Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-18T14:49:11.077Z Has data issue: false hasContentIssue false

Section 6 - Management of Fetal Growth Restriction

Published online by Cambridge University Press:  23 July 2018

Christoph Lees
Affiliation:
Imperial College London
Gerard H. A. Visser
Affiliation:
Universiteit Utrecht, The Netherlands
Kurt Hecher
Affiliation:
University Medical Centre, Hamburg
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Mari, G, Hanif, F, Treadwell, MC, Kruger, M. Gestational age at delivery and Doppler waveforms in very preterm intrauterine growth-restricted fetuses as predictors of perinatal mortality. J Ultrasound Med 2007 May;26:555–9.Google Scholar
Garite, TJ, Clark, R, Thorp, JA. Intrauterine growth restriction increases morbidity and mortality among premature neonates. Am J Obstet Gynecol 2004; 191:481–7.Google Scholar
Aucott, SW, Donohue, PK, Northington, FJ. Increased morbidity in severe early intrauterine growth restriction. J Perinatol 2004;24:435–40.Google Scholar
Morsing, E, Asard, M, Ley, D, Stjernqvist, K, Marsál, K. Cognitive function after intrauterine growth restriction and very preterm birth. Pediatrics 2011;127:e874–82.Google Scholar
Guellec, I, Lapillonne, A, Renolleau, S, Charlaluk, ML, Roze, JC, Marret, S, Vieux, R, Monique, K, Ancel, PY; EPIPAGE Study Group. Neurologic outcomes at school age in very preterm infants born with severe or mild growth restriction. Pediatrics 2011;127:e883–91.Google Scholar
Barker, DJ, Osmond, C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1986; 1: 1077–81Kanaka-Gantenbein C. Fetal origins of adult diabetes. Ann N Y Acad Sci 2010;1205:99–105.Google ScholarPubMed
Baschat, AA, Cosmi, E, Bilardo, CM, Wolf, H, Berg, C, Rigano, S, Germer, U, Moyano, D, Turan, S, Hartung, J, Bhide, A, Müller, T, Bower, S, Nicolaides, KH, Thilaganathan, B, Gembruch, U, Ferrazzi, E, Hecher, K, Galan, HL, Harman, CR. Predictors of neonatal outcome in early-onset placental dysfunction. Obstet Gynecol 2007;109:253–61.Google Scholar
Baschat, AA, Viscardi, RM, Hussey-Gardner, B, Hashmi, N, Harman, C. Infant neurodevelopment following fetal growth restriction: Relationship with antepartum surveillance parameters. Ultrasound Obstet Gynecol 2009;33:4450.CrossRefGoogle ScholarPubMed
Torrance, HL, Bloemen, MC, Mulder, EJ, Nikkels, PG, Derks, JB, de Vries, LS, Visser, GH. Predictors of outcome at 2 years of age after early intrauterine growth restriction. Ultrasound Obstet Gynecol 2010; 36:171–7.Google Scholar
Soothill, PW, Ajayi, RA, Campbell, S, Ross, EM, Candy, DC, Snijders, RM, Nicolaides, KH. Relationship between fetal acidemia at cordocentesis and subsequent neurodevelopment. Ultrasound Obstet Gynecol 1992;2:80–3.CrossRefGoogle ScholarPubMed
Bernstein, IM, Horbar, JD, Badger, GJ, Ohlsson, A, Golan, A. Morbidity and mortality among very-low-birth-weight neonates with intrauterine growth restriction. The Vermont Oxford Network. Am J Obstet Gynecol 2000;182:198206.Google Scholar
Lees, C, Marlow, N, Arabin, B, Bilardo, CM, Brezinka, C, Derks, JB, Duvekot, J,Frusca, T, Diemert, A, Ferrazzi, E, Ganzevoort, W, Hecher, K, Martinelli, P, Ostermayer, E, Papageorghiou, AT, Schlembach, D, Schneider, KT, Thilaganathan, B, Todros, T, Van Wassenaer-Leemhuis, A, Valcamonico, A, Visser, GH, Wolf, H; TRUFFLE Group. Perinatal morbidity and mortality in early-onset fetal growth restriction: Cohort outcomes of the trial of randomized umbilical and fetal flow in Europe (TRUFFLE). Ultrasound Obstet Gynecol 2013; 42:400–8.Google Scholar
Groom, KM, North, RA, Poppe, KK, Sadler, L, McCowan, LM. The association between customised small for gestational age infants and pre-eclampsia or gestational hypertension varies with gestation at delivery. BJOG 2007;114:478–84.CrossRefGoogle ScholarPubMed
Hofstaetter, C, Dubiel, M, Gudmundsson, S. Two types of umbilical venous pulsations and outcome of high-risk pregnancy. Early Hum Dev 2001;61:111–17.Google Scholar
Baschat, AA, Gembruch, U, Weiner, CP, Harman, CR. Qualitative venous Doppler waveform analysis improves prediction of critical perinatal outcomes in premature growth-restricted fetuses. Ultrasound Obstet Gynecol 2003;22:240–5.Google Scholar
Baschat, AA, Gembruch, U, Gortner, L, Reiss, I, Weiner, CP, Harman, CR. Coronary artery blood flow visualization signifies hemodynamic deterioration in growth-restricted fetuses. Ultrasound Obstet Gynecol 2000;16:425–31.Google Scholar
Chaoui, R. Coronary arteries in fetal life: Physiology, malformations and the “heart-sparing effect.” Acta Paediatr Suppl 2004;93:612.Google Scholar
Rizzo, G, Capponi, A, Pietrolucci, ME, Boccia, C, Arduini, D. The significance of visualising coronary blood flow in early onset severe growth restricted fetuses with reverse flow in the ductus venosus. J Matern Fetal Neonatal Med 2009;22:547–51.CrossRefGoogle ScholarPubMed
Flynn, AM, Kelly, J, O’Conor, M. Unstressed antepartum cardiotocography in the management of the fetus suspected of growth retardation. BJOG 1979;86:106–10.Google Scholar
Visser, GH, Redman, CW, Huisjes, HJ, Turnbull, AC. Nonstressed antepartum heart rate monitoring: Implications of decelerations after spontaneous contractions. Am J Obstet Gynecol 1980; 138:429–35.Google Scholar
Ayres-de-Campos, D, Bernardes, J, Costa-Pereira, A, Pereira-Leite, L. Inconsistencies in classification by experts of cardiotocograms and subsequent clinical decision. BJOG 1999;106:1307–10.CrossRefGoogle ScholarPubMed
Dawes, GS, Lobb, M, Moulden, M, Redman, CW, Wheeler, T. Antenatal cardiotocogram quality and interpretation using computers. BJOG 1992;99:791–7.Google Scholar
Van Ravenswaaij-Arts, CM, Kollée, LA, Hopman, JC, Stoelinga, GB, Van Geijn, HP. Heart rate variability. Ann Intern Med 1993;118:436–47.CrossRefGoogle ScholarPubMed
Visser, GH, Bekedam, DJ, Ribbert, LS. Changes in antepartum heart rate patterns with progressive deterioration of the fetal condition. Int J Biomed Comput 1990;25:239–46.CrossRefGoogle ScholarPubMed
Guzman, ER, Vintzileos, AM, Martins, M, Benito, C, Houlihan, C, Hanley, M. The efficacy of individual computer heart rate indices in detecting acidemia at birth in growth-restricted fetuses. Obstet Gynecol 1996;87:969–74.Google Scholar
Street, P, Dawes, GS, Moulden, M, Redman, CW. Short-term variation in abnormal antenatal fetal heart rate records. Am J Obstet Gynecol 1991;165:515–23.CrossRefGoogle ScholarPubMed
