Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-18T09:40:15.877Z Has data issue: false hasContentIssue false

Chapter 7 - Cardiac drugs in pregnancy

from Section 2 - Antenatal Care: General Considerations

Published online by Cambridge University Press:  05 March 2016

Philip J. Steer
Affiliation:
Chelsea and Westminster Hospital, London
Michael A. Gatzoulis
Affiliation:
Royal Brompton Hospital, London
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Schardein, JL. Chemically-induced Birth Defects, 4th edn. New York: Marcel Dekker; 2000.CrossRefGoogle Scholar
Nelson, K, Holmes, LB. Malformations due to presumed spontaneous mutations in newborn infants. N Engl J Med 1989;320:1923.Google Scholar
Wilson, JD. Embryotoxicity of drugs to man. In: Wilson, JD, Frazer, FC, eds. Handbook of Teratology, Vol. 1. New York: Plenum Press; 1977. pp. 309–55.Google Scholar
Joint Formulary Committee. British National Formulary. London: British Medical Association and Royal Pharmaceutical Society of Great Britain; 2005.Google Scholar
Heinonen, OP, Slone, D, Shapiro, S, Birth Defects and Drugs in Pregnancy. Littleton, MA: Publishing Sciences Group; 1997.Google Scholar
Briggs, GG, Freeman, RK, Yaffe, SJ. Drugs in Pregnancy and Lactation: A Reference Guide to Fetal and Neonatal Risk, 5th edn. Baltimore: Williams and Wilkins; 1998.Google Scholar
Heinonen, OP, Slone, D, Shapiro, S. Birth Defects and Drugs in Pregnancy. Littleton, MA: Publishing Sciences Group; 1977. pp. 371–3.Google Scholar
Votta, RA, Parada, OH, Windgrad, RH, Alvarez, OH, Tomassinni, TL, Patoria, A. Furosemide action on the creatinine concentration of amniotic fluid. Am J Obstet Gynecol 1975;123:621–4.CrossRefGoogle ScholarPubMed
Jones, HC. Intrauterine ototoxicity: A case report and review of literature. J Natl Med Assoc 1973;65:201–3.Google ScholarPubMed
Kraft, IL, Mus, BD. Hypertonic solutions to induce abortions. Br Med J 1971;2:49.Google Scholar
Yemini, M, Shoham, Z, Dgani, R, et al. Lupus-like syndrome in a mother and newborn following administration of hydrazaline: A case report. Eur J Obstet Gynecol Reprod Biol 1989;30:193–7.Google Scholar
Spinnato, JA, Sibai, BM, Anderson, GD. Fetal distress after hydralazine therapy for severe pregnancy-induced hypertension. South Med J 1986;79:559–62.Google Scholar
Tomlinson, AJ, Campbell, J, Walker, JJ, Morgan, C. Malignant primary hypertension in pregnancy treated with lisinopril. Ann Pharmacother 2000;34:180–2.Google Scholar
Barr, M Jr. Teratogen update: Angiotensin-converting enzyme inhibitors. Teratology 1994;50:399409.Google Scholar
Cooper, WO, Hernandez-Diaz, S, Abrogast, PG, et al. Major congenital malformations after first-trimester exposure to ACE inhibitors. N Engl J Med 2006;354:2443–51.Google Scholar
Li, D-K, Yang, C, Andrade, S, Tavares, V, Ferber, JR. Maternal exposure to angiotensin converting enzyme inhibitors in the first trimester and risk of malformations: A retrospective cohort study. BMJ 2011;343:d5931.CrossRefGoogle ScholarPubMed
Mitchell, A. Fetal risk from ACE inhibitors in the first trimester. BMJ 2011;343:d6667.CrossRefGoogle ScholarPubMed
Brent, RL, Beckman, DA. Angiotensin-converting enzyme inhibitors, an embryopathic class of drugs with unique properties: Information for clinical teratology counselors. Teratology 1991;43:543–6.CrossRefGoogle ScholarPubMed
Committee on Drugs, American Academy of Pediatrics. The transfer of drugs and other chemicals into human milk. Pediatrics 2001;108:776–89.Google Scholar
Saji, H, Yamanaka, M, Hagiwara, A, Ijira, R. Losartan and fetal toxic effects. Lancet 2001;357:363.CrossRefGoogle ScholarPubMed
Hinsberger, A, Wingen, A-M, Hoyer, PF. Losartan and fetal toxic effects. Lancet 2001;357:1620.CrossRefGoogle Scholar
Jogler, JA, Page, RL. Treatment of cardiac arrhythmias during pregnancy. Drug Saf 1999;20:8594.CrossRefGoogle Scholar
Rotmensch, HH, Rotmensch, S, Elkayam, U. Management of cardiac arrhythmias during pregnancy: Current concepts. Drugs 1987;33:623–33.Google Scholar
Macaulay, JH, Bond, K, Steer, PJ. Epidural analgesia in labor and fetal hyperthermia. Obstet Gynecol 1992;80:665–9.Google ScholarPubMed
