, J., & Cisek, P. (2014). Rapid prediction of biomechanical costs during action decisions. Journal of Neurophysiology, 112, 12561266.CrossRefGoogle ScholarPubMed
Côté, J. N., Raymond, D., Mathieu, P. A., Feldman, A. G., & Levin, M. F. (2005). Differences in multi-joint kinematic patterns of repetitive hammering in healthy, fatigued and shoulder-injured individuals. Clinical Biomechanics, 20, 581590.CrossRefGoogle ScholarPubMed
Cowie, D., Smith, L., & Braddick, O. (2010). The development of locomotor planning for end-state comfort. Perception, 39, 661670.CrossRefGoogle ScholarPubMed
Craig, J. C. & Rollman, G. B. (1999). Somesthesis. Annual Review of Psychology, 50, 305331.CrossRefGoogle ScholarPubMed
Crossman, E. R. F. W. (1959). A theory of the acquisition of speed skill. Ergonomics, 2, 153166.CrossRefGoogle Scholar
Crump, M. J. & Logan, G. D. (2010a). Warning this keyboard will de-construct: The role of the keyboard in skilled typing. Psychonomic Bulletin & Review, 17, 394399.CrossRefGoogle Scholar
Cruse, H., Wischmeyer, E., Brüwer, M., Brockfeld, P., & Dress, A. (1990). On the cost functions for the control of the human arm movement. Biological Cybernetics, 62, 519528.CrossRefGoogle ScholarPubMed
Cunningham, H. A. & Welch, R. B. (1994). Multiple concurrent visual-motor mappings: Implications for models of adaptation. Journal of Experimental Psychology: Human Perception and Performance, 20, 987999.Google ScholarPubMed
Czyż, S. H., Breslin, G., Kwon, O., Mazur, M., Kobiałka, K., & Pizlo, Z. (2013). Especial skill effect across age and performance level: The nature and degree of generalization. Journal of Motor Behavior, 45, 139152.CrossRefGoogle ScholarPubMed
Daprati, E., Franck, N., Georgieff, N., Proust, J., Pacherie, E., Dalery, J., & Jeannerod, M. (1997). Looking for the agent: An investigation into consciousness of action and self-consciousness in schizophrenic patients. Cognition, 65, 7186.CrossRefGoogle ScholarPubMed
Davoli, C. C., Brockmole, J. R., & Witt, J. K. (2012). Compressing perceived distance with remote tool use: Real, imagined, and remembered. Journal of Experimental Psychology: Human Perception and Performance, 38, 8089.Google ScholarPubMed
Decety, J. (1996). Do imagined and executed actions share the same neural substrate? Cognitive Brain Research, 3, 9793.CrossRefGoogle ScholarPubMed
Dell, G. S. (1986). A spreading activation theory of retrieval in sentence production. Psychological Review, 93, 283321.CrossRefGoogle ScholarPubMed
Demairé, C., Honore, J., & Coquery, J. M. (1984). Effects of ballistic and tracking movements on spinal proprioceptive and cutaneous pathways in man. In Kornblum, S. (Ed.), Preparatory States and Processes (pp. 201216). Hillsdale, New Jersey: Erlbaum Associates.Google Scholar
Dennett, D. (1981). Brainstorms: Philosophical Essays on Mind and Psychology. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
De Renzi, E. N & Barbieri, C. (1992). The incidence of the grasp reflex following hemispheric lesion and its relation to frontal damage. Brain, 115, 293313.CrossRefGoogle ScholarPubMed
Desbiez, D., Vinter, A., & Meulenbroek, R. G. J. (1996). Biomechanical and perceptual complexity of drawing angles. Acta Psychologica, 94, 253271.CrossRefGoogle Scholar
Desmurget, M., Reilly, K. T., Richard, N., Szathmari, A., Mottolese, C., & Sirigu, A. (2009). Movement intention after parietal cortex stimulation in humans. Science, 324, 811813.CrossRefGoogle ScholarPubMed
Diamond, A. & Gilbert, J. (1989). Development as progressive inhibitory control of action: Retrieval of a contiguous object. Cognitive Development, 4, 223249.CrossRefGoogle Scholar
Dickinson, M. H., Farley, C. T., Full, R. J., Keohl, M. A., Kram, R., & Lehman, S., (2000). How animals move: An integrative view. Science, 288, 100106.CrossRefGoogle ScholarPubMed
Digel, I. & Artmann, A. T. (2011). The Emperor’s New Body: Seeking for a Blueprint of Limb Regeneration in Humans. In Artmann, G. M, Minger, S., & Hescheler, J. (Eds.), Stem Cell Engineering (pp. 337). Springer Berlin Heidelberg.CrossRefGoogle Scholar
Dixon, P. (1987). The structure of mental plans for following directions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13, 1826.Google Scholar
Domahs, F., Moeller, K., Huber, S., Willmes, K., & Nuerk, H. C. (2010). Embodied numerosity: Implicit hand-based representations influence symbolic number processing across cultures. Cognition, 116, 251266.CrossRefGoogle ScholarPubMed
Dominey, P., Decety, J., Broussolle, E., Chazot, G., & Jeannerod, M. (1995). Motor imagery of a lateralized sequential task is asymmetrically slowed in hemi-Parkinson’s patients. Neuropsychologia, 33, 727741.CrossRefGoogle ScholarPubMed
Durgin, F. H., Klein, B., Spiegel, A., Strawser, C. J., & Williams, M. (2012). The social psychology of perception experiments: Hills, backpacks, glucose, and the problem of generalizability. Journal of Experimental Psychology: Human Perception and Performance, 38, 15821595.Google ScholarPubMed
Eagleman, D. M. (2011). Incognito – The secret lives of the brain. New York, NY: Pantheon.Google Scholar
Ehrsson, H. H., Spence, C., & Passingham, R. E. (2004). That’s my hand! Activity in the premotor cortex reflects feeling of ownership of a limb. Science, 305, 875877.CrossRefGoogle ScholarPubMed
Elbert, T., Pantev, C., Weinbruch, C., Rockstroh, B., & Taub, E. (1995). Increased cortical representation of the fingers of the left hand. Science, 270, 305307.CrossRefGoogle ScholarPubMed
Elder, A., Ruitenber, M., De Kleine, E., & Verwey, W. B. (2013). Control of automated behaviour: Insights from the discrete sequence production task. Frontiers in Human Neuroscience, 7, 82. frontiersin.org/Journal/Abstract.aspx?s=537&name=human_neuroscience&ART_DOI=10.3389/fnhum.2013.00082Google Scholar
Elliott, D., Hansen, S., Grierson, L. E., Lyons, J., Bennett, S. J., & Hayes, S. J. (2010). Goal-directed aiming: Two components but multiple processes. Psychological Bulletin, 136, 10231044.CrossRefGoogle ScholarPubMed
Elliott, D., Helsen, W. F., & Chua, R. (2001). A century later: Woodworth’s (1899) two component model of goal-directed aiming. Psychological Bulletin, 127, 342357.CrossRefGoogle ScholarPubMed
Elliott, D. & Roy, E. A. (Eds.). (1996). Manual Asymmetries in Motor Performance. Boca Raton: CRC Press.Google Scholar
Emmorey, K. (2002). Language, Cognition, and the Brain: Insights from Sign Language Research. Hillsdale, NJ: Erlbaum.Google Scholar
Engelbrecht, S. E., Berthier, N. E., & O’Sullivan, L. P. (2003). The undershoot bias: Learning to act optimally under uncertainty. Psychological Science, 14, 257261.CrossRefGoogle ScholarPubMed
Engelkamp, J. (1998). Memory for Actions. Psychology Press/Taylor & Francis (UK).Google Scholar
Ericsson, K. A., Krampe, R. T., & Tesch-Romer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100, 363406.CrossRefGoogle Scholar
Ernst, M. O. & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415, 429433.CrossRefGoogle Scholar
Feldman, A. & Latash, M. L. (2005). Testing hypotheses and the advancement of science: Recent attempts to falsify the equilibrium point hypothesis. Experimental Brain Research, 161, 91103.CrossRefGoogle ScholarPubMed
Field, T. (2010). Touch for socioemotional and physical well-being: A review. Developmental Review, 30, 367383.CrossRefGoogle Scholar
Finke, R. A., Pinker, S., & Farah, M. J. (1989). Reinterpreting visual patterns in mental imagery. Cognitive Science, 13, 5178.CrossRefGoogle Scholar
Firestone, C. (2013). How “paternalistic” is spatial perception? Why wearing a heavy backpack doesn’t and couldn’t make hills look steeper. Perspectives on Psychological Science, 8, 455473.CrossRefGoogle Scholar
Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47, 381391.CrossRefGoogle ScholarPubMed
Fitts, P. M. (1964). Perceptual-motor skill learning. In Melton, A. W. (Ed.), Categories of Human Learning (pp. 243285). New York: Academic Press.CrossRefGoogle Scholar
Flanagan, J. R. & Johansson, R. S. (2003). Action plans used in action observation. Nature, 424, 769771.CrossRefGoogle ScholarPubMed
Flanagan, J. R., King, S., Wolpert, D. M., & Johansson, R. S. (2001). Sensorimotor prediction and memory in object manipulation. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 55, 8797.CrossRefGoogle ScholarPubMed
Flanagan, J. R. & Tresilian, J. R. (1993). Grip-load force coupling: A general control strategy for transporting objects. Journal of Experimental Psychology: Human Perception and Performance, 20, 944957.Google Scholar
Flanagan, J. R., Tresilian, J. R., & Wing, A. M. (1993). Coupling of grip force and load force during arm movements with grasped objects. Neuroscience Letters, 152, 5356.CrossRefGoogle ScholarPubMed
Flash, T. & Hogan, N. (1985). The coordination of arm movements: An experimentally confirmed mathematical model. The Journal of Neuroscience, 5, 16881703.CrossRefGoogle ScholarPubMed
Fourneret, P., Franck, N., Slachevsky, A., & Jeannerod, M. (2001) Self-monitoring in schizophrenia revisited. NeuroReport, 12, 12031208.CrossRefGoogle ScholarPubMed
Fourneret, P. & Jeannerod, M. (1998). Limited conscious monitoring of motor performance in normal subjects. Neuropsychologia, 36, 11331140.CrossRefGoogle ScholarPubMed
Franchak, J. M. & Adolph, K. E. (2012). What infants know and what they do: Perceiving possibilities for walking through openings. Developmental Psychology, 48, 1254.CrossRefGoogle ScholarPubMed
Franchak, J. & Adolph, K. (2014). Affordances as probabilistic functions: Implications for development, perception, and decisions for action. Ecological Psychology, 26, 109124.CrossRefGoogle ScholarPubMed
Frankl, V. (2006). Man’s Search for Meaning. An Introduction to Logotherapy. Boston, MA: Beacon Press.Google Scholar
Franklin, D. W., Burdet, E., Tee, K. P., Osu, R., Chew, C-M., Milner, T. E., & Kawato, M. (2008). CNS learns stable, accurate, and efficient movements using a simple algorithm. Journal of Neuroscience, 28, 1116511173.CrossRefGoogle ScholarPubMed
Franklin, D. W., Liaw, G., Milner, T. E., Osu, R., Burdet, E., & Kawato, M. (2007). Endpoint stiffness of the arm is directionally tuned to instability in the environment. The Journal of Neuroscience, 27, 77057716.CrossRefGoogle ScholarPubMed
Franz, E. A. (1997). Spatial coupling in the coordination of complex actions. Quarterly Journal of Experimental Psychology, 50A, 684704.CrossRefGoogle Scholar
Franz, E. A., Eliassen, J. C., Ivry, R. B., & Gazzaniga, M. S. (1996). Dissociation of spatial and temporal coupling in the bimanual movements of callosotomy patients. Psychological Science, 7, 306310.CrossRefGoogle Scholar
Franz, E. A. & McCormick, R. (2010). Conceptual unifying constraints override sensorimotor interference during anticipatory control of bimanual actions. Experimental Brain Research, 205, 273282.CrossRefGoogle ScholarPubMed
Franz, E. A., Zelaznik, H. N., Swinnen, S., & Walter, C. (2001) Spatial conceptual influences on the coordination of bimanual actions: When a dual task becomes a single task. Journal of Motor Behavior, 33, 103112.CrossRefGoogle Scholar
Freud, S. (1901/1971). The Psychopathology of Everyday Life. Translated by Tyson, A.. New York, NY: Norton.Google Scholar
