Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-02T08:51:59.260Z Has data issue: false hasContentIssue false

Chapter 8 - Osmium Isotopes

Published online by Cambridge University Press:  01 February 2018

Alan P. Dickin
Affiliation:
McMaster University, Ontario
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alard, O., Luguet, A., Pearson, N. J. et al. (2005). In situ Os isotopes in abyssal peridotites bridge the isotopic gap between MORBs and their source mantle. Nature 436, 1005–8.Google Scholar
Allegre, C. J., Birck, J.-L., Capmas, F. and Courtillot, V. (1999). Age of the Deccan traps using 187Re 187Os systematics. Earth Planet. Sci. Lett. 170, 197204.Google Scholar
Allegre, C. J. and Luck, J. M. (1980). Osmium isotopes as petrogenetic and geological tracers. Earth Planet. Sci. Lett. 48, 148–54.Google Scholar
Beerling, D. J., Lomas, M. R. and Grocke, D. R. (2002). On the nature of methane gas-hydrate dissociation during the Toarcian and Aptian oceanic anoxic events. Amer. J. Sci. 302, 2849.Google Scholar
Bennett, V. C., Esat, T. M. and Norman, M. D. (1996). Two mantle-plume components in Hawaiian picrites inferred from correlated Os–Pb isotopes. Nature 381, 221–3.CrossRefGoogle Scholar
Bennett, V. C., Nutman, A. P. and Esat, T. M. (2002). Constraints on mantle evolution from 187Os/188Os isotopic compositions of Archean ultramafic rocks from southern West Greenland (3.8 Ga) and Western Australia (3.46 Ga). Geochim. Cosmochim. Acta 66, 2615–30.Google Scholar
Brandon, A. D., Creaser, R. A., Shirey, S. B. and Carlson, R. W. (1996). Osmium recycling in subduction zones. Science 272, 861–4.CrossRefGoogle ScholarPubMed
Brandon, A. D., Norman, M. D., Walker, R. J. and Morgan, J. W. (1999). 186Os–187Os systematics of Hawaiian picrites. Earth Planet. Sci. Lett. 174, 2542.Google Scholar
Brandon, A. D., Walker, R. J., Morgan, J. W., Norman, M. D. and Prichard, H. M. (1998). Coupled 186Os and 187Os evidence for core–mantle interaction. Science 280, 1570–3.Google Scholar
Brandon, A. D., Walker, R. J. and Puchtel, I. S. (2006). Platinum–osmium isotope evolution of the Earth's mantle: constraints from chondrites and Os-rich alloys. Geochim. Cosmochim. Acta 70, 2093–103.Google Scholar
Brenan, J. M., Cherniak, D. J. and Rose, L. A. (2000). Diffusion of osmium in pyrrhotite and pyrite: implications for closure of the Re–Os isotopic system. Earth Planet. Sci. Lett. 180, 399413.Google Scholar
Burton, K. W., Gannoun, A., Birk, J.-L. et al. (2002). The compatability of rhenium and osmium in natural olivine and their behaviour during mantle melting and basalt genesis. Earth Planet. Sci. Lett. 198, 6376.Google Scholar
Burton, K. W., Gannoun, A. and Parkinson, I. J. (2010). Climate driven glacial–interglacial variations in the osmium isotope composition of seawater recorded by planktic foraminifera. Earth Planet. Sci. Lett. 295, 5868.Google Scholar
Burton, K. W., Schiano, P., Birck, J.-L. and Allegre, C. J. (1999). Osmium isotope disequilibrium between mantle minerals in a spinel-lherzolite. Earth Planet. Sci. Lett. 172, 311–22.Google Scholar
Class, C. and Goldstein, S. L. (1997). Plume–lithosphere interactions in the ocean basins: constraints from the source mineralogy. Earth Planet. Sci. Lett. 150, 245–60.Google Scholar
Class, C., Goldstein, S. L. and Shirey, S. B. (2009). Osmium isotopes in Grande Comore lavas: a new extreme among a spectrum of EM-type mantle endmembers. Earth Planet. Sci. Lett. 284, 219–27.Google Scholar
Coggon, J. A., Nowell, G. M., Pearson, D. G. et al. (2012). The 190Pt–186Os decay system applied to dating platinum-group element mineralization of the Bushveld Complex, South Africa. Chem. Geol. 302, 4860.Google Scholar