Janz, D, Fuchs, V. Are anti-epileptic drugs powerful when given during pregnancy? German Med Monogr 1964;9:20–3.Google Scholar
Grosso, S, Berardi, R, Cioni, M, Morgese, G. Transient neonatal hypothyroidism after gestational exposure to amiodarone: A follow-up of two cases. J Endocrinol Invest 1998;21:699702.Google Scholar
Ovadia, M, Breto, M, Hoyer, GL, Marcus, FI. Human experience with amiodarone in the embryonic period. Am J Cardiol 1994;73:316–17.CrossRefGoogle ScholarPubMed
Oudijk, MA, Michon, MM, Kleinman, CS, et al. Sotalol in the treatment of fetal dysrhythmias. Circulation 2000;101:2721–6.CrossRefGoogle ScholarPubMed
Magee, LA, Nulman, I, Rovet, JF, Koren, G. Neurodevelopment after in utero amiodarone exposure. Neurotoxicol Teratol 1999;21:261–5.Google Scholar
Magee, LA, Schick, B, Donnenfeld, AE, et al. The safety of calcium channel blockers in human pregnancy: A prospective, multicenter core study. Am J Obstet Gynecol 1996;174:823–8.CrossRefGoogle Scholar
Czeizel, AE, Rockenbauer, M, Population-based case–controlled study of teratogenic potential of corticosteroids. Teratology 1997;56:335–40.3.0.CO;2-W>CrossRefGoogle Scholar
Sorensen, HT, Steffensen, FH, Olesen, C, Nielsen, GL, Pedersen, L, Olsen, J. Pregnancy outcome in women exposed to calcium channel blockers. Reprod Toxicol 1998;12:383–4.Google Scholar
Marlettini, MG, Crippa, S, Morselli-Labate, AN, Orlandi, C. Randomized comparison of calcium antagonists and beta-blockers in the treatment of pregnancy-induced hypertension. Curr Ther Res 1990;48:684–92.Google Scholar
Orlandi, C, Marlettini, MG, Cassani, A. Treatment of hypertension during pregnancy with the calcium antagonist verapamil. Curr Ther Res 1986;39:884–93.Google Scholar
Houtzager, BA, Hogendoorn, SM, Papatsonis, DN, et al. Long-term follow-up of children exposed in utero to nifedipine or ritodrine for the management of preterm labour. BJOG 2006;113:324–31.Google Scholar
Brown, CEL, Wendel, GD. Cardiac arrhythmias during pregnancy. Clin Obstet Gynecol 1989;32:89102.Google Scholar
Madden, BP. Pulmonary hypertension and pregnancy. Int J Obstet Anesth 2009;18:156–64.Google Scholar
Easterling, TR, Brateng, D, Schmucker, B, Brown, Z, Millard, SP. The prevention of pre-eclampsia: A randomized trial of atenolol in hyperdynamic patients before onset of hypertension. Obstet Gynecol 1999;93:725–33.Google Scholar
Butters, L, Kennedy, S, Rubin, PC. Atenolol in essential hypertension during pregnancy. Br Med J 1990;301:587–9.Google Scholar
Lydakis, C, Lip, GY, Beavers, M, Beavers, DG. Atenolol and fetal growth in pregnancies complicated by hypertension. Am J Hypertens 1999;12:541–7.CrossRefGoogle ScholarPubMed
Magee, LA, Duley, L. Oral beta-blockers for mild to moderate hypertension during pregnancy. Cochrane Database Syst Rev 2003;(3):CD002863.Google ScholarPubMed
von Dadelszen, P, Ornstein, MP, Bull, SB, Logan, AG, Koren, G, Magee, LA. Fall in mean arterial pressure and fetal growth restriction in pregnancy hypertension: A meta-analysis. Lancet 2000;355:8792.Google Scholar
Reynolds, B, Butters, L, Evans, J, Adama, T, Rubin, PC. First year of life after the use of atenolol in pregnancy-associated hypertension. Arch Dis Child 1984;59:1061–3.CrossRefGoogle ScholarPubMed
Rubin, PC, Butters, L, Kelman, AW, Fitzsimons, C, Reid, JL. Labetalol disposition and concentration-effect relationships during pregnancy. Br J Clin Pharmacol 1983;15:465–70.CrossRefGoogle ScholarPubMed
Chan, V, Tse, TF, Wong, V. Transfer of digoxin across the placenta and into breast milk. Br J Obstet Gynaecol 1978;85:605–9.Google Scholar
Saarikoski, S. Placental transfer and fetal uptake of 3H-digoxin in humans. Br J Obstet Gynaecol 1976;83:879–84.Google Scholar
Harrigan, JT, Kangos, JJ, Sikka, A, et al. Successful treatment of fetal congestive heart failure secondary to tachycardia. N Engl J Med 1981;304:1527–9.Google Scholar
Hsieh, Y, Lee, C, Chang, C, Tsai, H, Yeh, L, Tsai, C. Successful prenatal digoxin therapy for Ebstein’s anomaly with hydrops fetalis. A case report. J Reprod Med 1998;43:710–12.Google Scholar