Frey, S. H. & Povinelli, D. J. (2012). Comparative investigations of manual action representations: Evidence that chimpanzees represent the costs of potential future actions involving tools. Philosophical Transactions of the Royal Society, B, 367, 4858.CrossRefGoogle ScholarPubMed
Friedman, T. L. (2012). I made the robot do it. New York Times, August 25. www.nytimes.com/2012/08/26/opinion/sunday/i-made-the-robot-do-it.html?_r=1&hpw.Google Scholar
Fromkin, V. A. (Ed.). (1973). Speech Errors as Linguistic Evidence. The Hague: Mouton.Google Scholar
Fromkin, V. A. (Ed.). (1980). Errors in Linguistic Performance. New York: Academic Press.Google Scholar
Fucson, O. I., Berkenblit, M. B., & Feldman, A. G. (1980). The spinal frog takes into account the scheme of its body during the wiping reflex. Science, 209, 11261–1263.Google Scholar
Gallistel, C. R. (1981). Bell, Magendie, and the proposals to restrict the use of animals in neurobehavioral research. American Psychologist, 36, 357360.CrossRefGoogle ScholarPubMed
Gawande, A. (June 30, 2008). The itch. The New Yorker, 5865.Google Scholar
Gelb, P. H. & Simes, D. K. (2013). The new anti-American axis? New York Times, July 6. www.nytimes.com/2013/07/07/opinion/sunday/a-new-anti-american-axis.html?_r=0.Google Scholar
Georgopoulos, A. P. (1991). Higher order motor control. Annual Review of Neuroscience, 14, 361377.CrossRefGoogle ScholarPubMed
Gibson, J. J. (1962). Observations on active touch. Psychological Review, 69, 477491.CrossRefGoogle ScholarPubMed
Gibson, J. J. (1979). The Ecological Approach To Visual Perception. Boston: Houghton-Mifflin.Google Scholar
Gladwell, M. (2008). Outliers: The Story of Success. New York: Little Brown and Company.Google Scholar
Glenberg, A. M. & Kaschak, M. P. (2002). Grounding language in action. Psychonomic Bulletin & Review, 9, 558565.CrossRefGoogle ScholarPubMed
Glimcher, P. W. (2004). Decisions, Uncertainty, and The Brain: The Science of Neuroeconomics. Cambridge, MA: MIT Press.Google Scholar
Gobet, F. & Campitelli, G. (2007). The role of domain-specific practice, handedness, and starting age in chess. Developmental Psychology, 43, 159172.CrossRefGoogle ScholarPubMed
Goldin-Meadow, S. (2012). Homesign: Gesture to language. In Pfau, R., Steinbach, M., & Woll, B. (Eds.), Sign Language: An International Handbook (pp. 601625). Berlin: Mouton de Gruyter.CrossRefGoogle Scholar
Goldstein, J. (2014). The pickpocket’s tale. New York Times, July 18, pp. 2223 (Region section of the electronic Sunday Times, July 18, 2014): www.nytimes.com/2014/07/20/nyregion/the-pickpockets-tale.html?_r=0.Google Scholar
Gonzalez, C. L. R. & Goodale, M. A. (2009). Hand preference for precision grasping predicts language lateralization. Neuropsychologia, 47, 31823189.CrossRefGoogle ScholarPubMed
Gonzalez, D. A., Studenka, B. E., Glazebrook, C. M., & Lyons, J. L. (2011). Extending end-state comfort effect: Do we consider the beginning state comfort of another? Acta Psychologica, 136, 347353.CrossRefGoogle Scholar
Goodnow, J. J. & Levine, R. (1973). The grammar of action: Sequence and syntax in children’s copying. Cognitive Psychology, 4, 8298.CrossRefGoogle Scholar
Gordon, A. M. (2011). To constrain or not to constrain, and other stories of intensive upper extremity training for children with unilateral cerebral palsy. Developmental Medicine and Child Neurology, 53, 5661.CrossRefGoogle ScholarPubMed
Gordon, A. M., Westling, B., Cole, K. J., & Johansson, R. S. (1993). Memory representations underlying motor commands used during manipulation of common and novel objects. Journal of Neurophysiology, 69, 17891796.CrossRefGoogle ScholarPubMed
Gould, S. J. & Lewontin, R. C. (1979).The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proceedings of the Royal Society of London. Series B, Biological Sciences, 205, 581598.Google Scholar
Graziano, M. S. A. (2008). The Intelligent Movement Machine: An Ethological Perspective On The Primate Motor System. Oxford, UK: Oxford University Press.Google Scholar
Graziano, M. S. (2016). Ethological action maps: A paradigm shift for the motor cortex. Trends in Cognitive Sciences, 20, 121130.CrossRefGoogle ScholarPubMed
Graziano, M. S., Aflalo, T. M., & Cooke, D. F. (2005). Arm movements evoked by electrical stimulation in the motor cortex of monkeys. Journal of Neurophysiology, 94, 42094223.CrossRefGoogle ScholarPubMed
Graziano, M. S. & Gross, C. G. (1994). Mapping space with neurons. Current Directions in Psychological Science, 3, 164167.CrossRefGoogle Scholar
Graziano, M. S. & Gross, C. G. (1996). Multiple pathways for processing visual space. In Inui, T. & McClelland, J. L. (Eds.), Attention and Performance XVI: Information Integration (pp. 181207). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Graziano, M. S., Taylor, C. S., & Moore, T. (2002). Complex movements evoked by microstimulation of precentral cortex. Neuron, 34, 841–51.CrossRefGoogle ScholarPubMed
Gredebäck, G. & Falck-Ytter, T. (2015). Eye movements during action observation. Perspectives on Psychological Science, 10, 591598.CrossRefGoogle ScholarPubMed
Greenfield, P. (1991). Language, tools, and brain: The ontogeny and phylogeny of hierarchically organized sequential behavior. Behavioral and Brain Sciences, 14, 531595.CrossRefGoogle Scholar
Greenwald, A. G. (1970). Sensory feedback mechanisms in performance control: With special reference to the ideomotor mechanism. Psychological Review, 77, 7399.CrossRefGoogle Scholar
Gregory, R. L. (1966). Eye and brain. New York, NY: McGraw-Hill.Google Scholar
Grezes, J., Tucker, M., Armony, J., Ellis, R., & Passingham, R. E. (2003). Objects automatically potentiate action: an fMRI study of implicit processing. European Journal of Neuroscience, 17, 27352740.CrossRefGoogle ScholarPubMed
Griffin, D. M., Hoffman, D. S., & Strick, P. L. (2015). Corticomotoneuronal cells are “functionally tuned.” Science, 350, 667670.CrossRefGoogle Scholar
Grosjean, M., Knoblich, G., & Shiffrar, M. (2007). Fitts’s Law holds for action perception. Psychological Science, 18, 9599.CrossRefGoogle ScholarPubMed
Grosvald, M. & Corina, D. P. (2012). Exploring the movement dynamics of manual and oral articulation: Evidence from coarticulation. Laboratory Phonology, 3, 3760.CrossRefGoogle Scholar
Guenther, F. H., Hampson, M., & Johnson, D. (1998). A theoretical investigation of reference frames for the planning of speech movements. Psychological Review, 105, 611633.CrossRefGoogle ScholarPubMed
Guiard, Y. (1983). The lateral coding of rotations: A study of the Simon effect with wheel-rotation responses. Journal of Motor Behavior, 15, 331342.CrossRefGoogle ScholarPubMed
Guiard, Y. (1993). On Fitts’s and Hooke’s laws: Simple harmonic movement in upper-limb cyclical aiming. Acta Psychologica, 82, 139159.CrossRefGoogle ScholarPubMed
Guigon, E., Baraduc, P., & Desmurget, M. (2007). Computational motor control: Redundancy and invariance. Journal of Neurophysiology, 97, 331347.CrossRefGoogle ScholarPubMed
Haggard, P. (2008). Human volition: Towards a neuroscience of will. Nature Neuroscience Reviews, 9, 934946.CrossRefGoogle ScholarPubMed
Halsband, U., Matsuzaka, Y., & Tanji, J. (1994). Neuronal activity in the primate supplementary, pre-supplementary and premotor cortex during externally and internally instructed sequential movements. Neuroscience Research, 20, 149155.CrossRefGoogle ScholarPubMed
Hambrick, D. Z., Oswald, F. L., Altmann, E. M., Meinz, E. J., Gobet, F., & Campitelli, G. (2014). Deliberate practice: Is that all it takes to become an expert? Intelligence, 45, 3445.CrossRefGoogle Scholar
Hare, B. & Tomasello, M. (2005). Human-like social skills in dogs? Trends in Cognitive Sciences, 9, 439444.CrossRefGoogle ScholarPubMed
Haslinger, B., Erhard, P., Altenmüller, E., Hennenlotter, A., Schwaiger, M., von Einsiedel, H. G., Rummeny, E., Conrad, B., & Ceballos-Baumann, A. O. (2004). Reduced recruitment of motor association areas during bimanual coordination in concert pianists. Human Brain Mapping, 22, 206215.CrossRefGoogle ScholarPubMed
Hausdorff, J. M. (2007). Gait dynamics, fractals and falls: Finding meaning in the stride-to-stride fluctuations of human walking. Human Movement Science, 26, 555589.CrossRefGoogle ScholarPubMed
Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The faculty of language: What is it, who has it, and how did it evolve? Science, 298, 15691579.CrossRefGoogle ScholarPubMed
Heath, M., Neely, K. A., Yakimishyn, J., & Binsted, G. (2008). Visuomotor memory is independent of conscious awareness of target features. Experimental Brain Research, 188, 517527.CrossRefGoogle ScholarPubMed
Heathcote, A., Brown, S., & Mewhort, D. J. K. (2000). The power law repealed: The case for an exponential law of practice. Psychonomic Bulletin and Review, 7, 185207.CrossRefGoogle ScholarPubMed
Heijink, H. & Meulenbroek, R. G. (2002). On the complexity of classical guitar playing: Functional adaptations to task constraints. Journal of Motor Behavior, 43, 339351.CrossRefGoogle Scholar
Held, R. (1965). Plasticity in sensory-motor systems. Scientific American, 213, 8494.CrossRefGoogle ScholarPubMed
Heller, M. A., Brackett, D. D., Wilson, K., Yoneyama, K., Boyer, A., & Steffen, H. (2002). The haptic Muller-Lyer illusion in sighted and blind people. Perception, 31, 12631274.CrossRefGoogle ScholarPubMed
Helmholtz, H. (1866/1962). Handbook of Physiological Optics. New York: Dover. (Translation of Handbuch der Physiologischen Optik. Hamburg: Voss.)Google Scholar
Henry, F. M. & Rogers, D. E. (1960). Increased response latency for complicated movements and a “memory drum” theory of neuromotor reaction. Research Quarterly, 31, 448458.Google Scholar
Herbort, O. & Butz, M. V. (2012a). The continuous end-state comfort effect: Weighted integration of multiple biases. Psychological Research, 76, 345363.CrossRefGoogle ScholarPubMed
Herbort, O. & Butz, M. V. (2012b). Too good to be true? Ideomotor theory from a computational perspective. Frontiers in Psychology (Vol. 3). Doi 10.3389/fpsyg.2012.00494CrossRefGoogle ScholarPubMed
Herbort, O. & Rosenbaum, D. A. (2014). What is chosen first, the hand used for reaching or the target that is reached? Psychonomic Bulletin & Review, 21, 170177.CrossRefGoogle ScholarPubMed
Heuer, H. (2003). Motor control. In Healy, A. & Proctor, R. (Eds.), Handbook of Psychology: Volume 4 (Experimental Psychology) (pp. 317354). Hoboken, NJ: John Wiley & Sons, Inc.CrossRefGoogle Scholar
Hewes, G. W. (1957). The anthropology of posture. Scientific American, 196, 123132.CrossRefGoogle Scholar
Hickok, G. (2009). Eight problems for the mirror neuron theory of action understanding in monkeys and humans. Journal of Cognitive Neuroscience, 7, 12291243.CrossRefGoogle Scholar
Hill, E. L. & Khanem, F. (2004). The development of hand preference in children: The effect of task demands and links with manual dexterity. Brain and Cognition, 71, 99107.CrossRefGoogle Scholar
Hofsten, C. (1980). Predictive reaching for moving objects by human infants. Journal of Experimental Child Psychology, 30, 369392.CrossRefGoogle Scholar
Hogan, N. & Sternad, D. (2007). On rhythmic and discrete movements: Reflections, definitions and implications for motor control. Experimental Brain Research, 181, 1330.CrossRefGoogle ScholarPubMed