Cohen, A. S. (2004). The rhenium–osmium isotope system: applications to geochronological and palaeoenvironmental problems. J. Geol. Soc. 161, 729–34.Google Scholar
Cohen, A. S., Burnham, O. M., Hawkesworth, C. J. and Lightfoot, P. C. (2000). Pre- emplacement Re–Os ages from ultramafic inclusions in the sublayer of the Sudbury Igneous Complex, Ontario. Chem. Geol. 165, 3746.Google Scholar
Cohen, A. S. and Coe, A. L. (2002). New geochemical evidence for the onset of volcanism in the Central Atlantic magmatic province and environmental change at the Triassic–Jurassic boundary. Geology 30, 267–70.Google Scholar
Cohen, A. S., Coe, A. L., Bartlett, J. M. and Hawkesworth, C. J. (1999). Precise Re–Os ages of organic-rich mudrocks and the Os isotope composition of Jurassic seawater. Earth Planet. Sci. Lett. 167, 159–73.Google Scholar
Cohen, A. S., Coe, A. L., Harding, S. M. and Schwark, L. (2004). Osmium isotope evidence for the regulation of atmospheric CO2 by continental weathering. Geology 32, 157–60.Google Scholar
Creaser, R. A., Papanastassiou, D. A. and Wasserburg, G. J. (1991). Negative thermal ion mass spectrometry of osmium, rhenium, and iridium. Geochim. Cosmochim. Acta 55, 397401.CrossRefGoogle Scholar
Creaser, R. A., Sannigrahi, P., Chacko, T. and Selby, D. (2002). Further evaluation of the Re–Os geochronometer in organic-rich sedimentary rocks: a test of hydrocarbon maturations effects in the Exshaw Formation, Western Canada Sedimentary Basin. Geochim. Cosmochim. Acta 66, 3441–52.CrossRefGoogle Scholar
Dickin, A. P., Artan, M. A. and Crocket, J. H. (1996). Isotopic evidence for distinct crustal sources of North and South Range ores, Sudbury Igneous Complex. Geochim. Cosmochim. Acta 60, 31605–13.Google Scholar
Dickin, A. P., Nguyen, T. and Crocket, J. H. (2000). Isotopic evidence for a single impact melting origin of the Sudbury Igneous Complex. Geol. Soc. America Spec. Paper 339, pp. 361–71.Google Scholar
Dickin, A. P., Richardson, J. M., Crocket, J. H., McNutt, R. H. and Peredery, W. V. (1992). Osmium isotope evidence for a crustal origin of platinum group elements in the Sudbury nickel ore. Geochim. Cosmochim. Acta 56, 3531–7.Google Scholar
Dietz, R. S. (1964). Sudbury structure as an astrobleme. J. Geol. 72, 412–34.Google Scholar
Esser, B. K. and Turekian, K. K. (1993). The osmium isotopic composition of the continental crust. Geochim. Cosmochim. Acta 57, 3093–104.CrossRefGoogle Scholar
Faggart, B. E., Basu, A. R. and Tatsumoto, M. (1985). Origin of the Sudbury Complex by meteoritic impact: neodymium isotope evidence. Science 230, 436–9.Google Scholar
Gannoun, A., Burton, K. W., Parkinson, I. J. et al. (2007). The scale and origin of the osmium isotope variations in mid-ocean ridge basalts. Earth Planet. Sci. Lett. 259, 541–56.Google Scholar
Gatti, F. et al. (2006). MARE: Microcalorimeter Arrays for a Rhenium Experiment. 149 pp.Google Scholar
Hart, S. R. and Kinloch, E. D. (1989). Osmium isotope systematics in Witwatersrand and Bushveld ore deposits. Econ. Geol. 84, 1651–5.CrossRefGoogle Scholar
Harvey, J., Gannoun, A., Burton, K. W. et al. (2006). Ancient melt extraction from the oceanic upper mantle revealed by Re–Os isotopes in abyssal peridotites from the Mid-Atlantic ridge. Earth Planet. Sci. Lett. 244, 606–21.Google Scholar
Hattori, K. and Hart, S. R. (1991). Osmium-isotope ratios of platinum-group minerals associated with ultramafic intrusions: Os-isotopic evolution of the oceanic mantle. Earth Planet. Sci. Lett. 107, 499514.CrossRefGoogle Scholar