Serra, V, Moulden, M, Bellver, J, Redman, CW. The value of the short-term fetal heart rate variation for timing the delivery of growth-retarded fetuses. BJOG 2008; 115:1101–7.Google Scholar
Hecher, K, Bilardo, CM, Stigter, RH, Ville, Y, Hackelöer, BJ, Kok, HJ, Senat, MV, Visser, GH. Monitoring of fetuses with intrauterine growth restriction: A longitudinal study. Ultrasound Obstet Gynecol 2001; 18:564–70.Google Scholar
Bilardo, CM, Wolf, H, Stigter, RH, Ville, Y, Baez, E, Visser, GH, Hecher, K. Relationship between monitoring parameters and perinatal outcome in severe, early intrauterine growth restriction. Ultrasound Obstet Gynecol 2004;23:119–25.Google Scholar
Walkinshaw, S, Cameron, H, MacPhail, S, Robson, S. The prediction of fetal compromise and acidosis by biophysical profile scoring in the small for gestational age fetus. J Perinat Med 1992;20:227–32.Google Scholar
Baschat, AA, Gembruch, U, Harman, CR. The sequence of changes in Doppler and biophysical parameters as severe fetal growth restriction worsens. Ultrasound Obstet Gynecol 2001;18:571–7.Google Scholar
Turan, S, Turan, OM, Berg, C, Moyano, D, Bhide, A, Bower, S, Thilaganathan, B, Gembruch, U, Nicolaides, K, Harman, C, Baschat, AA. Computerized fetal heart rate analysis, Doppler ultrasound and biophysical profile score in the prediction of acid-base status of growth-restricted fetuses. Ultrasound Obstet Gynecol 2007; 30:750–6.Google Scholar
Yoon, BH, Romero, R, Roh, CR, Kim, SH, Ager, JW, Syn, HC, Cotton, D, Kim, SW. Relationship between the fetal biophysical profile score, umbilical artery Doppler velocimetry, and fetal blood acid-base status determined by cordocentesis. Am J Obstet Gynecol 1993;169:1586–94.Google Scholar
Ferrazzi, E, Bozzo, M, Rigano, S, Bellotti, M, Morabito, A, Pardi, G, Battaglia, FC, Galan, HL. Temporal sequence of abnormal Doppler changes in the peripheral and central circulatory systems of the severely growth-restricted fetus. Ultrasound Obstet Gynecol 2002;19:140–6.CrossRefGoogle ScholarPubMed
Lees, C; Marlow, N, Van Wassenaer-Leemhuis, A, Arabin, B, Bilardo, CM, Brezinka, C, Calvert, S, Derks, JB, Diemert, A, Duvekot, JJ, Ferrazzi, E, Frusca, T, Ganzevoort, W, Hecher, K, Martinelli, P, Ostermayer, E, Papageorghiou, AT, Schlembach, D, Schneider, KTM, Thilaganathan, B, Todros, T, Valcamonico, A, Visser, GHA, Wolf, H on behalf of the TRUFFLE Group. The Trial of Randomized Umbilical and Fetal Flow in Europe (TRUFFLE) study: Two year neurodevelopmental and intermediate perinatal outcomes. Lancet 2015;385:2162–72.Google Scholar
Figueras, F, Benavides, A, Del, Rio, M, Crispi, F, Eixarch, E, Martinez, JM, Hernandez-Andrade, E, Gratacós, E. Monitoring of fetuses with intrauterine growth restriction: Longitudinal changes in ductus venosus and aortic isthmus flow. Ultrasound Obstet Gynecol 2009;33:3943.Google Scholar
Arduini, D, Rizzo, G, Romanini, C. Changes of pulsatility index from fetal vessels preceding the onset of late decelerations in growth-retarded fetuses. Obstet Gynecol 1992;79:605–10.Google ScholarPubMed
Baschat, AA. Neurodevelopment following fetal growth restriction and its relationship with antepartum parameters of placental dysfunction. Ultrasound Obstet Gynecol 2011;37:501–14Google Scholar
Turan, OM, Turan, S, Gungor, S, Berg, C, Moyano, D, Gembruch, U, Nicolaides, KH, Harman, CR, Baschat, AA. Progression of Doppler abnormalities in intrauterine growth restriction. Ultrasound Obstet Gynecol 2008;32:160–7.Google Scholar
Odegård, RA, Vatten, LJ, Nilsen, ST, Salvesen, KA, Austgulen, R. Preeclampsia and fetal growth. Obstet Gynecol 2000;96:950–5.Google Scholar
Rasmussen, S, Irgens, LM. Fetal growth and body proportion in preeclampsia. Obstet Gynecol 2003; 101:575–83.Google Scholar
Allen, VM, Joseph, K, Murphy, KE, Magee, LA, Ohlsson, A. The effect of hypertensive disorders in pregnancy on small for gestational age and stillbirth: A population based study. BMC Pregnancy Childbirth 2004;4:17.Google Scholar
Khalil, A, Garcia-Mandujano, R, Maiz, N, Elkhaouli, M, Nicolaides, KH. Longitudinal changes in uterine artery Doppler and blood pressure and risk of pre-eclampsia. Ultrasound Obstet Gynecol 2014;43:541–7.Google Scholar
Royal College of Obstetricians and Gynaecologists. Hypertension in pregnancy: The management of hypertensive disorders during pregnancy. www.nice.org.uk/guidance/cg107 (accessed January 18, 2015).Google Scholar
American College of Obstetricians and Gynecologists. Task Force on Hypertension in Pregnancy. Hypertension in Pregnancy. www.acog.org/Womens-Health/Preeclampsia-and-Hypertension-in-Pregnancy (accessed January 18, 2015).Google Scholar
Brodszki, J, Morsing, E, Malcus, P, Thuring, A, Ley, D, Marsál, K. Early intervention in management of very preterm growth-restricted fetuses: 2-year outcome of infants delivered on fetal indication before 30 gestational weeks. Ultrasound Obstet Gynecol 2009; 34:288–96.Google Scholar
Royal College of Obstetricians and Gynaecologists. The Investigation and Management of the Small-for-Gestational-Age Fetus. Green-top Guideline No. 31. 2nd Edition. February 2013. Minor revisions January 2014. www.rcog.org.uk/globalassets/documents/guidelines/gtg_31.pdf (accessed January 18, 2015).Google Scholar
American College of Obstetricians and Gynecologists. ACOG Practice bulletin no. 134: Fetal growth restriction. Obstet Gynecol 2013;121:1122–33.Google Scholar
Torrance, HL, Derks, JB, Scherjon, SA, Wijnberger, LD, Visser, GH. Is antenatal steroid treatment effective in preterm IUGR fetuses? Acta Obstet Gynecol Scand 2009;88:1068–73.CrossRefGoogle ScholarPubMed

References

Hepburn, M, Rosenberg, K. An audit of the detection and management of small-for-gestational age babies. BJOG 1986;93(3):212–16.Google Scholar
Sharp, AN, Alfirevic, Z. First trimester screening can predict adverse pregnancy outcomes. Prenat Diagn 2014 Jul;34(7):660–7.CrossRefGoogle ScholarPubMed
Halscott, TL, Ramsey, PS, Reddy, UM. First trimester screening cannot predict adverse outcomes yet. Prenat Diagn 2014 Jul;34(7):668–76.Google Scholar
Backe, B, Nakling, J. Effectiveness of antenatal care: A population based study. BJOG 1993;100(8):727–32.CrossRefGoogle ScholarPubMed
Lindqvist, PG, Molin, J. Does antenatal identification of small-for-gestational age fetuses significantly improve their outcome? Ultrasound Obstet Gynecol 2005;25(3):258–64.Google Scholar