Holdefer, R. N. & Miller, L. E. (2002). Primary motor cortical neurons encode functional muscle synergies. Experimental Brain Research, 146, 233243.CrossRefGoogle ScholarPubMed
Holland, B. F. (1934). Speed and pressure factors in Braille reading. Teachers Forum, 7, 1317.Google Scholar
Holst, E.. & Mittelstaedt, H. (1950). Das Reafferenzprinzip. Wechselwirkungen zwischen Zentralnervensystem und Peripherie. Naturwissenschaften, 37, 464476. (English translation in Holst, E. (1973). The reafference principle, in The behavioral physiology of animals and man: The collected papers of Erich von Holst (Vol. 1) [Martin, R., Translator] (pp. 139173). London: Methuen.)CrossRefGoogle Scholar
Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding: A framework for perception and action planning. Behavioral and Brain Sciences, 24, 849937.CrossRefGoogle ScholarPubMed
Howe, C. Q. & Purves, D. (2005). The Müller-Lyer illusion explained by the statistics of image–source relationships. Proceedings of the National Academy of Sciences, 102, 12341239.CrossRefGoogle ScholarPubMed
Hughes, C. (1996). Brief report: Planning problems in autism at the level of motor control. Journal of Autism & Developmental Disorders, 26, 99107.CrossRefGoogle ScholarPubMed
Hunnius, S., Verlaan, Y., & Rosenbaum, D. A. (2012). Planning walking and reaching paths by toddlers. Poster presented at the International Conference on Infant Studies, Minneapolis, Minnesota June 7–9.Google Scholar
Huys, R., Studenka, B. E., Rheaume, N. L., Zelaznik, H. N., & Jirsa, V. K. (2008). Distinct timing mechanisms produce discrete and continuous movements, PLoS Computational Biology, 4, e1000061.CrossRefGoogle ScholarPubMed
Iacobini, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286, 25262528.CrossRefGoogle Scholar
Ingen Schenau, G. J. (1989). From rotation to translation: Implications for theories of motor control. Human Movement Science, 8, 423442.CrossRefGoogle Scholar
Iriki, A., Tanaka, M., & Iwamura, Y. (1996). Coding of modified body schema during tool use by macaque postcentral neurones. Neuroreport, 7, 23252330.Google ScholarPubMed
Iverson, J. M. & Goldin-Meadow, S. (2005). Gesture paves the way for language development. Psychological Science, 16, 367371.CrossRefGoogle ScholarPubMed
Ivry, R. B., Spencer, R. M., Zelaznik, H. H., & Diedrichsen, J. (2002). The cerebellum and event timing. Annual New York Academy of Sciences, 978, 302317.CrossRefGoogle ScholarPubMed
Jagacinski, R. J. & Flach, J. M. (2003). Control Theory For Humans: Quantitative Approaches To Modeling Performance. Mahwah, N.J.: Lawrence Erlbaum Associates.Google Scholar
James, W. (1890). The Principles Of Psychology. New York, NY: Henry Holt and Co.Google Scholar
Jax, S. A. & Rosenbaum, D. A. (2007). Hand path priming in manual obstacle avoidance: Evidence that the dorsal stream does not only control visually guided actions in real time. Journal of Experimental Psychology: Human Perception and Performance, 33, 425441.Google Scholar
Jax, S. A. & Rosenbaum, D. A. (2009). Hand path priming in manual obstacle avoidance: Rapid decay of dorsal stream information. Neuropsychologia, 47, 15731577.CrossRefGoogle ScholarPubMed
Jax, S. A., Rosenbaum, D. A., Vaughan, J., & Meulenbroek, R. G. J. (2003). Computational motor control and human factors: Modeling movements in real and possible environments. Human Factors, 45, 527.CrossRefGoogle ScholarPubMed
Jeannerod, M. (1981). Intersegmental coordination during reaching at natural objects. In Long, J. & Baddeley, A. (Eds.), Attention and performance IX (pp. 153169). Hillsdale, N. J.: Erlbaum.Google Scholar
Jeannerod, M. (1984). The timing of natural prehension movement. Journal of Motor Behavior, 26, 235254.CrossRefGoogle Scholar
Jeannerod, M. (1994). The representing brain: Neural correlates of motor intention and imagery. Brain and Behavioral Science, 17, 187245.CrossRefGoogle Scholar
Jeannerod, M. (2006). Motor Cognition: What Action Tells The Self. New York: Oxford University Press.CrossRefGoogle Scholar
Jeannerod, M. (2009). The sense of agency and its disturbances in schizophrenia: A reappraisal. Experimental Brain Research, 196, 527532.CrossRefGoogle Scholar
Jeka, J. J. & Lackner, J. R. (1994) Fingertip contact influences human postural control. Experimental Brain Research, 100, 495502.CrossRefGoogle ScholarPubMed
Johnson, P. (1984). The acquisition of skill. In Smyth, M. M. & Wing, A. M. (Eds.), The Psychology Of Human Movement (pp. 215240). London: Academic Press.CrossRefGoogle Scholar
Johnson, S. H. (2000). Thinking ahead: The case for motor imagery in prospective judgements of prehension. Cognition, 74, 3370.CrossRefGoogle ScholarPubMed
Johnson-Frey, S. H. (2003). What’s so special about human tool use? Neuron, 39, 201204.CrossRefGoogle ScholarPubMed
Johnson-Frey, S. H. (2004). The neural bases of complex tool use in humans. Trends in Cognitive Sciences, 8, 7178.CrossRefGoogle ScholarPubMed
Jones, L. (2009). Thermal touch. Scholarpedia, 4, 7955. scholarpedia.org/article/Thermal_touchCrossRefGoogle Scholar
Jones, L. A. & Lederman, S. J. (2006). Human Hand Function. New York: Oxford University Press.CrossRefGoogle Scholar
Kahneman, D. (1973). Attention And Effort. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Kahneman, D. (2011). Thinking, Fast And Slow. New York, NY: Farrar, Straus and Giroux.Google Scholar
Kalat, J. W. (2015). Biological Psychology (12th Edition). Boston MA: Cengage Learning.Google Scholar
Kammers, M. P., Verhagen, L., Dijkerman, H. C., Hogendoorn, H., De Vignemont, F., & Schutter, D. J. (2009). Is this hand for real? Attenuation of the rubber hand illusion by transcranial magnetic stimulation over the inferior parietal lobule. Journal of Cognitive Neuroscience, 21, 13111320.CrossRefGoogle ScholarPubMed
Kandel, E. R. (2006). Principles Of Neural Science (Fifth Edition). Appleton and Lange.Google Scholar
Kanwisher, N. (2006). What’s in a face? Science, 311, 617618.CrossRefGoogle ScholarPubMed
Kappers, A. M. & Koenderink, J. J. (1999). Haptic perception of spatial relations. Perception, 28, 781795.CrossRefGoogle ScholarPubMed
Karniel, A., Nisky, I., Avraham, G., Peles, B. C., & Levy-Tzedek, S. (2010). A Turing-like handshake test for motor intelligence. In Haptics: Generating and perceiving tangible sensations (pp. 197204). Springer Berlin Heidelberg.CrossRefGoogle Scholar
Keele, S. W. & Ivry, R. I. (1987). Modular analysis of timing in motor skill. In Bower, G. H. (Ed.), The psychology of learning and motivation (Vol. 21 pp. 183228). San Diego: Academic Press, Inc.Google Scholar
Keen, R. (2011). The development of problem solving in young children: A critical cognitive skill. Annual Review of Psychology, 62, 121.CrossRefGoogle ScholarPubMed
Keen, R., Lee, M. H., & Adolph, K. (2014). Planning an action: A developmental progression in tool use. Ecological Psychology, 26, 98108.CrossRefGoogle Scholar
Keetch, K. M., Schmidt, R. A., Lee, T. D., & Young, D. E. (2005). Especial skills: Their emergence with massive amounts of practice. Journal of Experimental Psychology. Human Perception and Performance, 31, 970978.CrossRefGoogle Scholar
Keller, F. S. (1958). The phantom plateau. Journal of the Experimental Analysis of Behavior, 1, 113.CrossRefGoogle ScholarPubMed
Keller, H. (1974). The story of my life (Eighteenth Printing). New York: Dell.Google Scholar
Keller, P. E., Wascher, E., Prinz, W., Waszak, F., Koch, I., & Rosenbaum, D. A. (2006). Differences between intention-based and stimulus-based actions. Journal of Psychophysiology, 20, 920.CrossRefGoogle Scholar
Kelly, J. P. & Dodd, J. (1991). Anatomical organization of the nervous system. In Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (Eds.), Principles of neural science (3rd ed., p. 280). New York: Elsevier.Google Scholar
Kerr, R. & Booth, R. (1978). Specific and varied practice of motor skill. Perceptual and Motor Skills, 46, 395401.CrossRefGoogle ScholarPubMed
Kilner, J. M., Paulignan, Y., & Blakemore, S. J. (2003). An interference effect of observed biological movement on action. Current Biology, 13, 522525.CrossRefGoogle ScholarPubMed
Kim, D., Shin, M., Lee, K., Chu, K., Woo, S., Kim, Y., Song, E., Lee, Jun., Park, S., & Roh, J. (2004). Musical training-induced functional reorganization of the adult brain: Functional magnetic resonance imaging and transcranial magnetic stimulation study on amateur string players. Human Brain Mapping, 23, 188199.CrossRefGoogle Scholar
Klapp, S. T. (1977). Reaction time analysis of programmed control. Exercise And Sport Sciences Reviews, 5, 231253.CrossRefGoogle ScholarPubMed
Klapp, S. T., Nelson, J. M., & Jagacinski, R. J. (1998). Can people tap concurrent bimanual rhythms independently? Journal of Motor Behavior, 30, 301322.CrossRefGoogle ScholarPubMed
Klatzky, R. L., Fikes, T. G., Pellegrino, J. W. (1995). Planning for hand shape and arm transport when reaching for objects. Acta Psychologica, 88, 209232.CrossRefGoogle ScholarPubMed
Klatzky, R. L., Pellegrino, J., McCLoskey, B., & Lederman, S. J. (1987). Cognitive representations of functional interactions with objects. Memory & Cognition, 21, 294303.CrossRefGoogle Scholar
Kolers, P. A. (1972). Aspects of Motion Perception. Oxford: Pergamon Press.Google Scholar
Konczak, J, Vander Velden, H., & Jaeger, L. (2009). Learning to play the violin: Motor control by freezing, not freeing degrees of freedom. Journal of Motor Behavior, 41, 243252.CrossRefGoogle Scholar
Konnikova, M. (2015). The power of touch. The New Yorker, March 4. www.newyorker.com/science/maria-konnikova/power-touchGoogle Scholar
Krakauer, J. W. & Shadmehr, R. (2006). Consolidation of motor memory. Trends in Neurosciences, 29, 5864.CrossRefGoogle ScholarPubMed
Kroll, J. F. & de Groot, A. M. B. (2005). Handbook Of Bilingualism: Psycholinguistic Approaches. New York: Oxford University Press.Google Scholar
Kroll, J. F., Bobb, S. C., & Hoshino, N. (2014). Two languages in mind: Bilingualism as a tool to investigate language, cognition, and the brain. Current Directions in Psychological Science, 23, 159163.CrossRefGoogle ScholarPubMed
Kumar, S. (1993). Perception of posture of short duration in the spatial and temporal domains. Applied Ergonomics, 24, 345350.CrossRefGoogle ScholarPubMed
Kurtzer, I., Herter, T. M., & Scott, S. H. (2005). Random change in cortical load representation suggests distinct control of posture and movement. Nature Neuroscience, 8, 498504.CrossRefGoogle ScholarPubMed
Kurzban, R., Duckworth, A., Kable, J. W., & Myers, J. (2013). An opportunity cost model of subjective effort and task performance. Behavioral and Brain Sciences, 36, 661726.CrossRefGoogle ScholarPubMed
Kutch, J. J. & Valero-Cuevas, F. J. (2011). Muscle redundancy does not imply robustness to muscle dysfunction. Journal of Biomechanics, 44, 12641270.CrossRefGoogle Scholar
La Delfa, N. J., Garcia, D. B., Cappelletto, J. A., McDonald, A. C., Lyons, J. L., & Lee, T. D. (2013). The gunslinger effect: Why are movements made faster when responding to versus initiating an action? Journal of Motor Behavior, 45, 8590.CrossRefGoogle ScholarPubMed
Lackner, J. R. & Evanoff, J. N. (1977). Smooth pursuit eye movements elicited by somatosensory stimulation. Neuroscience Letters, 4, 4348.CrossRefGoogle ScholarPubMed