Hauri, E. H. and Hart, S. R. (1993). Re–Os isotope systematics of HIMU and EMII oceanic island basalts from the south Pacific Ocean. Earth Planet. Sci. Lett. 114, 353–71.Google Scholar
Hauri, E. H., Lassiter, J. C. and DePaolo, D. J. (1996). Osmium isotope systematics of drilled lavas from Mauna Loa, Hawaii. J. Geophys. Res. 101, 11793–806.Google Scholar
Hirata, T., Hattori, M. and Tanaka, T. (1998). In-situ osmium isotope ratio analyses of iridosmines by laser ablation–multiple collector–inductively coupled plasma mass spectrometry. Chem. Geol. 144, 269–80.Google Scholar
Hirt, B., Tilton, G. R., Herr, W. and Hoffmeister, W. (1963). The half life of 187Re. In: Geiss, J. and Goldberg, E. (Eds) Earth Science Meteoritics. North Holland Pub., pp. 273–80.Google Scholar
Hofmann, E. L., Naldrett, A. J., van Loon, J. C., Hancock, R. G. V. and Manson, A. (1978). The determination of all the platinum group elements and gold in rocks and ore by neutron activation analysis after preconcentration by a nickel sulfide fire-assay technique on large samples. Anal. Chim. Acta 102, 157–66.Google Scholar
Horan, M. F., Morgan, J. W., Walker, R. J. and Cooper, R. W. (2001). Re–Os isotopic constraints on magma mixing in the Peridotite Zone of the Stillwater Complex, Montana, USA. Contrib. Mineral. Petrol. 141, 446–57.Google Scholar
Ireland, T. J., Walker, R. J. and Brandon, A. D. (2011). 186Os–187Os systematics of Hawaiian picrites revisited: New insights into Os isotopic variations in ocean island basalts. Geochim. Cosmochim. Acta 75, 4456–75.Google Scholar
Jackson, M. G. and Shirey, S. B. (2011). Re–Os isotope systematics in Samoan shield lavas and the use of Os-isotopes in olivine phenocrysts to determine primary magmatic compositions. Earth Planet. Sci. Lett. 312, 91101.Google Scholar
Jordan, T. H. (1978). Composition and development of the continental tectosphere. Nature 274, 544–8.Google Scholar
Kirk, J., Ruiz, J., Chesley, J., Walshe, J. and England, G. (2002). A major Archean, gold- and crust-forming event in the Kaapvaal Craton, South Africa. Science 297, 1856–8.Google Scholar
Klemm, V., Levasseur, S., Frank, M., Hein, J. R. and Halliday, A. N. (2005). Osmium isotope stratigraphy of a marine ferromanganese crust. Earth Planet. Sci. Lett. 238, 42–8.Google Scholar
Krogh, T. E., Davis, D. W. and Corfu, F. (1984). Precise U–Pb zircon and baddeleyite ages from the Sudbury area. In: Pye, E. G., Naldrett, A. J. and Giblin, P. E. (Eds) The Geology and Ore Deposits of the Sudbury Structure. Ont. Geol. Surv. Spec. Pub Vol. 1, pp. 431–47.Google Scholar
Lambert, D. D., Morgan, J. W., Walker, R. J. et al. (1989). Rhenium–osmium and samarium–neodymium isotopic systematics of the Stillwater Complex. Science 244, 1169–74.Google Scholar
Lambert, D. D., Walker, R. J., Morgan, J. W. et al. (1994). Re–Os and Sm–Nd isotope geochemistry of the Stillwater Complex, Montana: implications for the petrogenesis of the J–M reef. J. Petrol. 35, 1717–53.Google Scholar
Lassiter, J. C., Byerly, B. L., Snow, J. E. and Hellebrand, E. (2014). Constraints from Os-isotope variations on the origin of Lena Trough abyssal peridotites and implications for the composition and evolution of the depleted upper mantle. Earth Planet. Sci. Lett. 403, 178–87.Google Scholar
Lassiter, J. C. and Hauri, E. H. (1998). Osmium-isotope variations in Hawaiian lavas: evidence for recycled oceanic lithosphere in the Hawaiian plume. Earth Planet. Sci. Lett. 164, 483–94.Google Scholar
Levasseur, S., Birk, J.-L. and Allegre, C. J. (1998). Direct measurement of femtomoles of osmium and the 187Os/186Os ratio in seawater. Science 282, 272–4.Google Scholar