Gardosi, J, Madurasinghe, V, Williams, M, Malik, A, Francis, A. Maternal and fetal risk factors for stillbirth: Population based study. BMJ 2013;346:f108.Google Scholar
Richardus, JH, Graafmans, WC, Verloove-Vanhorick, SP, Mackenbach, JP, EuroNatal International Audit P, EuroNatal Working G. Differences in perinatal mortality and suboptimal care between 10 European regions: Results of an international audit. BJOG 2003;110(2):97105.Google Scholar
Cnossen, JS, Morris, RK, Ter Riet, G, Mol, BW, Van der Post, JA, Coomarasamy, A, et al. Use of uterine artery Doppler ultrasonography to predict pre-eclampsia and intrauterine growth restriction: A systematic review and bivariable meta-analysis. Cmaj 2008;178(6):701–11.CrossRefGoogle ScholarPubMed
Yu, CK, Khouri, O, Onwudiwe, N, Spiliopoulos, Y, Nicolaides, KH: Fetal Medicine Foundation Second-Trimester Screening Group. Prediction of pre-eclampsia by uterine artery Doppler imaging: Relationship to gestational age at delivery and small-for-gestational age. Ultrasound Obstet Gynecol 2008;31:310–13.Google Scholar
Kean, L, Liu, D. Antenatal care as a screening tool for the detection of small for gestational age babies in the low risk population. Journal of Obstetrics and Gynaecology 1996;16:7782.Google Scholar
Monier, I, Blondel, B, Ego, A, Kaminiski, M, Goffinet, F, Zeitlin, J. Poor effectiveness of antenatal detection of fetal growth restriction and consequences for obstetric management and neonatal outcomes: A French national study. BJOG 2015 Mar;122(4):518–27.CrossRefGoogle ScholarPubMed
Clausson, B, Gardosi, J, Francis, A, Cnattingius, S. Perinatal outcome in SGA births defined by customized versus population-based birthweight standards. BJOG 2001;108(8):830–4.Google Scholar
Moraitis, AA, Wood, AM, Fleming, M, Smith, GC. Birth weight percentile and the risk of term perinatal death. Obstet Gynecol 2014;124(2 Pt 1):274–83.CrossRefGoogle ScholarPubMed
Baschat, AA, Cosmi, E, Bilardo, CM, Wolf, H, Berg, C, Rigano, S, et al. Predictors of neonatal outcome in early-onset placental dysfunction. Obstet Gynecol 2007;109(2 Pt 1):253–61.Google Scholar
Trudell, AS, Cahill, AG, Tuuli, MG, Macones, GA, Odibo, AO. Risk of stillbirth after 37 weeks in pregnancies complicated by small-for-gestational-age fetuses. Am J Obstet Gynecol 2013;208(5):376 e1–7.Google Scholar
Savchev, S, Figueras, F, Cruz-Martinez, R, Illa, M, Botet, F, Gratacos, E. Estimated weight centile as a predictor of perinatal outcome in small-for-gestational-age pregnancies with normal fetal and maternal Doppler indices. Ultrasound Obstet Gynecol 2012;39(3):299303.Google Scholar
Clausson, B, Cnattingius, S, Axelsson, O. Preterm and term births of small for gestational age infants: A population-based study of risk factors among nulliparous women. Br J Obstet Gynaecol 1998;105(9):1011–17.Google Scholar
Souka, AP, Papastefanou, I, Pilalis, A, Michalitsi, V, Kassanos, D. Performance of third-trimester ultrasound for prediction of small-for-gestational-age neonates and evaluation of contingency screening policies. Ultrasound Obstet Gynecol 2012;39(5):535.Google Scholar
Bricker, L, Neilson, JP, Dowswell, T. Routine ultrasound in late pregnancy (after 24 weeks’ gestation). Cochrane Database Syst Rev 2008(4):CD001451.Google Scholar
Skrastad, RB, Eik-Nes, SH, Sviggum, O, Johansen, OJ, Salvesen, KA, Romundstad, PR, et al. A randomized controlled trial of third-trimester routine ultrasound in a non-selected population. Acta Obstet Gynecol Scand 2013;92(12):1353–60.Google Scholar
McKenna, D, Tharmaratnam, S, Mahsud, S, Bailie, C, Harper, A, Dornan, J. A randomized trial using ultrasound to identify the high-risk fetus in a low-risk population. Obstet Gynecol 2003;101(4):626–32.Google Scholar
Duff, GB. A randomized controlled trial in a hospital population of ultrasound measurement screening for the small for dates baby. Aust N Z J Obstet Gynaecol 1993;33(4):374–8.Google Scholar
Neilson, JP, Munjanja, SP, Whitfield, CR. Screening for small for dates fetuses: A controlled trial. BMJ (Clin Res Ed) 1984;289(6453):1179–82.Google Scholar
Roma, E.,Arnau, A.,Berdala, R., Bergos, C., Montesinos, J., Figueras, F. Ultrasound Obstet Gynecol 2015;46(4):391–7.Google Scholar
Stirnemann, JJ, Benoist, G, Salomon, LJ, Bernard, JP, Ville, Y. Optimal risk assessment of small-for-gestational-age fetuses using 31–34-week biometry in a low-risk population. Ultrasound Obstet Gynecol 2014 Mar;43(3):311–16. doi: 10.1002/uog.13288. Epub 2014 Feb 12. PubMed PMID: 24357451Google Scholar
Alfirevic, Z, Neilson, JP. Doppler ultrasonography in high-risk pregnancies: Systematic review with meta-analysis. Am J Obstet Gynecol 1995;172(5):1379–87.Google Scholar
Clausson, B, Gardosi, J, Francis, A, Cnattingius, S. Perinatal outcome in SGA births defined by customized versus population-based birthweight standards. BJOG 2001;108(8):830–4.Google Scholar
Trudell, AS, Cahill, AG, Tuuli, MG, Macones, GA, Odibo, AO. Risk of stillbirth after 37 weeks in pregnancies complicated by small-for-gestational-age fetuses. Am J Obstet Gynecol 2013;208(5):376e1–7.Google Scholar
Papageorghiou, AT, Ohuma, EO, Altman, DG, Todros, T, Cheikh, Ismail, L, Lambert, A, Jaffer, YA, Bertino, E, Gravett, MG, Purwar, M, Noble, JA, Pang, R, Victora, CG, Barros, FC, Carvalho, M, Salomon, LJ, Bhutta, ZA, Kennedy, SH, Villar, J; International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st). International standards for fetal growth based on serial ultrasound measurements: The Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project. Lancet 2014 Sep 6;384(9946):869–79.Google Scholar
Vasak, B, Koenen, SV, Koster, MP, Hukkelhoven, CW, Franx, A, Hanson, MA, Visser, GH. Human fetal growth is constrained below optimal for perinatal survival. Ultrasound Obstet Gynecol 2015 Feb;45(2):162–7.Google Scholar
Gardosi, J, Clausson, B, Francis, A. The value of customised centiles in assessing perinatal mortality risk associated with parity and maternal size. BJOG 2009 Sep;116(10):1356–63.Google Scholar
Kiserud, T, Johnsen, SL. Biometric assessment. Best Pract Res Clin Obstet Gynaecol 2009 Dec;23(6):819–31.Google Scholar
Chang, TC, Robson, SC, Spencer, JA, Gallivan, S. Prediction of perinatal morbidity at term in small fetuses: Comparison of fetal growth and Doppler ultrasound. Br J Obstet Gynaecol 1994;101(5):422–7.Google Scholar