Land, M. F. & Hayhoe, M. (2001). In what ways do eye movements contribute to everyday activities? Vision Research, 41, 35593565.CrossRefGoogle ScholarPubMed
Land, M. F. & Tatler, B. W. (2009). Looking And Acting: Vision And Eye Movements In Natural Behavior. Oxford, UK: Oxford University Press.Google Scholar
Land, W. M., Rosenbaum, D. A., Seegelke, C., & Schack, T. (2013). Whole-body posture planning: Prospective and retrospective effects. Acta Psychologica, 144, 298307.CrossRefGoogle ScholarPubMed
Lashley, K. (1917). The accuracy of movement in the absence of excitation from the moving organ. American Journal of Physiology, 43, 169194.CrossRefGoogle Scholar
Lashley, K. S. (1951). The problem of serial order in behavior. In Jeffress, L. A. (Ed.), Cerebral Mechanisms in Behavior (pp. 112131). New York, NY: Wiley.Google Scholar
Latash, M. L. (2008a). Synergy. New York: Oxford University Press.CrossRefGoogle Scholar
Latash, M. L. (2008b). Neurophysiological Basis of Movement (Second Edition). Champaign, IL: Human Kinetics.Google Scholar
Latash, M. L., Turvey, M. T., & Bernstein, N. A. (1996). Dexterity And Its Development. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Leconte, P. & Fagard, J. (2004). Influence of object spatial location and task complexity on children’s use of their preferred hand depending on their handedness consistency. Developmental Psychobiology, 45, 5158.CrossRefGoogle ScholarPubMed
Lederman, S. J. & Klatzky, R. L. (1987). Hand movements: A window into haptic object recognition. Cognitive Psychology, 19, 342368.CrossRefGoogle ScholarPubMed
Lederman, S. J. & Klatzky, R. L. (2009). Haptic perception: A tutorial. Attention, Perception, & Psychophysics, 71, 14391459.CrossRefGoogle ScholarPubMed
Lee, D. N. (1980). The optic flow-field: The foundation of vision. Philosophical Transactions of the Royal Society London B, 290, 169179.Google ScholarPubMed
Lee, D. N. & Reddish, P. E. (1981). Plummeting gannets: A paradigm of ecological optics. Nature, 293, 293294.CrossRefGoogle Scholar
Levy-Tzedek, S., Novick, I., Arbel, R., Abboud, S., Maidenbaum, S., Vaadia, E., & Amedi, A. (2012). Cross-sensory transfer of sensory-motor information: visuomotor learning affects performance on an audiomotor task, using sensory-substitution. Scientific Reports, 2, 949.CrossRefGoogle Scholar
Lewandowsky, S. (2014). 300 million years of pre-crastination. www.psychonomic.org/featured-content-detail/300-million-years-of-precrastinationGoogle Scholar
Lewin, K. (1951). Field Theory In Social Science: Selected Theoretical Papers. New York: Harper & Row.Google Scholar
Liberman, A. M., Cooper, F. S., Shankweiler, D. P., & Studdert-Kennedy, M. G. (1967). Perception of the speech code. Psychological Review, 74, 431461.CrossRefGoogle ScholarPubMed
Liberman, A. M. & Mattingly, I. G. (1985). The motor theory revised. Cognition, 21, 136.CrossRefGoogle Scholar
Libet, B., Gleason, C. A., Wright, E. W., & Pearl, D. K. (1983). Time of conscious intention to act in relation to onset of cerebral activity (Readiness-Potential). Brain, 106, 623642.CrossRefGoogle ScholarPubMed
Linkenauger, S. A., Witt, J. K., Stefanucci, J. K., Bakdash, J. Z. & Proffitt, D. R. (2009). The effects of handedness and reachability on perceived distance. Journal of Experimental Psychology: Human Perception and Performance 35, 16491660.Google ScholarPubMed
Livingstone, M. & Hubel, D. H. (2002). Vision And Art: The Biology Of Seeing. New York: Harry N. Abrams.Google Scholar
Loftus, E. F. (1979). The malleability of human memory. American Scientist, 67, 312320.Google ScholarPubMed
Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 95, 492527.CrossRefGoogle Scholar
Logan, G. D. & Crump, M. J. C. (2011). Hierarchical control of cognition and action: The case for skilled typewriting. Psychology of Learning and Motivation, 54, 127.CrossRefGoogle Scholar
Logan, S. W. & Fischman, M. G. (2011). The relationship between end-state comfort effects and memory performance in serial and free recall. Acta Psychologica, 137, 292299.CrossRefGoogle ScholarPubMed
Longo, M. R. & Haggard, P. (2012). A 2.5-D representation of the human hand. Journal of Experimental Psychology: Human Perception and Performance, 38, 913.Google ScholarPubMed
Longo, M. R. & Haggard, P. (2010, June 29). An implicit body representation underlying human position sense. Proceedings of the National Academy of Sciences, 107, 26, 1172711732.CrossRefGoogle ScholarPubMed
Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20, 130141.2.0.CO;2>CrossRefGoogle Scholar
Lorenz, K. (1981). The Foundations of Ethology. New York, NY: Springer-Verlag.CrossRefGoogle Scholar
Lötze, R. H. (1852). Medicinische Psychologie oder Physiologie der Seele. Leipzig: Weidmann’sche: Buchhandlung.Google Scholar
Lowenfied, B. & Abel, G. L. (1977). Methods Of Teaching Braille Reading Efficiency Of Children In Lower Senior Classes. Birmingham: Research Centre for the Education of the Visually Handicapped.Google Scholar
Lum, J. A. G., Conti-Ramsden, G., Morgan, A. T., & Ullman, M. T. (2014). Procedural learning deficits in specific language impairment (SLI): A meta-analysis of serial reaction time task performance. Cortex, 51, 110.CrossRefGoogle ScholarPubMed
Lundborg, G. (2013). The Hand and the Brain: From Lucy’s Thumb to the Thought-Controlled Robotic Hand. Springer Science & Business Media.Google Scholar
MacDonald, M., Lord, C., & Ulrich, D. A. (2013) The relationship of motor skills and social communicative skills in school-aged children with autism spectrum disorder. Adapted Physical Activity Quarterly, 30, 271282.CrossRefGoogle ScholarPubMed
MacKay, D. M. (2014). The engine of memory. Scientific American Mind, May/June, 25, 3138.CrossRefGoogle Scholar
Mahon, B. Z. & Caramazza, A. (2008). A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content. Journal of Physiology, 102, 5970.Google Scholar
Majsak, M. J., Kaminski, T., Gentile, A. M., & Gordon, A. M. (2008). Effects of a moving target versus a temporal constraint on reach and grasp in patients with Parkinson’s disease. Experimental Neurology, 210, 479488.CrossRefGoogle ScholarPubMed
Mamolo, C. M., Roy, E., Rohr, L. E. & Bryden, P. J. (2006). Reaching patterns across the workspace: The effects of handedness, task demands, and comfort levels. Laterality, 11, 465492.CrossRefGoogle Scholar
Marcus, G. F. (2012). Guitar Zero: The New Musician and The Science of Learning. Oneworld Publications.Google Scholar
Mark, L. S. (1987). Eyeheight-scaled information about affordances: a study of sitting and stair climbing. Journal of Experimental Psychology: Human Perception and Performance, 13, 361370.Google ScholarPubMed
Marteniuk, R. G. & Bertram, C. P. (2001). Contributions of gait and trunk movement to prehension: Perspectives from world and body-centered coordinates. Motor Control, 5, 151164.CrossRefGoogle ScholarPubMed
Marteniuk, R. G., MacKenzie, C. L., Jeannerod, M., Athenes, S., & Dugas, C. (1987). Constraints on human arm movement trajectories. Canadian Journal of Psychology, 4, 365378.CrossRefGoogle Scholar
Masters, R. & Maxwell, J. (2008) The theory of reinvestment. International Journal of Sport and Exercise Psychology, 1, 160183.CrossRefGoogle Scholar
McCullough, S. & Emmorey, K. (1997). Face processing by deaf ASL signers: Evidence for expertise in distinguishing local features. Journal of Deaf Studies and Deaf Education, 2, 212222.CrossRefGoogle ScholarPubMed
McGinn, C. (2015). Prehension. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
McGlone, F., Olausson, H., Boyle, J. A., Jones‐Gotman, M., Dancer, C., Guest, S., & Essick, G. (2012). Touching and feeling: Differences in pleasant touch processing between glabrous and hairy skin in humans. European Journal of Neuroscience, 35, 17821788.CrossRefGoogle ScholarPubMed
McManus, I. C., Murray, B., Doyle, K. & Baron-Cohen, S. (1992) Handedness in childhood autism shows a dissociation of skill and preference. Cortex, 28, 373–81.CrossRefGoogle Scholar
Mechsner, F., Kerzel, D., Knoblich, G., & Prinz, W. (2001). Perceptual basis of bimanual coordination. Nature, 414, 6973.CrossRefGoogle ScholarPubMed
Meulenbroek, R. G. J., Rosenbaum, D. A., Jansen, C., Vaughan, J., & Vogt, S. (2001a). Multijoint grasping movements: Simulated and observed effects of object location, object size, and initial aperture. Experimental Brain Research, 138, 219234.CrossRefGoogle ScholarPubMed
Meulenbroek, R. G. J., Rosenbaum, D. A., Thomassen, A. J. W. M., Loukopoulos, L. D., & Vaughan, J. (1996). Adaptation of a reaching model to handwriting: How different effectors can produce the same written output, and other results. Psychological Research/Psychologische Forschung, 59, 6474.CrossRefGoogle ScholarPubMed
Meulenbroek, R. G. J., Rosenbaum, D. A., & Vaughan, J. (2001b). Planning reaching and grasping movements: Simulating reduced movement capabilities in spastic hemiparesis. For special issue of Motor Control, 5, 136150.CrossRefGoogle ScholarPubMed
Meulenbroek, R. G. J. & Thomassen, A. J. W. M. (1991). Stroke-direction preferences in drawing and handwriting. Human Movement Science, 10, 247270.CrossRefGoogle Scholar
Meyer, D. E., Abrams, R. A., Kornblum, S., Wright, C. E., & Smith, J. E. K. (1988). Optimality in human motor performance: Ideal control of rapid aimed movements. Psychological Review, 95, 340370.CrossRefGoogle ScholarPubMed
Meyer, M., van der Wel, R. P. R. D., & Hunnius, S. (2013). Higher-order action planning for individual and joint object manipulations. Experimental Brain Research, 225, 579588.CrossRefGoogle ScholarPubMed
Michaels, C. F. & Carello, C. (1981). Direct perception. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Miklósi, Á. (2014). Dog Behaviour, Evolution, And Cognition. Oxford University Press.CrossRefGoogle Scholar
Miller, G. A., Galanter, E., & Pribram, K. H. (1960). Plans And The Structure Of Behavior. New York, NY: Holt, Rinehart, & Winston.CrossRefGoogle Scholar
Milner, A. D. & Goodale, M. A. (1995). The Visual Brain In Action. New York: Oxford University Press.Google Scholar
Milner, B. (1965). Memory disturbance after bilateral hippocampal lesions. In Milner, P. M. & Glickman, S. E. (Eds.), Cognitive Processes And The Brain (pp. 97111). Princeton: Van Nostrand.Google Scholar
Monaco, S., Cavina-Pratesi, C., Sedda, A., Fattori, P., Galletti, C., & Culham, J. C. (2011). Functional magnetic resonance adaptation reveals the involvement of the dorsomedial stream in hand orientation for grasping. Journal of Neurophysiology, 106, 22482263.CrossRefGoogle ScholarPubMed
Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7, 134140.CrossRefGoogle ScholarPubMed
Morgan, M. H. & Carrier, D. R. (2013). Protective buttressing of the human fist and the evolution of hominin hands. Journal of Experimental Biology, 216, 236244.CrossRefGoogle ScholarPubMed
Moskowitz, C. (2010). Same brain spots handle sign language and speaking. Live Science, February 26. www.livescience.com/10628-brain-spots-handle-sign-language-speaking.htmlGoogle Scholar
Mounoud, P. & Bower, T. G. R. (1975). Conservation of weight in infants. Cognition, 3, 2940.CrossRefGoogle Scholar
Munevar, G. (2012). Two conscious minds in the same brain? Split brains and the alien-hand syndrome. Brain-Mind Magazine, 1, 24.Google Scholar