Levasseur, S., Birk, J.-L. and Allegre, C. J. (1999). The osmium riverine flux and the oceanic mass balance of osmium. Earth Planet. Sci. Lett. 174, 723.Google Scholar
Levasseur, S., Rachold, V., Birk, J.-L. and Allegre, C. J. (2000). Osmium behaviour in estuaries: the Lena River example. Earth Planet. Sci. Lett. 177, 227–35.Google Scholar
Lindner, M., Leich, D. A., Borg, R. J. et al. (1986). Direct laboratory determination of the 187Re half-life. Nature 320, 246–8.Google Scholar
Lindner, M., Leich, D. A., Russ, G. P., Bazan, J. M. and Borg, R. J. (1989). Direct determination of the half-life of 187Re. Geochim. Cosmochim. Acta 53, 1597–606.Google Scholar
Liu, C. Z., Wu, F. Y., Chung, S. L. et al. (2014). A ‘hidden’ 18O-enriched reservoir in the sub-arc mantle. Sci. reports 4 (4232), 16.Google Scholar
Luck, J. M. and Allegre, C. J. (1982). The study of molybdenites through the 187Re–187Os chronometer. Earth Planet. Sci. Lett. 61, 291–6.Google Scholar
Luck, J. M. and Allegre, C. J. (1983). 187Re–187Os systematics in meteorites and cosmochemical consequences. Nature 302, 130–2.Google Scholar
Luck, J. M., Birck, J. L. and Allegre, C. J. (1980). 187Re –187Os systematics in meteorites: early chronology of the solar system and the age of the galaxy. Nature 283, 256–9.Google Scholar
Macfarlane, R. D. and Kohman, T. P. (1961). Natural α radioactivity in medium-heavy elements. Phys. Rev. 121, 1758–69.Google Scholar
Maier, W. D., Barnes, S. J., Campbell, I. H. et al. (2009). Progressive mixing of meteoritic veneer into the early Earth's deep mantle. Nature 460, 620–3.Google Scholar
Marcantonio, F., Zindler, A., Elliot, T. and Staudigel, H. (1995). Os isotope systematics of la Palma, Canary Islands: evidence for recycled crust in the mantle source of HIMU ocean islands. Earth Planet. Sci. Lett. 133, 397410.Google Scholar
Marcantonio, F., Zindler, A., Reisberg, L. and Mathez, E. A. (1993). Re–Os isotopic systematics in chromitites from the Stillwater Complex, Montana, USA. Geochim. Cosmochim. Acta 57, 4029–37.Google Scholar
Martin, C. E. (1989). Re–Os isotopic investigation of the Stillwater Complex, Montana. Earth Planet. Sci. Lett. 93, 336–44.Google Scholar
Martin, C. E. (1991). Osmium isotopic characteristics of mantle-derived rocks. Geochim. Cosmochim. Acta 55, 1421–34.Google Scholar
Martin, C. E., Peucker-Ehrenbrink, B., Brunskill, G. and Szymczak, R. (2001). Osmium isotope geochemistry of a tropical estuary. Geochim. Cosmochim. Acta 65, 3193–200.Google Scholar
McCandless, T. E., Ruiz, J. R., Adair, B. I. and Freydier, C. (1999). Re–Os isotope and Pd/Ru variations in chromitites from the critical zone, Bushveld Complex, South Africa. Geochim. Cosmochim. Acta 63, 911–23.Google Scholar
McCandless, T. E., Ruiz, J. and Campbell, A. R. (1993). Rhenium behaviour in molybdenite in hypogene and near-surface environments: implications for Re–Os geochronometry. Geochim. Cosmochim. Acta 57, 889905.Google Scholar
Meisel, T., Walker, R. J. and Morgan, J. W. (1996). The osmium isotopic composition of the Earth's primitive upper mantle. Nature 383, 517–20.Google Scholar
Meisel, T., Walker, R. J., Irving, A. J. and Lorand, J.-P. (2001). Osmium isotopic compositions of mantle xenoliths: a global perspective. Geochim. Cosmochim. Acta 65, 1311–23.Google Scholar
Morgan, J. W. (1985). Osmium isotope constraints on Earth's accretionary history. Nature 317, 703–5.Google Scholar