Oros, D, Figueras, F, Cruz-Martinez, R, Meler, E, Munmany, M, Gratacos, E. Longitudinal changes in uterine, umbilical and fetal cerebral Doppler indices in late-onset small-for-gestational age fetuses. Ultrasound Obstet Gynecol 2011;37(2):191–5.Google Scholar
Parra-Saavedra, M, Crovetto, F, Triunfo, S, Savchev, S, Parra, G, Sanz, M, et al. Added value of umbilical vein flow as a predictor of perinatal outcome in term small-for-gestational-age fetuses. Ultrasound Obstet Gynecol 2013.Google Scholar
Parra-Saavedra, M, Crovetto, F, Triunfo, S, Savchev, S, Peguero, A, Nadal, A, Gratacós, E, Figueras, F. Association of Doppler parameters with placental signs of underperfusion in late-onset small-for-gestational-age pregnancies. Ultrasound Obstet Gynecol. 2014 Sep;44(3):330–7.Google Scholar
Morrow, RJ, Adamson, SL, Bull, SB, Ritchie, JW. Effect of placental embolization on the umbilical arterial velocity waveform in fetal sheep. Am J Obstet Gynecol 1989;161(4):1055–60.Google Scholar
Thompson, RS, Stevens, RJ. Mathematical model for interpretation of Doppler velocity waveform indices. Med Biol Eng Comput 1989;27(3):269–76.Google Scholar
Hershkovitz, R, Kingdom, JC, Geary, M, Rodeck, CH. Fetal cerebral blood flow redistribution in late gestation: Identification of compromise in small fetuses with normal umbilical artery Doppler. Ultrasound Obstet Gynecol 2000;15(3):209–12.Google Scholar
Severi, FM, Bocchi, C, Visentin, A, Falco, P, Cobellis, L, Florio, P, et al. Uterine and fetal cerebral Doppler predict the outcome of third-trimester small-for-gestational age fetuses with normal umbilical artery Doppler. Ultrasound Obstet Gynecol 2002;19(3):225–8.Google Scholar
Cruz-Martínez, R, Figueras, F, Hernandez-Andrade, E, Oros, D, Gratacos, E. Fetal brain Doppler to predict cesarean delivery for nonreassuring fetal status in term small-for-gestational-age fetuses. Obstet Gynecol 2011 Mar;117(3):618–26.Google Scholar
Morales-Roselló, J, Khalil, A, Morlando, M, Bhide, A, Papageorghiou, A, Thilaganathan, B. Poor neonatal acid-base status in term fetuses with low cerebroplacental ratio. Ultrasound Obstet Gynecol 2015 Feb;45(2):156–61.Google Scholar
Eixarch, E, Meler, E, Iraola, A, Illa, M, Crispi, F, Hernandez-Andrade, E, et al. Neurodevelopmental outcome in 2-year-old infants who were small-for-gestational age term fetuses with cerebral blood flow redistribution. Ultrasound Obstet Gynecol 2008;32(7):894–9.Google Scholar
Figueras, F, Cruz-Martinez, R, Sanz-Cortes, M, Arranz, A, Illa, M, Botet, F, Costas-Moragas, C, Gratacos, E. Neurobehavioral outcomes in preterm, growth-restricted infants with and without prenatal advanced signs of brain-sparing. Ultrasound Obstet Gynecol 2011 Sep;38(3):288–94.Google Scholar
Arbeille, P, Maulik, D, Fignon, A, Stale, H, Berson, M, Bodard, S, et al. Assessment of the fetal PO2 changes by cerebral and umbilical Doppler on lamb fetuses during acute hypoxia. Ultrasound Med Biol 1995;21(7):861–70.CrossRefGoogle ScholarPubMed
Gramellini, D, Folli, MC, Raboni, S, Vadora, E, Merialdi, A. Cerebral-umbilical Doppler ratio as a predictor of adverse perinatal outcome. Obstet Gynecol 1992;79(3):416–20.Google Scholar
Bahado-Singh, RO, Kovanci, E, Jeffres, A, Oz, U, Deren, O, Copel, J, et al. The Doppler cerebroplacental ratio and perinatal outcome in intrauterine growth restriction. Am J Obstet Gynecol 1999;180(3 Pt 1):750–6.Google Scholar
Ghosh, GS, Gudmundsson, S. Uterine and umbilical artery Doppler are comparable in predicting perinatal outcome of growth-restricted fetuses. BJOG 2009;116(3):424–30.Google Scholar
Vergani, P, Roncaglia, N, Andreotti, C, Arreghini, A, Teruzzi, M, Pezzullo, JC, et al. Prognostic value of uterine artery Doppler velocimetry in growth-restricted fetuses delivered near term. Am J Obstet Gynecol 2002;187(4):932–6.Google Scholar
Fratelli, N, Valcamonico, A, Prefumo, F, Pagani, G, Guarneri, T, Frusca, T. Effects of antenatal recognition and follow-up on perinatal outcomes in small-for-gestational age infants delivered after 36 weeks. Acta Obstet Gynecol Scand 92(2):223–9.Google Scholar
Figueras, F, Savchev, S, Triunfo, S, Crovetto, F, Gratacos, E. An integrated model with classification criteria to predict small-for-gestational fetuses at risk of adverse perinatal outcome. Ultrasound Obstet Gynecol 2014.Google Scholar
Aviram, R, T BS, Kidron, D. Placental aetiologies of foetal growth restriction: clinical and pathological differences. Early Hum Dev 2010;86(1):5963.Google Scholar
Lobmaier, SM, Figueras, F, Mercade, I, Perello, M, Peguero, A, Crovetto, F, Ortiz, JU, Crispi, F, Gratacós, E. Angiogenic factors vs Doppler surveillance in the prediction of adverse outcome among late-pregnancy small-for-gestational-age fetuses. Ultrasound Obstet Gynecol 2014 May;43(5):533–40.Google Scholar
Bakalis, S, Gallo, DM, Mendez, O, Poon, LC, Nicolaides, KH. Prediction of small-for-gestational-age neonates: Maternal biochemical markers at 30–34 weeks. Ultrasound Obstet Gynecol 2015.Google Scholar
Benton, SJ, Hu, Y, Xie, F, Kupfer, K, Lee, SW, Magee, LA, et al. Angiogenic factors as diagnostic tests for preeclampsia: A performance comparison between two commercial immunoassays. Am J Obstet Gynecol 2011;205(5):469 e1–8.Google Scholar
Triunfo, S, Lobmaier, S, Parra-Saavedra, M, Crovetto, F, Peguero, A, Nadal, A, et al. Angiogenic factors at diagnosis of late-onset small-for-gestational age and histological placental underperfusion. Placenta 2014;35(6):398403.Google Scholar
Hecher, K, Bilardo, CM, Stigter, RH, Ville, Y, Hackeloer, BJ, Kok, HJ, et al. Monitoring of fetuses with intrauterine growth restriction: A longitudinal study. Ultrasound Obstet Gynecol 2001;18(6):564–70.Google Scholar
Turan, OM, Turan, S, Gungor, S, Berg, C, Moyano, D, Gembruch, U, et al. Progression of Doppler abnormalities in intrauterine growth restriction. Ultrasound Obstet Gynecol 2008;32(2):160–7.Google Scholar
Lees, C, Marlow, N, Arabin, B, Bilardo, CM, Brezinka, C, Derks, JB, et al. Perinatal morbidity and mortality in early-onset fetal growth restriction: Cohort outcomes of the trial of randomized umbilical and fetal flow in Europe (TRUFFLE). Ultrasound Obstet Gynecol 2013;42(4):400–8.Google Scholar