Myers, A. (2012). Stanford engineers discover neural rhythms drive physical movement. Stanford, CA: Stanford Report, June 6.Google Scholar
Napier, J. R. (1956). The prehensile movements of the human hand. Journal of Bone & Joint Surgery, 38B, 902912.Google Scholar
Napier, J. R. (1980). Hands. New York: Pantheon.Google Scholar
Néda, Z., Ravasz, E., Brechet, Y., Vicsek, T., & Barabási, A.-L. (2000). Self-organizing processes: The sound of many hands clapping. Nature, 403, 849850.CrossRefGoogle Scholar
Needham, A., Barrett, T., & Peterman, K. (2002). A pick-me-up for infants’ exploratory skills: Early simulated experiences reaching for objects using ‘sticky mittens’ enhances young infants’ object exploration skills. Infant Behavior and Development, 25, 279295.CrossRefGoogle Scholar
Nelson, E. L., Berthier, N. E., Metevier, C. M., & Novak, M. A. (2010). Evidence for motor planning in monkeys: Rhesus macaques select efficient grips when transporting spoons. Developmental Science, 14, 822831.CrossRefGoogle Scholar
Newell, A. M. & Rosenbloom, P. S. (1981). Mechanisms of skill acquisition and the law of practice. In Anderson, J. R. (Ed.), Cognitive Skills and Their Acquisition (pp. 155). Hillsdale, NJ: Erlbaum.Google Scholar
Newell, A. M. & Simon, H. A. (1972). Human Problem Solving. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Newell, K. M., Scully, D. M., Tenenbaum, F., & Hardiman, S. (1989). Body scale and the development of prehension. Developmental Psychobiology, 22, 113.CrossRefGoogle ScholarPubMed
Newell, K. M. & van Emerick, R. E. A. (1989). The acquisition of coordination: Preliminary analysis of learning to write. Human Movement Science, 8, 1732.CrossRefGoogle Scholar
Newport, R. & Preston, C. (2011). Disownership and disembodiment of the real limb without visuoproprioceptive mismatch. Cognitive Neuroscience, 2, 179185.CrossRefGoogle ScholarPubMed
Nicholelis, M. A. L. (2012). Mind in motion. Scientific American, 307, 5863.CrossRefGoogle Scholar
Nissen, M. J. & Bullemer, P. (1987). Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology, 19, 132.CrossRefGoogle Scholar
Norman, D. A. (1981). Categorization of action slips. Psychological Review, 88, 115.CrossRefGoogle Scholar
Norman, D. A. (1988). The Psychology Of Everyday Things. New York: Basic Books.Google Scholar
Nozick, R. (1981). Philosophical Explanations. Cambridge, MA: Harvard University Press.Google Scholar
Oliveira, F. & Ivry, R. B. (2008). The representation of action: Insights from bimanual coordination. Current Directions In Psychological Science, 17, 130135.CrossRefGoogle ScholarPubMed
Ottmar, E., Landy, D., & Goldstone, R. L. (2012). Teaching the perceptual structure of algebraic expressions: Preliminary findings from the Pushing Symbols intervention. In Miyake, N., Peebles, D., & Cooper, R. P. (Eds.), Proceedings of the 34th Annual Conference of the Cognitive Science Society (pp. 21562161). Austin, TX: Cognitive Science Society.Google Scholar
Owen, D. (2014). The yips: What’s behind the condition that every golfer dreads? The New Yorker. May 26.Google Scholar
Özpolat, B. D., Zapata, M., Frugé, J. D., Coote, J., Lee, J., Muneoka, K., & Anderson, R. (2012). Regeneration of the elbow joint in the developing chick embryo recapitulates development. Developmental Biology, 372, 229238.CrossRefGoogle ScholarPubMed
Padawer, R. (2014). The kids who beat autism. The New York Times Magazine, July 31. www.nytimes.com/2014/08/03/magazine/the-kids-who-beat-autism.html?_r=0.Google Scholar
Park, W., Singh, D., & Martin, B. (2006). A memory-based model for planning target reach postures in the presence of obstructions. Ergonomics, 49, 15651580.CrossRefGoogle ScholarPubMed
Parladé, M. V. & Iverson, J. M. (2015). The development of coordinated communication in infants at heightened risk for autism spectrum disorder. Journal of Autism and Developmental Disorders, 45, 22182234.CrossRefGoogle ScholarPubMed
Parsons, L. (1987). Imagined spatial transformations of one’s hands and feet. Cognitive Psychology, 19, 178241.CrossRefGoogle ScholarPubMed
Pellecchia, G. L. & Turvey, M. T. (2001). Cognitive activity shifts the attractors of bimanual coordination. Journal of Motor Behavior, 33, 915.CrossRefGoogle Scholar
Peper, C. E., Beek, P. J., & van Wieringen, P. C. W. (1995). Frequency-induced phase transitions in bimanual tapping. Biological Cybernetics, 73, 301309.CrossRefGoogle ScholarPubMed
Peters, M. A., Balzer, J., & Shams, L. (2015). Smaller = denser, and the brain knows it: Natural statistics of object density shape weight expectations. PLoS ONE, 10 (3), e0119794. doi:10.1371/journal.pone.0119794.CrossRefGoogle ScholarPubMed
Petit, L. & Harris, I. (2005). Anatomical limitations in mental transformations of body parts. Visual Cognition, 12, 737758.CrossRefGoogle Scholar
Petit, L., Pegna, A., Mayer, E., & Hauert, C. A. (2003). Representation of anatomical constraints in motor imagery: Mental rotation of a body segment. Brain and Cognition, 51, 95101.CrossRefGoogle ScholarPubMed
Piaget, J. (1954). The Construction Of Reality In The Child. New York: Basic Books.CrossRefGoogle Scholar
Pinker, S. (1997). How The Mind Works. New York: W. W. Norton & Company.Google Scholar
Pinto, Y., Otten, M., Cohen, M. A., Wolfe, J. M., & Horowitz, T. S. (2011). The boundary conditions for Bohr’s law: When is reacting faster than acting? Attention, Perception, & Psychophysics, 73, 613620.CrossRefGoogle ScholarPubMed
Poizner, H., Klima, E. S., & Bellugi, U. (1990). What The Hands Reveal About The Brain. Cambridge, MA: MIT press.CrossRefGoogle Scholar
Polanyi, M. (1958). Personal Knowledge: Towards a Post-Critical Philosophy. Chicago: University of Chicago Press.Google Scholar
Pollick, F. E., Paterson, H. M., Bruderlin, A., & Sanford, A. J. (2001). Perceiving affect from arm movement. Cognition, 82, 5161.CrossRefGoogle ScholarPubMed
Povel, D. J. & Collard, R. (1982). Structural factors in patterned finger tapping. Acta Psychologica, 52, 107124.CrossRefGoogle ScholarPubMed
Powers, W. T. (1973). Behavior: The Control Of Perception. Chicago: Aldine.Google Scholar
Pratt, J., Chasteen, A. L., & Abrams, R. A. (1994). Rapid aimed limb movements: Age-differences and practice effects in component submovements. Psychology and Aging, 9, 325334.CrossRefGoogle ScholarPubMed
Proctor, R. W. & Vu, K. P. (2006). Stimulus-Response Compatibility Principles: Data, Theory, And Application. Boca Raton: CRC Press.CrossRefGoogle Scholar
Proteau, L., Marteniuk, R. G., & Lévesque, L. (1992). A sensorimotor basis for motor learning: Evidence indicating specificity of practice. Quarterly Journal of Experimental Psychology, 44, 557575.CrossRefGoogle ScholarPubMed
Pruszynski, J. A. & Diedrichsen, J. (2015). Reading the mind to move the body. Science, 348, 860861.CrossRefGoogle ScholarPubMed
Pyers, J. E. & Emmorey, K. (2008). The face of bimodal bilingualism grammatical markers in American sign language are produced when bilinguals speak to English monolinguals. Psychological Science, 19, 531535.CrossRefGoogle ScholarPubMed
Pyers, J. E., Shusterman, A., Senghas, A., Spelke, E. S., & Emmorey, K. (2010). Evidence from an emerging sign language reveals that language supports spatial cognition. Proceedings of the National Academy of Sciences, 107, 1211612120.CrossRefGoogle ScholarPubMed
Pylyshyn, Z. (1973). What the mind’s eye tells the eye’s brain: A critique of mental imagery. Psychological Bulletin, 80, 124.CrossRefGoogle Scholar
Pylyshyn, Z. W. (1981). The imagery debate: Analog media versus tacit knowledge. Psychological Review, 88, 1645.CrossRefGoogle Scholar
Pylyshyn, Z. W. (1999). Is vision continuous with cognition? The case for cognitive impenetrability of visual perception. Behavioral and Brain Sciences, 22, 341423.CrossRefGoogle ScholarPubMed
Rachman, Z. (Ed.), (2013). The Hand, An Organ of The Mind: What the Manual Tells the Mental. Cambridge, MA: MIT Press.Google Scholar
Ramachandran, V. S. & Blakeslee, S. (1998). Phantoms In The Brain. New York: William Morrow and Company.Google Scholar
Ramachandran, V. S. & Rogers-Ramachandran, D. (1996). Synaesthesia in phantom limbs induced with mirrors. Proceedings of The Royal Society of London Series B-Biological Sciences, 263, 377386.Google ScholarPubMed
Rao, A. K. & Gordon, A. M. (2001). Contribution of tactile information to accuracy in pointing movements. Experimental Brain Research, 138, 438445.CrossRefGoogle ScholarPubMed
Reason, J. (1990). Human Error. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Redfern, M. S., Rakié, C. Gielo-Perczak, K., Grönqvist, R., Hirvonen, M., Lanshammar, H., Marpet, M., Pai, C., & Powers, C. (2001). Biomechanics of slips. Ergonomics, 44, 11381166.CrossRefGoogle ScholarPubMed
Reed, C. L., Grubb, J. D., & Steele, C. (2006). Hands up: Attentional prioritization of space near the hand. Journal of Experimental Psychology: Human Perception & Performance, 32, 166177.Google ScholarPubMed
Reicher, G. M. (1969). Perceptual recognition as a function of meaningfulness of stimulus material. Journal of Experimental Psychology, 81, 275280.CrossRefGoogle Scholar
Richardson, A. (1967a). Mental practice: A review and discussion I. Research Quarterly, 38, 95107.Google Scholar
Richardson, A. (1967b). Mental practice: A review and discussion II. Research Quarterly, 38, 262273.Google Scholar
Richardson, D. C. & Spivey, M. J. (2000). Representation, space and Hollywood Squares: Looking at things that aren’t there anymore. Cognition, 76, 269295.CrossRefGoogle ScholarPubMed
Richardson, M. J., Marsh, K. L., Isenhower, R. W., Goodman, J. R., & Schmidt, R. C. (2007). Rocking together: Dynamics of intentional and unintentional interpersonal coordination. Human Movement Science, 26, 867891.CrossRefGoogle ScholarPubMed
Richtel, M. (2014). Sometimes, early birds are too early. New York Times, July 19, Business Section, p. 3. www.nytimes.com/2014/07/20/business/sometimes-early-birds-are-too-early.html?src=twr&_r=1.Google Scholar
Rieger, M. (2004). Automatic keypress activation in skilled typing. Journal of Experimental Psychology: Human Perception and Performance, 30, 555565.Google ScholarPubMed
Rigoldi, C., Galli, M., Mainardi, L., Crivellini, M., & Albertini, G. (2011). Postural control in children, teenagers and adults with Down syndrome. Research in Developmental Disability, 32, 170175.CrossRefGoogle ScholarPubMed
Rigoldi, C., Galli, M., Mainardi, L., Tenore, N., Crivellini, M., & Albertini, G. (2007). Posture motor control and their relation to neurological aspects in subjects with Down syndrome. In Gantchev, N. (Ed.), Basic Motor Control to Functional Recovery (pp. 95103). Sofia: Academic Publishing House.Google Scholar
Rizzolatti, G. & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169192.CrossRefGoogle ScholarPubMed
Rock, I. & Harris, C. S. (1967). Vision and touch. Scientific American, 216, 5, 96104.CrossRefGoogle ScholarPubMed
Roelofsen, E. G. J., Bosga, J., Rosenbaum, D. A., Nijhuis-van der Sanden, R., Hullegie, W., van Cingel, R., & Meulenbroek, R. G. J. (2016). Haptic feedback helps bipedal coordination. Experimental Brain Research, 10.1007/s00221-016-4689-2.CrossRefGoogle Scholar