Morgan, J. W., Walker, R. J. and Grossman, J. N. (1992). Rhenium–osmium isotope systematics in meteorites I: magmatic iron meteorite groups IIAB and IIIAB. Earth Planet. Sci. Lett. 108, 191202.Google Scholar
Morgan, J. W., Walker, R. J., Horan, M. F., Beary, E. S. and Naldrett, A. J. (2002). 190Pt–186Os and 187Re–187Os systematics of the Sudbury Igneous Complex, Ontario. Geochim. Cosmochim. Acta 66, 273–90.Google Scholar
Naldrett, A. J. (1989). Magmatic Sulphide Deposits. Oxford University Press, 186 pp.Google Scholar
Naldrett, A. J., Rao, B. V. and Evensen, N. M. (1986). Contamination at Sudbury and its role in ore formation, In: Gallagher, M. J., Ixer, R. A., Neary, C. R. and Pritchard, H. M. (Eds) Metallogeny of Basic and Ultrabasic Rocks. Spec. Pub. Inst. Mining & Metall., pp. 7592.Google Scholar
Nomade, S., Renne, P. R. and Merkle, R. K. (2004). 40Ar/39Ar age constraints on ore deposition and cooling of the Bushveld Complex, South Africa. J. Geol. Soc. 161, 411–20.Google Scholar
Oxburgh, R. (1998). Variations in the osmium isotope composition of sea water over the past 200,000 years. Earth Planet. Sci. Lett. 159, 183–91.Google Scholar
Oxburgh, R., Pierson-Wickmann, A. C., Reisberg, L. and Hemming, S. (2007). Climate-correlated variations in seawater 187Os/188Os over the past 200,000 yr: Evidence from the Cariaco Basin, Venezuela. Earth Planet. Sci. Lett. 263, 246–58.Google Scholar
Paquay, F. S. and Ravizza, G. (2012). Heterogeneous seawater 187Os/188Os during the Late Pleistocene glaciations. Earth Planet. Sci. Lett. 349, 126–38.Google Scholar
Paquay, F. S., Ravizza, G. amd Coccioni, R. (2014). The influence of extraterrestrial material on the late Eocene marine Os isotope record. Geochim. Cosmochim. Acta 144, 238–57.Google Scholar
Pearson, N. J., Alard, O., Griffin, W. L., Jackson, S. E. and O'Reilly, S. Y. (2002). In situ measurement of Re–Os isotopes in mantle sulfides by laser ablation multicollector– inductively coupled plasma mass spectrometry: analytical methods and preliminary results. Geochim. Cosmochim. Acta 66, 1037–50.Google Scholar
Pegram, W. J., Esser, B. K., Krishnaswami, S. and Turekian, K. K. (1994). The isotopic composition of leachable osmium from river sediments. Earth Planet. Sci. Lett. 128, 591–9.Google Scholar
Pegram, W. J., Krishnaswami, S., Ravizza, G. E. and Turekian, K. K. (1992). The record of seawater 187Os/186Os variation through the Cenozoic. Earth Planet. Sci. Lett. 113, 569–76.Google Scholar
Pegram, W. J. and Turekian, K. K. (1999). The osmium isotopic composition change of Cenozoic sea water as inferred from deep-sea core corrected for meteoritic contributions. Geochim. Cosmochim. Acta 63, 4053–8.Google Scholar
Peucker-Ehrenbrink, B., Ravizza, G. and Hofmann, A. W. (1995). The marine 187Os/186Os record of the past 80 million years. Earth Planet. Sci. Lett. 130, 155–67.Google Scholar
Puchtel, I. S., Brügmann, G. E. and Hofmann, A. W. (1999). Precise Re–Os mineral isochron and Pb–Nd–Os isotope systematics of a mafic–ultramafic sill in the 2.0 Ga Onega plateau (Baltic Shield). Earth Planet. Sci. Lett. 170, 447–61.Google Scholar
Puchtel, I. S., Brugmann, G. E. and Hofmann, A. W. (2001). 187Os-enriched domain in an Archean mantle plume: evidence from 2.8 Ga komatiites of the Kostomuksha greenstone belt, NW Baltic Shield. Earth Planet. Sci. Lett. 186, 513–26.Google Scholar
Ravizza, G. (1993). Variations of the 187Os/186Os ratio of seawater over the past 28 million years as inferred from metalliferous carbonates. Earth Planet. Sci. Lett. 118, 335–48.Google Scholar
Ravizza, G. E. and Turekian, K. K. (1992). The osmium isotopic composition of organic-rich marine sediments. Earth Planet. Sci. Lett. 110, 16.Google Scholar