Crovetto, F, Crispi, F, Scazzocchio, E, Mercade, I, Meler, E, Figueras, F, et al. First-trimester screening for early and late small-for-gestational-age neonates using maternGoogle Scholar
Savchev, S, Figueras, F, Sanz-Cortes, M, Cruz-Lemini, M, Triunfo, S, Botet, F, et al. Evaluation of an optimal gestational age cut-off for the definition of early- and late-onset fetal growth restriction. Fetal Diagn Ther 2014;36(2):99105.Google Scholar
McCowan, LM, Harding, JE, Roberts, AB, Barker, SE, Ford, C, Stewart, AW. A pilot randomized controlled trial of two regimens of fetal surveillance for small-for-gestational-age fetuses with normal results of umbilical artery Doppler velocimetry. Am J Obstet Gynecol 2000;182(1 Pt 1):81–6.Google Scholar
Boers, KE, Vijgen, SM, Bijlenga, D, Van der Post, JA, Bekedam, DJ, Kwee, A, et al. Induction versus expectant monitoring for intrauterine growth restriction at term: Randomised equivalence trial (DIGITAT). BMJ 2010;341:c7087.Google Scholar
Nabhan, AF, Abdelmoula, YA. Amniotic fluid index versus single deepest vertical pocket as a screening test for preventing adverse pregnancy outcome. Cochrane Database Syst Rev 2008(3):CD006593.Google Scholar
Chauhan, SP, Sanderson, M, Hendrix, NW, Magann, EF, Devoe, LD. Perinatal outcome and amniotic fluid index in the antepartum and intrapartum periods: A meta-analysis. Am J Obstet Gynecol 1999;181(6):1473–8.Google Scholar
Cruz-Martinez, R, Figueras, F, Hernandez-Andrade, E, Oros, D, Gratacos, E. Fetal brain Doppler to predict cesarean delivery for nonreassuring fetal status in term small-for-gestational-age fetuses. Obstet Gynecol 2011;117(3):618–26.Google Scholar
Boers, KE, Van Wyk, L, Van der Post, JA, Kwee, A, Van Pampus, MG, Spaanderdam, ME, et al. Neonatal morbidity after induction vs expectant monitoring in intrauterine growth restriction at term: A subanalysis of the DIGITAT RCT. Am J Obstet Gynecol 2012;206(4):344 e1–7.Google Scholar
Oros, D, Figueras, F, Cruz-Martinez, R, Padilla, N, Meler, E, Hernandez-Andrade, E, et al. Middle versus anterior cerebral artery Doppler for the prediction of perinatal outcome and neonatal neurobehavior in term small-for-gestational-age fetuses with normal umbilical artery Doppler. Ultrasound Obstet Gynecol 2010;35(4):456–61.Google Scholar
Arduini, D, Rizzo, G. Prediction of fetal outcome in small for gestational age fetuses: Comparison of Doppler measurements obtained from different fetal vessels. J Perinat Med 1992;20(1):2938.Google Scholar
Hecher, K, Spernol, R, Stettner, H, Szalay, S. Potential for diagnosing imminent risk to appropriate- and small-for-gestational-age fetuses by Doppler sonographic examination of umbilical and cerebral arterial blood flow. Ultrasound Obstet Gynecol 1992 Jul 1;2(4):266–71.Google Scholar
Roza, SJ, Steegers, EA, Verburg, BO, Jaddoe, VW, Moll, HA, Hofman, A, et al. What is spared by fetal brain-sparing? Fetal circulatory redistribution and behavioral problems in the general population. Am J Epidemiol 2008;168(10):1145–52.Google Scholar
Akolekar, R. Syngelaki, A, Gallo, DM, Poon, LC, Nicolaides, KH. Umbilical and fetal middle cerebral artery Doppler at 35–37 weeks’ gestation in the prediction of adverse perinatal outcome. Ultrasound Obstet Gynecol 2015 Jul;46(1):8292.Google Scholar
Figueroa-Diesel, H, Hernandez-Andrade, E, Acosta-Rojas, R, Cabero, L, Gratacos, E. Doppler changes in the main fetal brain arteries at different stages of hemodynamic adaptation in severe intrauterine growth restriction. Ultrasound Obstet Gynecol 2007;30(3):297302.Google Scholar
Llurba, E, Turan, O, Kasdaglis, T, Harman, CR, Baschat, AA. Emergence of late-onset placental dysfunction: Relationship to the change in uterine artery blood flow resistance between the first and third trimesters. Am J Perinatol 2013;30(6):505–12.Google Scholar
Cruz-Martinez, R, Savchev, S, Cruz-Lemini, M, Mendez, A, Gratacos, E, Figueras, F. Clinical utility of third trimester uterine artery Doppler in the prediction of brain hemodynamic deterioration and adverse perinatal outcome in small-for-gestational-age fetuses. Ultrasound Obstet Gynecol 2014.Google Scholar
Mifsud, W, Sebire, NJ. Placental pathology in early-onset and late-onset fetal growth restriction. Fetal Diagn Ther 2014;36(2):117–28.CrossRefGoogle ScholarPubMed
Apel-Sarid, L, Levy, A, Holcberg, G, Sheiner, E: Term and preterm (<34 and <37 weeks’ gestation) placental pathologies associated with fetal growth restriction. Arch Gynecol Obstet 2010;282:487–92.CrossRefGoogle ScholarPubMed
Cheema, R, Dubiel, M, Gudmundsson, S. Fetal brain sparing is strongly related to the degree of increased placental vascular impedance. J Perinat Med 2006;34(4):318–22.CrossRefGoogle Scholar
Jacobsson, B, Ahlin, K, Francis, A, Hagberg, G, Hagberg, H, Gardosi, J. Cerebral palsy and restricted growth status at birth: Population-based case-control study. BJOG 2008;115(10):1250–5.Google Scholar
Van Wyk, L, Boers, KE, Van der Post, JA, Van Pampus, MG, Van Wassenaer, AG, Van Baar, AL, et al. Effects on (neuro)developmental and behavioral outcome at 2 years of age of induced labor compared with expectant management in intrauterine growth-restricted infants: long-term outcomes of the DIGITAT trial. Am J Obstet Gynecol 2012;206(5):406e1–7.Google Scholar
Vijgen, SM, Boers, KE, Opmeer, BC, Bijlenga, D, Bekedam, DJ, Bloemenkamp, KW, de Boer, K, Bremer, HA, le Cessie, S, Delemarre, FM, Duvekot, JJ, Hasaart, TH, Kwee, A, Van Lith, JM, Van Meir, CA, Van Pampus, MG, Van der Post, JA, Rijken, M, Roumen, FJ, Van der Salm, PC, Spaanderman, ME, Willekes, C, Wijnen, EJ, Mol, BW, Scherjon, SA. Economic analysis comparing induction of labour and expectant management for intrauterine growth restriction at term (DIGITAT trial). Eur J Obstet Gynecol Reprod Biol 2013 Oct;170(2):358–63.Google Scholar
Scala, C, Bhide, A, Familiari, A, Pagani, G, Khalil, A, Papageorghiou, A, Thilaganathan, B. Number of episodes of reduced fetal movements at term: Association with adverse perinatal outcome. Am J Obstet Gynecol 2015 Jul 20. pii: S0002-9378(15)00751-6.Google Scholar
Pilliod, RA, Cheng, YW, Snowden, JM, Doss, AE, Caughey, AB. The risk of intrauterine fetal death in the small-for-gestational-age fetus. Am J Obstet Gynecol 2012;207(4):318e1–6.Google Scholar