Rohrer, D., Wixted, J. T., Salmon, D. P., & Butters, N. (1995). Retrieval from semantic memory and its implications for Alzheimer’s disease. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 11271139.Google ScholarPubMed
Roseboom, W. & Arnold, D. H. (2011). Learning to reach for ‘invisible’ visual input. Current Biology, 21, 493R494.CrossRefGoogle ScholarPubMed
Rosenbaum, D. A. (1980). Human movement initiation: Specification of arm, direction, and extent. Journal of Experimental Psychology: General, 109, 444474.CrossRefGoogle ScholarPubMed
Rosenbaum, D. A. (1987). Successive approximations to a model of human motor programming. Psychology of Learning and Motivation, 21, 153182.CrossRefGoogle Scholar
Rosenbaum, D. A. (2002). Time, space, and short term memory. Brain and Cognition, 48, 5265.CrossRefGoogle ScholarPubMed
Rosenbaum, D. A. (2005). The Cinderella of psychology: The neglect of motor control in the science of mental life and behavior. American Psychologist, 60, 308317.CrossRefGoogle ScholarPubMed
Rosenbaum, D. A. (2009). Walking down memory lane: Where walkers look as they descend stairs provides hints about how they control their walking behavior. American Journal of Psychology, 122, 425430.CrossRefGoogle ScholarPubMed
Rosenbaum, D. A. (2010). Human Motor Control (Second Edition). San Diego, CA: Academic Press/ Elsevier.Google Scholar
Rosenbaum, D. A. (2012). The tiger on your tail: Choosing between temporally extended behaviors. Psychological Science, 23, 855860.CrossRefGoogle ScholarPubMed
Rosenbaum, D. A. (2013a). Planning and performing physical actions. In Reisberg, D. (Ed.), Oxford Handbook of Cognitive Psychology (pp. 859873). New York: Oxford University Press.Google Scholar
Rosenbaum, D. A. (2013b). Development of expertise and the control of physical action. In Staszewski, J. J. (Ed.), Expertise and Skill Acquisition: The Impact of William G. Chase (pp. 179200). New York: Psychology Press/Taylor & Francis.Google Scholar
Rosenbaum, D. A., Brach, M., & Semenov, A. (2011). Behavioral ecology meets motor behavior: Choosing between walking and reaching paths. Journal of Motor Behavior, 43, 131136.CrossRefGoogle ScholarPubMed
Rosenbaum, D. A., Carlson, R. A., & Gilmore, R. O. (2001). Acquisition of intellectual and perceptual-motor skills. Annual Review of Psychology, 52, 453470.CrossRefGoogle ScholarPubMed
Rosenbaum, D. A., Chapman, K. M., Coelho, C. J., Gong, L., & Studenka, B. E. (2013). Choosing actions. Frontiers in Psychology, Volume 4, Article 273, doi:10.3389/fpsyg.2013.00273.CrossRefGoogle ScholarPubMed
Rosenbaum, D. A., Chapman, K. M., Weigelt, M., Weiss, D. J., & van der Wel, R. (2012). Cognition, action, and object manipulation. Psychological Bulletin, 138, 924946.CrossRefGoogle ScholarPubMed
Rosenbaum, D. A., Cohen, R. G., Dawson, A. M., Jax, S. A., Meulenbroek, R. G., van der Wel, R., & Vaughan, J. (2009). The posture-based motion planning framework: New findings related to object manipulation, moving around obstacles, moving in three spatial dimensions, and haptic tracking. Advances in Experimental Medicine and Biology, 629, 485497.CrossRefGoogle ScholarPubMed
Rosenbaum, D. A., Cohen, R. G., Jax, S. A., van der Wel, R., & Weiss, D. J. (2007). The problem of serial order in behavior: Lashley’s legacy. Human Movement Science, 26, 525554.CrossRefGoogle ScholarPubMed
Rosenbaum, D. A., Dawson, A. M., & Challis, J. H. (2006). Haptic tracking permits bimanual independence. Journal of Experimental Psychology: Human Perception and Performance, 32, 12661275.Google ScholarPubMed
Rosenbaum, D. A., Engelbrecht, S. E., Bushe, M. M., & Loukopoulos, L. D. (1993a). A model for reaching control. Acta Psychologica, 82, 237250.CrossRefGoogle Scholar
Rosenbaum, D. A., Engelbrecht, S. E., Bushe, M. M., & Loukopoulos, L. D. (1993b). Knowledge model for selecting and producing reaching movements. Journal of Motor Behavior, 25, 217227 (Special issue edited by Flash, T. & Wing, A.: Modeling the control of upper limb movement).CrossRefGoogle ScholarPubMed
Rosenbaum, D. A., Gong, L., & Potts, C. A. (2014). Pre-crastination: Hastening subgoal completion at the expense of extra physical effort. Psychological Science, 25, 14871496.CrossRefGoogle ScholarPubMed
Rosenbaum, D. A., Halloran, E., & Cohen, R. G. (2006). Grasping movement plans. Psychonomic Bulletin and Review, 13, 918922.CrossRefGoogle ScholarPubMed
Rosenbaum, D. A., Herbort, O., van der Wel, R., & Weiss, D. J. (2014). What’s in a grasp? American Scientist, 102, 366373.Google Scholar
Rosenbaum, D. A., Kenny, S., & Derr, M. A. (1983). Hierarchical control of rapid movement sequences. Journal of Experimental Psychology: Human Perception and Performance, 9, 86102.Google ScholarPubMed
Rosenbaum, D. A., Loukopoulos, L. D., Meulenbroek, R. G. M., Vaughan, J., & Engelbrecht, S. E. (1995). Planning reaches by evaluating stored postures. Psychological Review, 102, 2867.CrossRefGoogle ScholarPubMed
Rosenbaum, D. A., Marchak, F., Barnes, H. J., Vaughan, J., Slotta, J., & Jorgensen, M. (1990). Constraints for action selection: Overhand versus underhand grips. In Jeannerod, M. (Ed.), Attention and Performance XIII: Motor Representation and Control (pp. 321342). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Rosenbaum, D. A., Meulenbroek, R. G. J., & Vaughan, J. (2001a). Planning reaching and grasping movements: Theoretical outlines and practical implications. For special issue of Motor Control, 5, 99115.CrossRefGoogle Scholar
Rosenbaum, D. A., Meulenbroek, R. G., & Vaughan, J. (2004). What is the point of motor planning? International Journal of Sport and Exercise Psychology, 2, 439469.CrossRefGoogle Scholar
Rosenbaum, D. A., Meulenbroek, R. G., Vaughan, J., & Jansen, C. (2001b). Posture-based motion planning: Applications to grasping. Psychological Review, 108, 709734.CrossRefGoogle ScholarPubMed
Rosenbaum, D. A., Vaughan, J., Barnes, H. J., & Jorgensen, M. J. (1992). Time course of movement planning: Selection of hand grips for object manipulation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 10581073.Google Scholar
Rosenbaum, D. A., Vaughan, J., Jorgensen, M. J., Barnes, H. J., & Stewart, E. (1993). Plans for object manipulation. In Meyer, D. E. & Kornblum, S. (Eds.), Attention And Performance XIV – A Silver Jubilee: Synergies In Experimental Psychology, Artificial Intelligence And Cognitive Neuroscience (pp. 803820). Cambridge: MIT Press.CrossRefGoogle Scholar
Rosenbaum, D. A., Vaughan, J., Meulenbroek, R. G. J., Jax, S., & Cohen, R. (2009). Smart moves: The psychology of everyday perceptual-motor acts. In Morsella, E., Bargh, J. A., & Gollwitzer, P. M. (Eds.), Oxford Handbook Of Human Action (pp. 121135). New York, NY: Oxford University Press.Google Scholar
Rosenbaum, D. A., Vaughan, J., & Wyble, B. (2015). MATLAB For Behavioral Scientists (Second Edition). New York: Routledge/Taylor and Francis Group.Google Scholar
Rosenbaum, D. A., Weber, R. J., Hazelett, W. M., & Hindorff, V. (1986). The parameter remapping effect in human performance: Evidence from tongue twisters and finger fumblers. Journal of ED Memory and Language, 25, 710725.CrossRefGoogle Scholar
Rosenblum, L. D. (2010). See What I’m Saying: The Extraordinary Powers of Our Five Senses. New York: W. W. Norton.Google Scholar
Rosenblum, L. D. (2013). A confederacy of senses. Scientific American, 308, 7375.Google ScholarPubMed
Rosenthal, R. & Jacobson, L. (1968). Pygmalion in the Classroom. New York: Holt, Rinehart & Winston.CrossRefGoogle Scholar
Rosenzweig, M. R. & Leiman, A. L. (1982). Physiological Psychology. Lexington, MA: D. C. Heath.Google Scholar
Rotella, B. (2001). Putting Out Of Your Mind. New York: Free Press.Google Scholar
Roth, M., Decety, J., Raybaudi, M., Massarelli, R., Delon-Martin, C., Segebarth, C., & Jeannerod, M. (1996). Possible involvement of primary motor cortex in mentally simulated movement: a functional magnetic resonance imaging study. Neuroreport, 7, 12801284.CrossRefGoogle ScholarPubMed
Rothwell, J. C., Traub, M. M., Day, B. L., Obeso, J. A., Thomas, P. K., & Marsden, C. D. (1982). Manual motor performance in a deafferented man. Brain, 105, 515542.CrossRefGoogle Scholar
Ryle, G. (1949). The Concept of Mind. New York: Barnes & Noble.Google Scholar
Sabes, P. N., Jordan, M. I., & Wolpert, D. M. (1998). The role of inertial sensitivity in motor planning. Journal of Neuroscience, 18, 59485957.CrossRefGoogle ScholarPubMed
Sacks, O. (2010). Musicophilia: Tales of Music and The Brain. Toronto: Vintage Canada.Google Scholar
Sainburg, R. L. (2002). Evidence for a dynamic-dominance hypothesis of handedness. Experimental Brain Research, 142, 241258.CrossRefGoogle ScholarPubMed
Sainburg, R. L. (2015). Should the equilibrium point hypothesis (EPH) be considered a scientific theory? Motor Control, 19, 142148.CrossRefGoogle ScholarPubMed
Samad, M., Chung, A. J., & Shams, L. (2015). Perception of body ownership is driven by Bayesian sensory inference. PloS One, 10(2), e0117178.CrossRefGoogle ScholarPubMed
Sanjeevan, T., Miller, C., Rosenbaum, D. A., van Hell, J., Weiss, D. J., & Mainela-Arnold, E. (2015). Motor issues in specific language impairment: a window into the underlying impairment. Current Developmental Disorders Reports, June 24. link.springer.com/article/10.1007/s40474-015-0051-9.CrossRefGoogle Scholar
Santamaria, J. P. & Rosenbaum, D. A. (2011). Etiquette and effort: Holding doors for others. Psychological Science, 22, 584588.CrossRefGoogle ScholarPubMed
Santello, M., Flanders, M., & Soechting, J. F. (1998). Postural hand synergies for tool use. Journal of Neuroscience, 18, 1010510115.CrossRefGoogle ScholarPubMed
Santello, M. & Soechting, J. F. (2000). Force synergies for multifingered grasping. Experimental Brain Research, 133, 457467.CrossRefGoogle ScholarPubMed
Sato, M., Cavé, C., Ménard, L., & Brasseur, L. (2010). Auditory-tactile speech perception in congenitally blind and sighted adults. Neuropsychologia, 48, 36833686.CrossRefGoogle ScholarPubMed
Schack, T. (2004). The cognitive architecture of complex movement. International Journal of Sport and Exercise Psychology, 2, 403438.CrossRefGoogle Scholar
Schieber, M. H. & Hibbard, L. S. (1993). How somatotopic is the motor cortex hand area? Science, 261, 489492.CrossRefGoogle ScholarPubMed
Schmidt, R. A. & Bjork, R. A. (1992). New conceptualizations of practice: Common principles in three paradigms suggest new concepts for training. Psychological Science, 3, 207214.CrossRefGoogle Scholar
Schmidt, R. A., Zelaznik, H. N., Hawkins, B., Frank, J. S., & Quinn, J. T. Jr. (1979). Motor output variability: A theory for the accuracy of rapid motor acts. Psychological Review, 86, 415451.CrossRefGoogle Scholar
Schmidt, R. C., Carello, C., & Turvey, M. T. (1990). Phase transitions and critical fluctuations in the visual coordination of rhythmic movements between people. Journal of Experimental Psychology: Human Perception and Performance, 16, 227247.Google ScholarPubMed
Schmidt, R. C. & Turvey, M. T. (1994). Phase-entrainment dynamics of visually coupled rhythmic movements. Biological Cybernetics, 70, 369376.CrossRefGoogle ScholarPubMed
Scott, S. H. (2004). Optimal feedback control and the neural basis of volitional motor control. Nature Reviews Neuroscience, 5, 532546.CrossRefGoogle ScholarPubMed
Seashore, C. E. (1938). Psychology of Music. New York: McGraw Hill.Google Scholar