Reisberg, L. C., Allegre, C. J. and Luck, J. M. (1991). The Re–Os systematics of the Ronda Ultramafic Complex of southern Spain. Earth Planet. Sci. Lett. 105, 196213.Google Scholar
Reisberg, L. and Lorand, J-P. (1995). Longevity of sub-continental mantle lithosphere from osmium isotope systematics in orogenic peridotite massifs. Nature 376, 159–62.Google Scholar
Reisberg, L. C., Zindler, A., Marcantonio, F. et al. (1993). Os isotope systematics in ocean island basalts. Earth Planet. Sci. Lett. 120, 149–67.CrossRefGoogle Scholar
Roy-Barman, M. and Allegre, C. J. (1994). 187Os/186Os ratios of mid-ocean ridge basalts and abyssal peridotites. Geochim. Cosmochim. Acta 58, 5043–54.Google Scholar
Roy-Barman, M., Luck, J.-M. and Allegre, C. J. (1996). Os isotopes in orogenic lherzolite massifs and mantle heterogeneities. Chem. Geol. 130, 5564.Google Scholar
Russ, G. P., Bazan, J. M. and Date, A. R. (1987). Osmium isotopic ratio measurements by inductively coupled plasma source mass spectrometry. Anal. Chem. 59, 984–9.Google Scholar
Schersten, A., Elliott, T., Hawkesworth, C. and Norman, M. (2004). Tungsten isotope evidence that mantle plumes contain no contribution from the Earth's core. Nature 427, 234–7.Google Scholar
Schiano, P., Brick, J.-L. and Allegre, C. J. (1997). Osmium–strontium–neodymium–lead isotopic covariations in mid-ocean ridge basalt glasses and the heterogeneity of the upper mantle. Earth Planet. Sci. Lett. 150, 363–79.Google Scholar
Schoenberg, R., Kruger, F. J., Nagler, T. F., Meisel, T. and Kramers, J. D. (1999). PGE enrichment in chromite layers in the Merensky Reef of the western Bushveld Complex; a Re Os and Rb Sr isotope study. Earth Planet. Sci. Lett. 172, 4964.Google Scholar
Scoates, J. S. and Friedman, R. M. (2008). Precise age of the platiniferous Merensky Reef, Bushveld Complex, South Africa, by the U–Pb zircon chemical abrasion ID–TIMS technique. Econ. Geol. 103, 465–71.Google Scholar
Selby, D., Creaser, R. A., Hart, C. J. R. et al. (2002). Absolute timing of sulfide and gold mineralization: a comparison of Re–Os molybdenite and Ar–Ar mica methods from the Tintina Gold Belt, Alaska. Geology 30, 791–4.Google Scholar
Selby, D., Creaser, R. A., Stein, H. J., Markey, R. J. and Hannah, J. L. (2007). Assessment of the 187Re decay constant by cross calibration of Re–Os molybdenite and U–Pb zircon chronometers in magmatic ore systems. Geochim. Cosmochim. Acta 71, 19992013.Google Scholar
Sharma, M., Papanastassiou, D. A. and Wasserburg, G. J. (1997). The concentration and isotopic composition of osmium in the oceans. Geochim. Cosmochim. Acta 61, 3287–99.Google Scholar
Sharma, M. and Wasserburg, G. J. (1997). Osmium in the rivers. Geochim. Cosmochim. Acta 61, 5411–16.Google Scholar
Sharma, M., Wasserburg, G. J., Hofmann, A. W. and Butterfield, D. A. (2000). Osmium isotopes in hydrothermal fluids from the Juan de Fuca Ridge. Earth Planet. Sci. Lett. 179, 139–52.Google Scholar
Sharpe, M. R. (1985). Strontium isotope evidence for preserved density stratification in the main zone of the Bushveld Complex, South Africa. Nature 316, 119–26.Google Scholar
Shen, J. J., Papanastassiou, D. A. and Wasserburg, G. J. (1996). Precise Re–Os determinations and systematics of iron meteorites. Geochim. Cosmochim. Acta 60, 2887–900.Google Scholar
Shirey, S. B. and Walker, R. J. (1995). Carius tube digestion for low-blank Re–Os analyses. Anal. Chem. 67, 2136–41.Google Scholar
Skovgaard, A. C., Storey, M., Baker, J., Blusztajn, J. and Hart, S. (2001). Osmium–oxygen isotopic evidence for a recycled and strongly depleted component in the Iceland mantle plume. Earth Planet Sci. Lett. 194, 259–75.Google Scholar