Jozwiak, M, Ten Eikelder, M, Oude Rengerink, K, de Groot, C, Feitsma, H, Spaanderman, M, Van Pampus, M, de Leeuw, JW, Mol, BW, Bloemenkamp, K; PROBAAT Study Group. Foley catheter versus vaginal misoprostol: Randomized controlled trial (PROBAAT-M study) and systematic review and meta-analysis of literature. Am J Perinatol 2014 Feb;31(2):145–56.Google Scholar

References

Papageorghiou, AT, Leslie, K. Uterine artery Doppler in the prediction of adverse pregnancy outcome. Curr Opin Obstet Gynecol 2007;19(2):103–9.Google Scholar
Papageorghiou, AT, Yu, CK, Nicolaides, KH. The role of uterine artery Doppler in predicting adverse pregnancy outcome. Best Pract Res Clin Obstet Gynaecol 2004;18(3):383–96.Google Scholar
Ananth, CV, Vintzileos, AM. Maternal-fetal conditions necessitating a medical intervention resulting in preterm birth. Am J Obstet Gynecol 2006;195(6):1557–63.Google Scholar
Lee, MJ, Conner, EL, Charafeddine, L, Woods, JR, Jr., Del Priore, G. A critical birth weight and other determinants of survival for infants with severe intrauterine growth restriction. Ann N Y Acad Sci 2001;943:326–39.Google Scholar
Petersen, SG, Wong, SF, Urs, P, Gray, PH, Gardener, GJ. Early onset, severe fetal growth restriction with absent or reversed end-diastolic flow velocity waveform in the umbilical artery: Perinatal and long-term outcomes. Aust N Z J Obstet Gynaecol 2009;49(1):4551.Google Scholar
Batton, DG, DeWitte, DB, Espinosa, R, Swails, TL. The impact of fetal compromise on outcome at the border of viability. Am J Obstet Gynecol 1998;178(5):909–15.Google Scholar
Lees, CC, Marlow, N, Van Wassenaer-Leemhuis, A, Arabin, B, Bilardo, CM, Brezinka, C, et al. 2 year neurodevelopmental and intermediate perinatal outcomes in infants with very preterm fetal growth restriction (TRUFFLE): A randomised trial. Lancet 2015;385(9983):2162–72.Google Scholar
Baschat, AA, Cosmi, E, Bilardo, CM, Wolf, H, Berg, C, Rigano, S, et al. Predictors of neonatal outcome in early-onset placental dysfunction. Obstet Gynecol 2007;109(2 Pt 1):253–61.Google Scholar
Strauss, RS. Adult functional outcome of those born small for gestational age: Twenty-six-year follow-up of the 1970 British Birth Cohort. JAMA 2000;283(5):625–32.Google Scholar
Hediger, ML, Overpeck, MD, Maurer, KR, Kuczmarski, RJ, McGlynn, A, Davis, WW. Growth of infants and young children born small or large for gestational age: Findings from the Third National Health and Nutrition Examination Survey. Arch Pediatr Adolesc Med 1998;152(12):1225–31.Google Scholar
Lundgren, EM, Cnattingius, S, Jonsson, B, Tuvemo, T. Intellectual and psychological performance in males born small for gestational age with and without catch-up growth. Pediatr Res 2001;50(1):91–6.Google Scholar
Sung, IK, Vohr, B, Oh, W. Growth and neurodevelopmental outcome of very low birth weight infants with intrauterine growth retardation: Comparison with control subjects matched by birth weight and gestational age. J Pediatr 1993;123(4):618–24.Google Scholar
Stein, CE, Fall, CH, Kumaran, K, Osmond, C, Cox, V, Barker, DJ. Fetal growth and coronary heart disease in south India. Lancet 1996;348(9037):1269–73.Google Scholar
Bernstein, IM, Horbar, JD, Badger, GJ, Ohlsson, A, Golan, A. Morbidity and mortality among very-low-birth-weight neonates with intrauterine growth restriction. The Vermont Oxford Network. Am J Obstet Gynecol 2000;182(1 Pt 1):198206.Google Scholar
Van Wassenaer, AG, Westera, J, Van Schie, PE, Houtzager, BA, Cranendonk, A, De Groot, L, et al. Outcome at 4.5 years of children born after expectant management of early-onset hypertensive disorders of pregnancy. Am J Obstet Gynecol 2011;204(6):510 e1–9.Google Scholar
Lees, C, Marlow, N, Arabin, B, Bilardo, CM, Brezinka, C, Derks, JB, et al. Perinatal morbidity and mortality in early-onset fetal growth restriction: Cohort outcomes of the trial of randomized umbilical and fetal flow in Europe (TRUFFLE). Ultrasound Obstet Gynecol 2013;42(4):400–8.Google Scholar
Rep, A, Ganzevoort, W, Van Wassenaer, AG, Bonsel, GJ, Wolf, H, De Vries, JI. One-year infant outcome in women with early-onset hypertensive disorders of pregnancy. BJOG 2008;115(2):290–8.Google Scholar
Lawin-O’Brien, AR, Dall’Asta, A, Knight, C, Sankaran, S, Scala, C, Khalil, A, et al. Short-term outcome of periviable small-for-gestational-age babies: Is our counseling up to date? Ultrasound Obstet Gynecol 2016;48(5):636–41.Google Scholar
Zeitlin, J, El Ayoubi, M, Jarreau, PH, Draper, ES, Blondel, B, Kunzel, W, et al. Impact of fetal growth restriction on mortality and morbidity in a very preterm birth cohort. J Pediatr 2010;157(5):733–9 e1.Google Scholar
Morsing, E, Asard, M, Ley, D, Stjernqvist, K, Marsal, K. Cognitive function after intrauterine growth restriction and very preterm birth. Pediatrics 2011;127(4):e874–82.Google Scholar
Ganzevoort, W, Rep, A, Bonsel, GJ, De Vries, JI, Wolf, H, for the Pi. Dynamics and incidence patterns of maternal complications in early onset hypertension of pregnancy. BJOG 2007;114(6):741–50.Google Scholar
Visser, GHA, Bilardo, CM, Lees, C. Fetal growth restriction at the limits of viability. Fetal Diag Ther 2014; 36: 162–5.Google Scholar
Van Oostwaard, MF, Langenveld, J, Schuit, E, Papatsonis, DN, Brown, MA, Byaruhanga, RN, et al. Recurrence of hypertensive disorders of pregnancy: An individual patient data metaanalysis. Am J Obstet Gynecol 2015;212(5):624 e1–17.Google Scholar
Von Dadelszen, P, Dwinnell, S, Magee, LA, Carleton, BC, Gruslin, A, Lee, B, et al. Sildenafil citrate therapy for severe early-onset intrauterine growth restriction. BJOG 2011;118(5):624–8.Google Scholar
Ganzevoort, W, Alfirevic, Z, Von Dadelszen, P, Kenny, L, Papageorghiou, A, Van Wassenaer-Leemhuis, A, et al. STRIDER: Sildenafil Therapy In Dismal prognosis Early-onset intrauterine growth Restriction –a protocol for a systematic review with individual participant data and aggregate data meta-analysis and trial sequential analysis. Syst Rev 2014;3:23.Google Scholar
Rumbold, A, Duley, L, Crowther, CA, Haslam, RR. Antioxidants for preventing pre-eclampsia. Cochrane Database Syst Rev 2008(1):CD004227.Google Scholar
Alers, NO, Jenkin, G, Miller, SL, Wallace, EM. Antenatal melatonin as an antioxidant in human pregnancies complicated by fetal growth restriction – a phase I pilot clinical trial: Study protocol. BMJ Open 2013;3(12):e004141.Google Scholar
Cottrell, EC, Sibley, CP. From pre-clinical studies to clinical trials: Generation of novel therapies for pregnancy complications. Int J Mol Sci 2015;16(6):12907–24.Google Scholar