Tikanoja, T, Kirkinen, P, Nikolajev, K, Eresmaa, L, Haring, P. Familial atrial fibrillation with fetal onset. Heart 1998;79:195–7.CrossRefGoogle ScholarPubMed
Bennett, PN, ed. Drugs and Human Lactation, 2nd edn. Amsterdam, Oxford: Elsevier; 1996.Google Scholar
Greer, IA, Nelson-Piercy, C. Low-molecular-weight heparins for thromboprophylaxis and treatment of venous thromboembolism in pregnancy: A systematic review of safety and efficacy. Blood 2005;106:401–7.Google Scholar
Lindqvist, PG, Dahlback, B. Bleeding complications associated with low molecular weight heparin prophylaxis during pregnancy. Thromb Haemost 2000;84:140–1.Google ScholarPubMed
Bates, SM, Ginsberg, JS. Anticoagulants in pregnancy: Fetal effects. Bailliere’s Clin Obstet Gynaecol 1997;11:479–88.Google Scholar
Plavix (clopidogrel bisulfate). Bristol-Myers Squibb. Full prescribing information at http://www.bms.com/products/Pages/home.aspx [accessed 9th September 2015]Google Scholar
Klinzing, P, Markert, UR, Liesaus, K, Peiker, G. Case report: Successful pregnancy and delivery after myocardial infarction and essential thrombocythemia treated with clopidogrel. Clin Exp Obstet Gynecol 2001;28:215–16.Google Scholar
Coulson, C, Thorp, M, Mayer, D, Cefalo, R. Central hemodynamic effects of oxytocin and interaction with magnesium and pregnancy in the isolated perfused rat heart. Am J Obstet Gynecol 1997;177:91–3.Google Scholar
Hendricks, CH, Brenner, WE. Cardiovascular effects of oxytocic drugs used post partum. Am J Obstet Gynecol 1970;108:751–4.Google Scholar
Secher, NJ, Amso, P, Wallin, L. Haemodynamic effects of oxytocin (syntocinon) and methyl ergometrine (methergin) on the systemic and pulmonary circulations of pregnant anaesthetized women. Acta Obstet Gynecol Scand 1978;57:97107.Google Scholar
Brecht, T. Effect of misoprostol on human circulation. Prostaglandins 1987;33:51–9.CrossRefGoogle ScholarPubMed
Sanchez-Ramos, L, Kaunitz, AM, Delvalle, GO, Delke, I, Schroeder, PA, Briones, DK. Labor induction with the prostaglandin E1 methyl analogue misoprostol versus oxytocin: A randomized trial. Obstet Gynecol 1993;81:332–6.Google ScholarPubMed
Wing, DA, Rahall, A, Jones, MM, Goodwin, TM, Paul, RH. Misoprostol: An effective agent for cervical ripening and labor induction. Am J Obstet Gynecol 1995;172:1811–16.Google ScholarPubMed
Wing, DA, Jones, MM, Rahall, A, Goodwin, TM, Paul, RH. A comparison of misoprostol and prostaglandin E2 gel for preinduction cervical ripening and labor induction. Am J Obstet Gynecol 1995;172:1804–10.Google Scholar
Sanchez-Ramos, L, Kaunitz, AM, Wears, RL, Isaac, D, Gaudier, FL. Misoprostol for cervical ripening and labor induction: A meta-analysis. Obstet Gynecol 1997;89:633–42.Google Scholar
Hofmeyr, GJ, Gulmezoglu, AM. Vaginal misoprostol for cervical ripening and labour induction in late pregnancy. Cochrane Database Syst Rev 2000;(2):CD000941. Updates in: Cochrane Database Syst Rev 2001;(1):CD000941; Cochrane Database Syst Rev 2001;(3):CD000941.Google Scholar
Del Valle, GO, Sanchez-Ramos, L, Jordan, CW, Gaudier, FL, Delke, I. Use of misoprostol (prostaglandin E1 methyl analogue) to expedite delivery in severe pre-eclampsia remote from term. J Matern Fetal Med 1996;5:3940.Google Scholar
Ramsey, P, Hogg, B, Savage, K, Winkler, D, Owen, J. Cardiovascular effects of intravaginal misoprostol in the mid-trimester of pregnancy. Am J Obstet Gynecol 2000;183:1100–2.Google Scholar
Nathanielsz, PW, Honnebier, MB, Mecenas, C, Jenkins, SL, Holland, ML, Demarest, K. Effect of the oxytocin antagonist atosiban (1-deamino-2-D-tyr(OET)-4-thr-8-orn-vasotocin/oxytocin) on nocturnal myometrial contractions, maternal cardiovascular function, transplacental passage, and fetal oxygenation in the pregnant baboon during the last third of gestation. Biol Reprod 1997;57:320–4.Google Scholar
Thorp, JM. Jr, Mayer, D, Kuller, JA. Central hemodynamic effects of an oxytocin receptor antagonist (atosiban) in the isolated, perfused rat heart. J Soc Gynecol Investig 1999;6:186–7.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×