Sebanz, N., Knoblich, G., & Prinz, W. (2003). Representing others’ actions: Just like one’s own? Cognition, 88, 1121.CrossRefGoogle ScholarPubMed
Seidler, R. D., Bernard, J. A., Burutolu, T. B., Fling, B. W., Gordon, M. T., Gwin, J. T., & Lipps, D. B. (2010). Motor control and aging: Links to age-related brain structural, functional, and biochemical effects. Neuroscience & Biobehavioral Reviews, 34, 721733.CrossRefGoogle ScholarPubMed
Senghas, A. & Coppola, M. (2001). Children creating language: How Nicaraguan Sign Language acquired a spatial grammar. Psychological Science, 12, 323328.CrossRefGoogle ScholarPubMed
Seroyer, S. T., Nho, S. J., Bach, B. R., Bush-Joseph, C. A., Nicholson, G. P., & Romeo, A. A. (2010). The kinetic chain in overhand pitching: Its potential role for performance enhancement and injury prevention. Sports Health: A Multidisciplinary Approach, 2, 135146.CrossRefGoogle ScholarPubMed
Sherrington, C. S. (1906). Integrative Action of The Nervous System. New York: Scribner.Google Scholar
Sheth, R., Marcon, L., Bastida, M. F., Junco, M., Quintana, L., Dahn, R., Kmita, M., Sharpe, J., & Ros, M. A. (2012). Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism. Science, 338, 14761480.CrossRefGoogle ScholarPubMed
Shiffrar, M. & Freyd, J. J. (1990). Apparent motion of the human body. Psychological Science, 1, 257264.CrossRefGoogle Scholar
Shin, Y. K., Proctor, R. W., & Capaldi, E. J. (2010). A review of contemporary ideomotor theory. Psychological Bulletin, 136, 943974.CrossRefGoogle ScholarPubMed
Shockley, K., Carello, C., & Turvey, M. T. (2004). Metamers in the haptic perception of heaviness and moveableness. Perception & Psychophysics, 66, 731742.CrossRefGoogle ScholarPubMed
Shumway-Cook, A. & Woollacott, M. (2006). Motor Control: Translating Research Into Clinical Practice. Philadelphia: Lippincott Williams & Wilkins.Google Scholar
Simon, J. R. (1990). The effect of an irrelevant directional cue on human information processing. In Proctor, R. W. & Reeve, T. G. (Eds.), Stimulus-Response Compatibility: An Integrated Perspective (pp. 3186). Amsterdam: North-Holland.Google Scholar
Singh, T., Zatsiorsky, V. M., & Latash, M. L. (2012). Effects of fatigue on synergies in a hierarchical system. Human Movement Science, 31, 13791398.CrossRefGoogle Scholar
Skinner, B. F. (1976). About Behaviorism. New York: Random House.Google Scholar
Slepian, M. L., Young, S. G., Rutchick, A. M., & Ambady, N. (2013). Quality of professional players’ poker hands is perceived accurately from arm motions. Psychological Science, 24, 23352338.CrossRefGoogle ScholarPubMed
Slifkin, A. B. & Grilli, S. M. (2006). Aiming for the future: Prospective action difficulty, prescribed difficulty, and Fitts’ law. Experimental Brain Research, 174, 746753.CrossRefGoogle ScholarPubMed
Slijper, H., Richter, J., Over, E., Smeets, J., & Frens, M. (2009). Statistics predict kinematics of hand movements during everyday activity. Journal of Motor Behavior, 41, 39.CrossRefGoogle ScholarPubMed
Sloboda, J. A. (1983). The communication of musical metre in piano performance. Quarterly Journal of Experimental Psychology, 35A, 377396.CrossRefGoogle Scholar
Smith, E. E. & Kosslyn, S. M. (2007). Cognitive Psychology. Upper Saddle River, NJ: Pearson Prentice Hall.Google Scholar
Smith, L. B., Thelen, E., Titzer, R., & McLin, D. (1999). Knowing in the context of acting: The task dynamics of the A-not-B error. Psychological Review, 106, 235260.CrossRefGoogle ScholarPubMed
Smyth, M. M. & Pendleton, L. R. (1989). Working memory for movements. Quarterly Journal of Experimental Psychology, 41A, 235250.CrossRefGoogle Scholar
Snyder, K. M., Ashitaka, Y., Shimada, H., Ulrich, J. E., & Logan, G. D. (2014). What skilled typists don’t know about the QWERTY keyboard. Attention, Perception & Psychophysics, 76, 162171.CrossRefGoogle ScholarPubMed
Soon, C. S., Brass, M., Heinze, H. J., & Haynes, J. D. (2008). Unconscious determinants of free decisions in the human brain. Nature Neuroscience, 11, 543545.CrossRefGoogle ScholarPubMed
Sparrow, W. A. & Newell, K. M. (1998). Metabolic energy expenditure and the regulation of movement economy. Psychonomic Bulletin & Review, 5, 173196.CrossRefGoogle Scholar
Spencer, R. M. C., Zelaznik, H. N., Diedrichsen, J., & Ivry, R. B. (2003). Disrupted timing of discontinuous but not continuous movements by cerebellar lesions. Science, 300, 14371439.CrossRefGoogle Scholar
Sperling, G. A. (1960). The information available in brief visual presentation. Psychological Monographs, 74, Whole No. 498.CrossRefGoogle Scholar
Sperry, R. W. (1945). Restoration of vision after crossing of optic nerves and after transplantation of eye. Journal of Neurophysiology, 8, 1528.CrossRefGoogle Scholar
Squire, L. R. (1987). Memory and Brain. New York: Oxford University Press.Google Scholar
Stelmach, G. E., Castiello, U., & Jeannerod, M. (1994). Orienting the finger opposition space during prehension movements. Journal of Motor Behavior, 26, 178186.CrossRefGoogle ScholarPubMed
Sternberg, S., Monsell, S., Knoll, R. L., & Wright, C. E. (1978). The latency and duration of rapid movement sequences: Comparisons of speech and typewriting. In Stelmach, G. E. (Ed.), Information Processing In Motor Control and Learning (pp. 117152). New York, NY: Academic Press.CrossRefGoogle Scholar
Stins, J. F. & Michaels, C. F. (1997). Stimulus-response compatibility is information-action compatibility. Ecological Psychology, 9, 2545.CrossRefGoogle Scholar
Stout, D. (2002). Skill and cognition in stone tool production: An ethnographic case study from Irian Jaya 1. Current Anthropology, 43, 693722.CrossRefGoogle Scholar
Sumbre, G., Gutfreund, Y., Fiorito, G., Flash, T., & Hochner, B. (2001). Control of octopus arm extension by a peripheral motor program. Science, 293, 18451848.CrossRefGoogle ScholarPubMed
Suvilehto, J. T., Glerean, E., Dunbar, R. I., Hari, R., & Nummenmaa, L. (2015). Topography of social touching depends on emotional bonds between humans. Proceedings of the National Academy of Sciences, 112, 1381113816.CrossRefGoogle ScholarPubMed
Swinnen, S. P. (2002). Intermanual coordination: From behavioural principles to neural-network interactions. Nature Reviews Neuroscience, 3, 350361.CrossRefGoogle ScholarPubMed
Swinnen, S. P., Heuer, H., & Casaer, P. (Eds.) (1994). Interlimb Coordination: Neural, Dynamical, and Cognitive Constraints. San Diego: Academic Press.CrossRefGoogle Scholar
Tai, Y. F., Scherfler, C., Brooks, D. J., Sawamoto, N., & Castiello, U. (2004). The human premotor cortex is ‘mirror’ only for biological actions. Current Biology, 14, 117120.CrossRefGoogle ScholarPubMed
Thomas, L. E. (2015). Grasp posture alters visual processing biases near the hands. Psychological Science, 26, 625632.CrossRefGoogle ScholarPubMed
Thomassen, A. J., Meulenbroek, R. G., & Hoofs, M. P. (1992). Economy and anticipation in graphic stroke sequences. Human Movement Science, 11, 7182.CrossRefGoogle Scholar
Thompson, C. (2015). On demand: When Uber wanted a team of roboticists, it raided a university lab to get them. New York Times Magazine, September 11, pp. 3944.Google Scholar
Till, B. C., Masson, M. E., Bub, D. N., & Driessen, P. F. (2014). Embodied effects of conceptual knowledge continuously perturb the hand in flight. Psychological Science, 25, 16371648.CrossRefGoogle ScholarPubMed
Ting, L. H. & Macpherson, J. M. (2005). A limited set of muscle synergies for force control during a postural task. Journal of Neurophysiology, 93, 609613.CrossRefGoogle ScholarPubMed
Torres, E. B. & Zipser, D. (2004). Simultaneous control of hand displacements and rotations in orientation-matching experiments. Journal of Applied Physiology, 96, 19781987.CrossRefGoogle ScholarPubMed
Tous, J. M., Viadé, A., & Muiños, R. (2007). Validez estructural de los lineogramas del psicodiagnóstico miokinético, revisado y digitalizado (PMK-RD). Psicothema, 19, 350356.Google Scholar
Trevena, J. A. & Miller, J. O. (2002). Cortical movement preparation before and after a conscious decision to move. Consciousness & Cognition, 11, 162190.CrossRefGoogle ScholarPubMed
Trommerhäuser, J. (2009). Biases and optimality of sensory-motor and cognitive decisions. Progress in Brain Research, 174, 267278.CrossRefGoogle Scholar
Tucker, M. & Ellis, R. (1998). On the relations between seen objects and components of potential actions. Journal of Experimental Psychology: Human Perception and Performance, 24, 830846.Google ScholarPubMed
Tucker, R. & Ellis, M. (2001). The potentiation of grasp types during visual object categorization. Visual Cognition, 8, 769800.CrossRefGoogle Scholar
Turvey, M. (1990). Coordination. American Psychologist, 45, 938953.CrossRefGoogle ScholarPubMed
Tversky, A. (1972). Elimination by aspects – Theory of choice. Psychological Review, 79, 281299.CrossRefGoogle Scholar
Ullman, M. T. & Pierpont, E. I. (2005). Specific language impairment is not specific to language: The procedural deficit hypothesis. Cortex, 41, 399433.CrossRefGoogle Scholar
Vaesen, K. (2012). The cognitive bases of human tool use. Behavioral and Brain Sciences, 35, 203218.CrossRefGoogle ScholarPubMed
Valyear, K. F. & Frey, S. H. (2014). Hand selection for object grasping is influenced by recent motor history. Psychonomic Bulletin & Review, 21, 566573.CrossRefGoogle ScholarPubMed
Valyear, K. F. & Frey, S. H. (2015). Human posterior parietal cortex mediates hand-specific planning. NeuroImage, 114, 226238.CrossRefGoogle ScholarPubMed
van der Meer, A. L. (1997) Keeping the arm in the limelight: Advanced visual control of arm movements in neonates. European Journal of Pediatric Neurology, 1, 103108.CrossRefGoogle ScholarPubMed
van der Wel, R. P. Fleckenstein, R., Jax, S., & Rosenbaum, D. A. (2007). Hand path priming in manual obstacle avoidance: Evidence for abstract spatio-temporal forms in human motor control. Journal of Experimental Psychology: Human Perception and Performance, 33, 11171126.Google Scholar
van der Wel, R. P. & Fu, E. (2015). Entrainment and task co-representation effects for discrete and continuous action sequences. Psychonomic Bulletin and Review, 22, 16851691.CrossRefGoogle ScholarPubMed
van der Wel, R. P. & Rosenbaum, D. A. (2007). Coordination of locomotion and prehension. Experimental Brain Research, 176, 281287.CrossRefGoogle ScholarPubMed
Vaughan, J., Barany, D. A., & Rios, T. (2012). The cost of moving with the left hand. Experimental Brain Research, 220, 1122.CrossRefGoogle ScholarPubMed
Vaughan, J., Barany, D. A., Sali, A. W., Jax, S. A., & Rosenbaum, D. A. (2010). Extending Fitts’ Law to three-dimensional obstacle-avoidance movements: Support for the posture-based motion planning model. Experimental Brain Research, 207, 133138.CrossRefGoogle ScholarPubMed
Vaughan, J., Mattson, T., & Rosenbaum, D. A. (1998). The regulation of contact in rhythmic tapping. In Rosenbaum, D. A. & Collyer, C. E. (Eds.), Timing of Behavior: Neural, Psychological, and Computational Perspectives (pp. 195211). Cambridge, MA: MIT Press.Google Scholar
Vaughan, J., Rosenbaum, D. A., Diedrich, F., & Moore, C. (1996). Cooperative selection of movements: The optimal selection model. Psychological Research/Psychologische Forschung, 58, 254273.CrossRefGoogle ScholarPubMed