Man, J, Hutchinson, JC, Heazell, AE, Ashworth, M, Jeffrey, I, Sebire, NJ. Stillbirth and intrauterine fetal death: Role of routine histopathological placental findings to determine cause of death. Ultrasound Obstet Gynecol 2016.Google Scholar
Kupferminc, MJ, Many, A, Bar-Am, A, Lessing, JB, Ascher-Landsberg, J. Mid-trimester severe intrauterine growth restriction is associated with a high prevalence of thrombophilia. BJOG 2002;109(12):1373–6.Google Scholar
Brenner, B, Kupferminc, MJ. Inherited thrombophilia and poor pregnancy outcome. Best Pract Res Clin Obstet Gynaecol 2003;17(3):427–39.Google Scholar
Ganzevoort, W, Rep, A, De Vries, JI, Bonsel, GJ, Wolf, H, Investigators, P. Relationship between thrombophilic disorders and type of severe early-onset hypertensive disorder of pregnancy. Hypertens Pregnancy 2007;26(4):433–45.Google Scholar

References

Three decades of twin births in the USA, 1980–2009. NCHS Data Briefs 2012. www.cdc.gov/nchs/data/databriefs/db80.htmGoogle Scholar
Blickstein, I. Normal and abnormal growth of multiples. Semin Neonatol 2002;7:177–85.Google Scholar
Ananth, CV, Vintzileos, AM, Shen-Schwarz, S, Smulian, JC, Lai, Y-L. Standards of birth weight in twin gestations stratified by placental chorionicity. Obstet Gynecol 1998;91:917–24.Google Scholar
Stirrup, OT, Khalil, A, D’Antonio, F, Thilaganathan, B; Southwest Thames Obstetric Research Collaborative (STORK). Fetal growth reference ranges in twin pregnancy: Analysis of the Southwest Thames Obstetric Research Collaborative (STORK) multiple pregnancy cohort. Ultrasound Obstet Gynecol 2015;45:301–7.Google Scholar
Hamilton, EF, Platt, RW, Morin, L, Usher, R, Kramer, M. How small is too small in a twin pregnancy? Am J Obstet Gynecol 1998;179:682–5.Google Scholar
Breathnach, FM, McAuliffe, FM, Geary, M, Daly, S, Higgins, JR, Dornan, J, Morrison, JJ, Burke, G, Higgins, S, Dicker, P, Manning, F, Mahony, R, Malone, FD; Perinatal Ireland Research Consortium. Definition of intertwin birth weight discordance. Obstet Gynecol 2011;118:94103.Google Scholar
Khalil, AA, Khan, N, Bowe, S, Familiari, A, Papageorghiou, A, Bhide, A, Thilaganathan, B. Discordance in fetal biometry and Doppler are independent predictors of the risk of perinatal loss in twin pregnancies. Am J Obstet Gynecol 2015;213:222.e1222.e10.Google Scholar
Harper, LM, Weis, MA, Odibo, AO, et al. Significance of growth discordance in appropriately grown twins. Am J Obstet Gynecol 2013;208:393.e1–5.Google Scholar
Lewi, L, Devlieger, R, De Catte, L, Deprest, J. Growth discordance. Best Pract Res Clin Obstet Gynaecol 2014;28:295303.Google Scholar
Van Mieghem, T, Deprest, J, Klaritsch, P, Gucciardo, L, Done’, E, Verhaeghe, J, Lewi, L. Ultrasound prediction of intertwin birth weight discordance in monochorionic diamniotic twin pregnancies. Prenat Diagn 2009;29:240–4.Google Scholar
Victoria, A, Mora, G, Arias, F. Perinatal outcome, placental pathology, and severity of discordance in monochorionic and dichorionic twins. Obstet Gynecol 2001;97:310–15.Google Scholar
Hillman, S, Morris, R, Kilby, M. Co-twin prognosis after single fetal death: A systematic review and meta-analysis. Obstet Gynecol 2011;118(4):928–40.Google Scholar
Lewi, L, Blickstein, I, Van Schoubroeck, D, et al. Diagnosis and management of heterokaryotypic monochorionic twins. Am J Med Genet A 2006;140:272–5.Google Scholar
Weksberg, R, Shuman, C, Caluseriu, O, et al. Discordant KCNQ1OT1 imprinting in sets of monozygotic twins discordant for Beckwith-Wiedemann syndrome. Hum Mol Genet 2002;11:1317–25.Google Scholar
Slaghekke, F, Kist, W, Oepkes, D, Pasman, S, Middeldorp, J, Klumper, F, Lopriore, E et al. Twin anemia-polycythemia sequence: diagnostic criteria, classification, perinatal management and outcome. Fetal Diagn Ther 2010;27(4):181–90.Google Scholar
Lewi, L, Gucciardo, L, Van Mieghem, T, de Koninck, P, Beck, V, Medek, H, Van Schoubroeck, D, Devlieger, R, De Catte, L, Deprest, J. Monochorionic diamniotic twin pregnancies: Natural history and risk stratification. Fetal Diagn Ther 2010;27:121–33.Google Scholar
D’Antonio, F, Khalil, A, Pagani, G, Papageorghiou, AT, Bhide, A, Thilaganathan, B. Crown-rump length discordance and adverse perinatal outcome in twin pregnancies: Systematic review and meta-analysis. Ultrasound Obstet Gynecol 2014;44:138–46.Google Scholar
Lewi, L, Lewi, P, Diemert, A, Jani, J, Gucciardo, L, Van Mieghem, T, Doné, E, Gratacós, E, Huber, A, Hecher, K, Deprest, J. The role of ultrasound examination in the first trimester and at 16 weeks’ gestation to predict fetal complications in monochorionic diamniotic twin pregnancies. Am J Obstet Gynecol 2008;199:493.e1–7.Google Scholar
D’Antonio, F, Khalil, A, Mantovani, E, Thilaganathan, G. Embryonic growth discordance and early fetal loss: The STORK multiple pregnancy cohort and systematic review. Human Reprod 2013;28:2621–7.Google Scholar
Lewi, L, Gucciardo, L, Huber, A, Jani, J, Van Mieghem, T, Doné, E et al. Clinical outcome and placental characteristics of monochorionic diamniotic twin pairs with early- and late-onset discordant growth. Am J Obstet Gynecol 2008;199:511-e1.Google Scholar
Fick, A, Feldstein, V, Norton, M, Fyr, C, Caughey, A, Machin, G. Unequal placental sharing and birth weight discordance in monochorionic diamniotic twins. Am J Obstet Gynecol 2006;195:178–83.Google Scholar
Lewi, L, Cannie, M, Blickstein, I, Jani, J, Huber, A, Hecher, K et al. Placental sharing, birthweight discordance, and vascular anastomoses in monochorionic diamniotic twin placentas. Am J Obstet Gynecol 2007;197:587-e1.Google Scholar
Hack, K, Nikkels, P, Koopman-Esseboom, C, Derks, J, Elias, S, Van Gemert, M, Visser, G. Placental characteristics of monochorionic diamniotic twin pregnancies in relation to perinatal outcome. Placenta 2008;29:976–81.Google Scholar
Lopriore, E, Pasman, S, Klumper, F, Middeldorp, J, Walther, F, Oepkes, D. Placental characteristics in growth-discordant monochorionic twins: A matched case-control study. Placenta 2012;33:171–4.Google Scholar
De Paepe, M, Shapiro, S, Young, L, Luks, F. Placental characteristics of selective birth weight discordance in diamniotic-monochorionic twin gestations. Placenta 2010;31:380–6.Google Scholar