Smoliar, M. I., Walker, R. J. and Morgan, J. W. (1996). Re–Os ages of group IIA, IIIA, IVA, and IVB iron meteorites. Science 271, 1099–102.Google Scholar
Suzuki, K., Senda, R. and Shimizu, K. (2011). Osmium behavior in a subduction system elucidated from chromian spinel in Bonin Island beach sands. Geology 39, 9991002.Google Scholar
Suzuki, K., Lu, Q., Shimizu, H. and Masuda, A. (1993). Reliable Re–Os age for molybdenite. Geochim. Cosmochim. Acta 57, 1625–8.Google Scholar
Volkening, J., Walczyk, T. and Heumann, K. G. (1991). Osmium isotope ratio determinations by negative thermal ionization mass spectrometry. Int. J. Mass Spectrom. Ion Proc. 105, 147–59.Google Scholar
Walczyk, T., Hebeda, E. H. and Heumann, K. G. (1991). Osmium isotope ratio measurements by negative thermal ionization mass spectrometry (N–TIMS). Fres. J. Anal. Chem. 341, 537–41.Google Scholar
Walker, R. J., Carlson, R. W., Shirey, S. B. and Boyd, F. R. (1989a). Os, Sr, Nd, and Pb isotope systematics of southern African peridotite xenoliths: implications for the chemical evolution of subcontinental mantle. Geochim. Cosmochim. Acta 53, 1583–95.Google Scholar
Walker, R. J., Horan, M. F., Morgan, J. W. et al. (2002). Comparative 187Re–187Os systematics of chondrites: implications regarding early solar system processes. Geochim. Cosmochim. Acta 66, 4187–201.Google Scholar
Walker, R. J. and Morgan, J. W. (1989). Rhenium–osmium isotope systematics of carbonaceous chondrites. Science 243, 519–22.Google Scholar
Walker, R. J., Morgan, J. W. and Horan, M. F. (1995). Osmium-187 enrichment in some plumes: evidence for core–mantle interaction? Science 269, 819–22.Google Scholar
Walker, R. J., Morgan, J. W., Beary, E. S. et al. (1997). Applications of the 190Pt–186Os isotope system to geochemistry and cosmochemistry. Geochim. Cosmochim. Acta 61, 4799–807.Google Scholar
Walker, R. J., Morgan, J. W., Naldrett, A. J. and Li, C. (1991). Re–Os isotopic systematics of Ni–Cu sulfide ores, Sudbury Igneous Complex, Ontario: evidence for a major crustal component. Earth Planet. Sci. Lett. 105, 416–29.Google Scholar
Walker, R. J., Shirey, S. B., Hanson, G. N., Rajamani, V. and Horan, M. F. (1989b). Re–Os, Rb–Sr, and O isotopic systematics of the Archean Kolar schist belt, Karnataka, India. Geochim. Cosmochim. Acta 53, 3005–13.Google Scholar
Widom, E. and Shirey, S. B. (1996). Os isotope systematics in the Azores: implications for mantle plume sources. Earth Planet. Sci. Lett. 142, 451–65.Google Scholar
Woodhouse, O. B., Ravizza, G., Falkner, K. K., Statham, P. J. and Peucker-Ehrenbrink, B. (1999). Osmium in seawater: vertical profiles of concentration and isotopic composition in the eastern Pacific Ocean. Earth Planet. Sci. Lett. 173, 223–33.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Osmium Isotopes
  • Alan P. Dickin, McMaster University, Ontario
  • Book: Radiogenic Isotope Geology
  • Online publication: 01 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781316163009.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Osmium Isotopes
  • Alan P. Dickin, McMaster University, Ontario
  • Book: Radiogenic Isotope Geology
  • Online publication: 01 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781316163009.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Osmium Isotopes
  • Alan P. Dickin, McMaster University, Ontario
  • Book: Radiogenic Isotope Geology
  • Online publication: 01 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781316163009.009
Available formats
×