Vaughan, J., Rosenbaum, D. A., & Meulenbroek, R. G. J. (2006). Modeling reaching and manipulating in 2- and 3-D workspaces: The posture-based model. Proceedings of the Fifth International Conference on Learning and Development. Bloomington, IN, May 31–June 3, 2006.Google Scholar
Wagman, J. B. & Aspel, S. J. (2011). When can an object feel heavier than itself? Perceived heaviness of a wielded object depends on grasp position. Perception, 40, 13841386.CrossRefGoogle ScholarPubMed
Wagman, J. B., Zimmerman, C., & Sorric, C. (2007). Which feels heavier – a pound of lead or a pound of feathers? A potential perceptual basis of a cognitive riddle. Perception, 36, 17091711.CrossRefGoogle ScholarPubMed
Walsh, M. M. & Rosenbaum, D. A. (2009). Deciding how to act is not achieved by watching mental movies. Journal of Experimental Psychology: Human Perception and Performance, 35, 14811489.Google Scholar
Warren, H. C. (1921). A History of the Association Psychology. New York: Charles Scribner’s Sons. archive.org/details/historyoftheasso007979mbp.CrossRefGoogle Scholar
Warren, W. H. (1984). Perceiving affordances: Visual guidance of stair climbing. Journal of Experimental Psychology: Human Perception and Performance, 10, 683703.Google ScholarPubMed
Warren, W. H. & Whang, S. (1987). Visual guidance of walking through apertures: Body-scaled information for affordances. Journal of Experimental Psychology: Human Perception and Performance, 13, 371.Google ScholarPubMed
Wasserman, E. A. & Brzykcy, S. J. (2015). Pre-crastination in the pigeon. Psychonomic Bulletin & Review, 22, 11301134.CrossRefGoogle ScholarPubMed
Waszak, F., Wascher, E., Keller, P., Koch, I., Ashersleben, G., Rosenbaum, D. A., & Prinz, W. (2005). Intention-based and stimulus-based mechanisms in action selection. Experimental Brain Research, 162, 346356.CrossRefGoogle ScholarPubMed
Watson, J. B. (1930). Behaviorism (Revised edition). Chicago: University of Chicago Press.Google Scholar
Weeks, D. J., Chua, R., & Elliott, D. (2000). Perceptual-Motor Behavior In Down Syndrome. Champaign-Urbana, IL: Human Kinetics.Google Scholar
Weerdesteyn, V., Nienhuis, B., & Duysens, J. (2005). Advancing age progressively affects obstacle avoidance skills in the elderly. Human Movement Science, 24, 865880.CrossRefGoogle ScholarPubMed
Wegner, D. M. (1989). White Bears and Other Unwanted Thoughts: Suppression, Obsession, and The Psychology of Mental Control. New York: Viking/Penguin.Google Scholar
Wegner, D. M. (2002). The Illusion of Conscious Will. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Wegner, D. M., Ansfield, M. E., & Pilloff, D. (1998). The putt and the pendulum: Ironic effects of the mental control of action. Psychological Science, 9, 196199.CrossRefGoogle Scholar
Weigelt, M. Cohen, R. G., & Rosenbaum, D. A. (2007). Returning home: Locations rather than movements are recalled in human object manipulation. Experimental Brain Research, 149, 191198.CrossRefGoogle Scholar
Weigelt, W., Rosenbaum, D. A., Huelshorst, S., & Schack, T. (2009). Moving and memorizing: Motor planning modulates the recency effect in serial and free recall. Acta Psychologica, 132, 6879.CrossRefGoogle ScholarPubMed
Weigelt, M. & Schack, T. (2010). The development of end-state comfort planning in preschool children. Experimental Psychology, 57, 476482.CrossRefGoogle ScholarPubMed
Weinstein, S. (1968). Intensive and extensive aspects of tactile sensitivity as a function of body part, sex, and laterality. In Kenshalo, D. R. (Ed.), The Skin Senses (pp. 195222). Springfield, IL.: Charles C. Thomas.Google Scholar
Weiskrantz, L. (1986). Blindsight: A Case Study and Implications. Oxford University Press.Google Scholar
Weiskrantz, L. (1992). Unconscious vision: The strange phenomenon of blindsight. The Sciences, 35, 2328.Google Scholar
Weiss, D., Chapman, K., Wark, J., & Rosenbaum, D. A. (2012). Commentary on Vaesen: The cognitive basis of human tool use. Behavioral and Brain Sciences, 35, 4242.Google Scholar
Weiss, D. J., Wark, J. D., & Rosenbaum, D. A. (2007). Monkey see, monkey plan, monkey do: The end-state comfort effect in cotton-top tamarins (Saguinus Oedipus). Psychological Science, 18, 10631068.CrossRefGoogle ScholarPubMed
Welchman, A., Stanley, J., Schomers, M., Miall, R., & Bulthoff, H. (2010). The quick and the dead: When reaction beats intention. Proceedings of the Royal Society of Biological Sciences, 277, 16671674.CrossRefGoogle ScholarPubMed
Wheeler, D. D. (1970). Processes in word recognition. Cognitive Psychology, 1, 5985.CrossRefGoogle Scholar
Wickens, D. D. (1938). The transference of conditioned excitation and conditioned inhibition from one muscle group to the antagonistic muscle group. Journal of Experimental Psychology, 22, 101123.CrossRefGoogle Scholar
Williams, J., Reid, S. M., Reddihough, D. S., & Anderson, V. (2011). Motor imagery ability in children with congenital hemiplegia: Effect of lesion side and functional level. Research in Developmental Disabilities, 32, 740748.CrossRefGoogle ScholarPubMed
Willingham, D. T. (2007). Cognition – The Thinking Animal (Third Edition). Upper Saddle River, NJ: Pearson/Prentice Hall.Google Scholar
Wing, A. M., Haggard, P., & Flanagan, R. (Eds.) (1996). Hand And Brain: Neurophysiology and Psychology of Hand Movement. San Diego: Academic Press.Google Scholar
Winold, H., Thelen, E., & Ulrich, B. D. (1994). Coordination and control in the bow arm movements of highly skilled cellists. Ecological Psychology, 6, 131.CrossRefGoogle Scholar
Witt, J. K. (2015). Awareness is not a necessary characteristic of a perceptual effect: Commentary on Firestone (2013). Perspectives on Psychological Science, 10, 865872.CrossRefGoogle Scholar
Witt, J. K. & Sugovic, M. (2010). Performance and ease influence perceived speed. Perception, 39, 13411353.CrossRefGoogle ScholarPubMed
Witt, J. K., Sugovic, M., & Taylor, J. E. T. (2012). Action-specific effects in a social context: Others’ abilities influence perceived speed. Journal of Experimental Psychology: Human Perception and Performance, 38, 715725.Google Scholar
Wolf, S. L., Winstein, C. J., Miller, J. P., Taub, E., Uswatte, G., Morris, D., Giuliani, C., Light, K. E., & Nichols-Larsen, D. (2006). Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke. JAMA: The Journal of the American Medical Association, 296, 20952104.CrossRefGoogle Scholar
Wolpert, D. M. & Flanagan, J. R. (2001). Motor prediction. Current Biology, 11, 729732.CrossRefGoogle ScholarPubMed
Woodworth, RS (1899) The accuracy of voluntary movement. Psychological Monographs, 3, 1114. books.google.com/books/download/The_accuracy_of_voluntary_movement.pdf?id=eQINAAAAIAAJCrossRefGoogle Scholar
Wu, Y. C. & Coulson, S. (2015). Iconic gestures facilitate discourse comprehension in individuals with superior immediate memory for body configurations. Psychological Science, 0956797615597671 {volume and page numbers not yet available as of 2-11-16}.CrossRefGoogle Scholar
Wulf, G. (2007). Attention And Motor Skill Learning. Champaign, IL: Human Kinetics.CrossRefGoogle Scholar
Wulf, G., Shea, C., & Lewthwaite, R. (2010). Motor skill learning and performance: A review of influential factors. Medical Education, 44, 7584.CrossRefGoogle ScholarPubMed
Wunsch, K., Henning, A., Aschersleben, G., & Weigelt, M. (2013). A systematic review of the end-state comfort effect in normally developing children and in children with developmental disorders. Journal of Motor Learning and Development, 1, 5976.CrossRefGoogle Scholar
Wunsch, K., Weigelt, M., & Stöckel, T. (2015). Anticipatory motor planning in older adults. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, gbv078. [Epub ahead of print]CrossRefGoogle Scholar
Wunsch, K., Weiss, D. J., Schack, T., & Weigelt, M. (2015). Second-order motor planning in children: Insights from a cup-manipulation-task. Psychological Research, 79, 669677.CrossRefGoogle ScholarPubMed
Xu, J., Gannon, P. J., Emmorey, K., Smith, J. F., & Braun, A. R. (2009). Symbolic gestures and spoken language are processed by a common neural system. Proceedings of the National Academy of Sciences, 106, 2066420669.CrossRefGoogle ScholarPubMed
Yamanishi, J., Kawato, M., & Suzuki, R. (1980). Two coupled oscillators as a model for the coordinated finger tapping by both hands. Biological Cybernetics, 37, 219225.CrossRefGoogle Scholar
Yue, G. & Cole, K. J. (1992). Strength increases from the motor program: Comparison of training with maximal voluntary and imagined muscle contractions. Journal of Neurophysiology, 67, 11141123.CrossRefGoogle ScholarPubMed
Zander, S. L., Weiss, D. J., & Judge, P. G. (2013). The interface between morphology and action planning: A comparison of two species of New World monkeys. Animal Behaviour, 86, 12511258.CrossRefGoogle Scholar
Zatsiorsky, V. M. & Latash, M. L. (2004) Prehension synergies. Exercise Sport Science Review, 32, 7580.CrossRefGoogle ScholarPubMed
Zelaznik, H. N. & Rosenbaum, D. A. (2010). Timing processes are correlated when tasks share a salient event. Journal of Experimental Psychology: Human Perception and Performance, 36, 15651575.Google Scholar
Zhang, L., Wininger, M., & Rosenbaum, D. A. (2014). Word generation affects continuous hand movements. Journal of Motor Behavior, 46, 115123.CrossRefGoogle ScholarPubMed
Zhu, Q. & Bingham, G. P. (2010). Learning to perceive the affordance for long distance throwing: Smart mechanism or function learning? Journal of Experimental Psychology: Human Perception and Performance, 36, 862875.Google ScholarPubMed
Zhu, Q. & Bingham, G. P. (2011). Human readiness to throw: The size–weight illusion is not an illusion when picking the best objects to throw. Evolution and Human Behavior, 32, 288293.CrossRefGoogle Scholar
Ziat, M., Konieczny, C., & Kakas, B. (2014). Throwing of a ceramic cylindrical vessel: How height is affected by sensory deprivation. Haptics Symposium (HAPTICS), 529530.CrossRefGoogle Scholar
Ziat, M., Konieczny, C., Park, M. K., Kakas, B., & Rosenbaum, D. A. (2015). Potters make shorter clay pots at the wheel when their vision, touch, or hearing is reduced. Talk given at the annual meeting of the Psychonomic Society. Chicago, IL, November 22.Google Scholar
Zimmermann, M., Meulenbroek, R. G., & de Lange, F. P. (2012). Motor planning is facilitated by adopting an action’s goal posture: An fMRI study. Cerebral Cortex, 22, 122131.CrossRefGoogle ScholarPubMed
Zwaan, R. A., van der Stoep, N., Guadalupe, T., & Bouwmeester, S. (2012). Language comprehension in the balance: The robustness of the action-compatibility effect (ACE). PLoS ONE, 7(2), e31204.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • David A. Rosenbaum, Pennsylvania State University
  • Book: Knowing Hands
  • Online publication: 24 March 2017
  • Chapter DOI: https://doi.org/10.1017/9781316148525.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • David A. Rosenbaum, Pennsylvania State University
  • Book: Knowing Hands
  • Online publication: 24 March 2017
  • Chapter DOI: https://doi.org/10.1017/9781316148525.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • David A. Rosenbaum, Pennsylvania State University
  • Book: Knowing Hands
  • Online publication: 24 March 2017
  • Chapter DOI: https://doi.org/10.1017/9781316148525.011
Available formats
×