Kent, E, Breathnach, F, Gillan, J, McAuliffe, F, Geary, M, Daly, S et al. Placental cord insertion and birthweight discordance in twin pregnancies: Results of the national prospective ESPRiT Study. Am J Obstet Gynecol 2011;205:376-e1.Google Scholar
Machin, G. Velamentous cord insertion in monochorionic twin gestation. An added risk factor. J Reprod Med 1997;42:785–9.Google Scholar
Hanley, M, Ananth, C, Shen-Schwarz, S, Smulian, j, Lai, Y, Vintzileos, A. Placental cord insertion and birth weight discordancy in twin gestations. Obstet Gynecol 2002;99:477–82.Google Scholar
Matijevic, R, Ward, S, Bajoria, R. Non-invasive method of evaluation of trophoblast invasion of spiral arteries in monochorionic twins with discordant birthweight. Placenta 2002;23:93–9.Google Scholar
Yu, C, Papageorghiou, A, Boli, A, Cacho, A, Nicolaides, K. Screening for pre‐eclampsia and fetal growth restriction in twin pregnancies at 23 weeks of gestation by transvaginal uterine artery Doppler. Ultrasound Obstet Gynecol 2002;20:535–40.Google Scholar
Geipel, A, Berg, C, Germer, U, Katalinic, A, Krapp, M, Smrcek, J, Gembruch, U. Doppler assessment of the uterine circulation in the second trimester in twin pregnancies: Prediction of pre-eclampsia, fetal growth restriction and birth weight discordance. Ultrasound Obstet Gynecol 2002;20:541–5.Google Scholar
Geipel, A, Hennemann, F, Fimmers, R, Willruth, A, Lato, K, Gembruch, U, Berg, C. Reference ranges for Doppler assessment of uterine artery resistance and pulsatility indices in dichorionic twin pregnancies. Ultrasound Obstet Gynecol 2011;37:663–7.Google Scholar
Sebire, N. Routine uterine artery Doppler screening in twin pregnancies?. Ultrasound Obstet Gynecol 2002;20:532–4.Google Scholar
Gratacos, E, Lewi, L, Munoz, B, Acosta‐Rojas, R, Hernandez‐Andrade, E, Martinez, J et al. A classification system for selective intrauterine growth restriction in monochorionic pregnancies according to umbilical artery Doppler flow in the smaller twin. Ultrasound Obstet Gynecol 2007;30:2834.Google Scholar
Ishii, K, Murakoshi, T, Takahashi, Y, Shinno, T, Matsushita, M, Naruse, H et al. Perinatal outcome of monochorionic twins with selective intrauterine growth restriction and different types of umbilical artery Doppler under expectant management. Fetal Diagn Ther 2009;26:157–61.Google Scholar
Gratacós, E, Antolin, E, Lewi, L, Martínez, J, Hernandez‐Andrade, E, Acosta‐Rojas, R et al. Monochorionic twins with selective intrauterine growth restriction and intermittent absent or reversed end‐diastolic flow (Type III): Feasibility and perinatal outcome of fetoscopic placental laser coagulation. Ultrasound Obstet Gynecol 2008;31:669–75.Google Scholar
Gratacos, E, Ortiz, J, Martinez, J. A systematic approach to the differential diagnosis and management of the complications of monochorionic twin pregnancies. Fetal Diagn Ther 2012;32:145–55.Google Scholar
Quintero, R., Bornick, P, Morales, W, Allen, M. Selective photocoagulation of communicating vessels in the treatment of monochorionic twins with selective growth retardation. Am J Obstet Gynecol 2001;185:689–96.Google Scholar
Chalouhi, G, Marangoni, M, Quibel, T, Deloison, B, Benzina, N, Essaoui, M et al. Active management of selective intrauterine growth restriction with abnormal Doppler in monochorionic diamniotic twin pregnancies diagnosed in the second trimester of pregnancy. Prenat Diagn 2013;33:109–15.Google Scholar
Peeva, G, Bower, S, Orosz, L, Chaveeva, P, Akolekar, R, Nicolaides, K. Endoscopic placental laser coagulation in monochorionic diamniotic twins with type II selective fetal growth restriction. Fetal Diagn Ther 2015; 38:8693.Google Scholar
Parra, M, Bennasar, M, Martinez, J, Eixarch, E, Torres, X, Gratacos, E. Cord occlusion in monochorionic twins with early selective intra-uterine growth restriction and abnormal umbilical artery Doppler: A consecutive series of 90 cases. Fet Diagn Ther DOI: 10.1159/000439023Google Scholar
Ishii, K, Murakoshi, T, Hayashi, S, Saito, M, Sago, H, Takahashi, Y et al. Ultrasound predictors of mortality in monochorionic twins with selective intrauterine growth restriction. Ultrasound Obstet Gynecol 2011;37:22–6.Google Scholar
De Cassia Alam Machado, R, De Lourdes Brizot, M, Liao, A, Krebs, V, Zugaib, M. Early neonatal morbidity and mortality in growth‐discordant twins. Acta Obstet Gynecol Scand 2009;88:167–71.Google Scholar
Lopriore, E, Sluimers, C, Pasman, S, Middeldorp, J, Oepkes, D, Walther, F. Neonatal morbidity in growth-discordant monochorionic twins: Comparison between the larger and the smaller twin. Twin Res Hum Genet 2012;15:541–6.Google Scholar
Gratacos, E, Carreras, E, Becker, J, Lewi, L, Enriquez, G, Perapoch, J et al. Prevalence of neurological damage in monochorionic twins with selective intrauterine growth restriction and intermittent absent or reversed end‐diastolic umbilical artery flow. Ultrasound Obstet Gynecol 2004;24:159–63.Google Scholar
Inklaar, M, Klink, J, Stolk, T, Zwet, E, Oepkes, D, Lopriore, E. Cerebral injury in monochorionic twins with selective intrauterine growth restriction: A systematic review. Prenat Diagn 2014;34(3):205–13.Google Scholar
Muñoz‐Abellana, B, Hernandez‐Andrade, E, Figueroa‐Diesel, H, Ferrer, Q, Acosta‐Rojas, R, Cabero, L, Gratacos, E. Hypertrophic cardiomyopathy‐like changes in monochorionic twin pregnancies with selective intrauterine growth restriction and intermittent absent/reversed end‐diastolic flow in the umbilical artery. Ultrasound Obstet Gynecol 2007;30:977–82.Google Scholar
Helmerhorst, FM, Perquin, DA, Donker, D, Keirse, MJ. Perinatal outcome of singletons and twins after assisted conception: A systematic review of controlled studies. BMJ 2004;328:261.Google Scholar
Khalil, A, Khan, N, Bowe, S, Familiari, A, Papageorghiou, A, Bhide, A, Thilaganathan, B. Discordance in fetal biometry and Doppler are independent predictors of the risk of perinatal loss in twin pregnancies. Am J Obstet Gynecol 2015;213:222-e1.Google Scholar
Kingdom, J, Nevo, O, Murphy, K. Discordant growth in twins. Prenatal Diagn 2005;25:759–65.Google Scholar
Heyborne, K, Porreco, R. Selective fetocide reverses preeclampsia in discordant twins. Am J Obstet Gynecol 2004;191:477–80.Google Scholar
Haimovich, Y, Ascher-Landsberg, J, Azem, F, Mandel, D, Mimouni, F, Many, A. Neonatal outcome of preterm discordant twins. J Perinat Med 2011;39:317–22.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×