Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-29T05:59:44.212Z Has data issue: false hasContentIssue false

Part 2 - Commentaries

Published online by Cambridge University Press:  29 June 2018

Rasmus Grønfeldt Winther
Affiliation:
University of California
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Phylogenetic Inference, Selection Theory, and History of Science
Selected Papers of A. W. F. Edwards with Commentaries
, pp. 315 - 404
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Bodmer, W. F. 2015. Genetic characterization of human populations: from ABO to a genetic map of the British people. Genetics 199, 267279.CrossRefGoogle ScholarPubMed
Bodmer, W. F. and Edwards, A. W. F. 1960. Natural selection and the sex ratio. Annals of Human Genetics 24, 239244.CrossRefGoogle ScholarPubMed
Cavalli-Sforza, L. L. 1966. Population structure and human evolution. Proceedings of the Royal Society B 164, 362379.Google ScholarPubMed
Cavalli-Sforza, L. L. and Bodmer, W. F. 1971. The Genetics of Human Populations. San Francisco, CA: W. H. Freeman. (Reprinted 1999 in Dover publications)Google Scholar
Edwards, A. W. F. 1958. An analysis of Geissler’s data on the human sex ratio. Annals of Human Genetics 23, 615.CrossRefGoogle ScholarPubMed
Edwards, A. W. F. 1986. More on the too-good-to-be-true paradox and Gregor Mendel. Journal of Heredity 77, 138.CrossRefGoogle Scholar
Edwards, A. W. F. 1998. Natural selection and the sex ratio: Fisher’s sources. American Naturalist 151, 564569.CrossRefGoogle ScholarPubMed
Edwards, A.W. F. 2007. R. A. Fisher’s 1943 unravelling of the Rhesus blood-group system. Genetics 175, 471476.CrossRefGoogle Scholar
Edwards, A. W. F. 2008. G. H. Hardy (1908) and Hardy–Weinberg equilibrium. Genetics 179, 11431150.CrossRefGoogle Scholar
Fisher, R. A. 1930. The Genetical Theory of Natural Selection. Oxford: Clarendon Press.CrossRefGoogle Scholar
Fisher, R. A. 1936. Has Mendel’s work been rediscovered? Annals of Science 1, 115137.CrossRefGoogle Scholar
Hamilton, W. D. 1964. The genetical evolution of social behaviour, I. Journal of Theoretical Biology 7, 116.CrossRefGoogle ScholarPubMed
Lewontin, R. C. 1972. The apportionment of human diversity. Evolutionary Biology 6, 381.Google Scholar
Mourant, A. E., Kopec, A. and Domaniewska-Sobczak, K. 1954. The Distribution of the Human Blood Groups and Other Polymorphisms. Oxford: Oxford University Press.Google Scholar

References

Bryant, D., Bouckaert, R., Felsenstein, J., Rosenberg, N. A., and RoyChoudhury, A.. 2012. Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis. Molecular Biology and Evolution 29, 19171932.CrossRefGoogle Scholar
Camin, J. H. and Sokal, R. R.. 1965. A method for deducing branching sequences in phylogeny. Evolution 19, 311326.CrossRefGoogle Scholar
Felsenstein, J. 1968. Statistical Inference and the Estimation of Phylogenies. PhD Thesis, Department of Zoology, University of Chicago.Google Scholar
Felsenstein, J. 1973. Maximum likelihood estimation of evolutionary trees from continuous characters. American Journal of Human Genetics 25, 471492.Google ScholarPubMed
Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17, 368376.CrossRefGoogle ScholarPubMed
Felsenstein, J. 1982. Numerical methods for inferring evolutionary trees. Quarterly Review of Biology 57, 379404.CrossRefGoogle Scholar
Felsenstein, J. 1983. Statistical inference of phylogenies. Journal of the Royal Statistical Society. Series A (General) 146, 246272.CrossRefGoogle Scholar
Felsenstein, J. 2004. Inferring Phylogenies. Sunderland, MA: Sinauer Associates.Google Scholar
Fitch, W. M. and Margoliash, E.. 1967. Construction of phylogenetic trees. Science 155, 279284.CrossRefGoogle ScholarPubMed
Horne, S. L. 1967. Comparisons of primate catalase tryptic peptides and implications for the study of molecular evolution. Evolution 21, 771786.Google Scholar
Kashyap, R. L. and Subas, S.. 1974. Statistical estimation of parameters in a phylogenetic tree using a dynamic model of the substitutional process. Journal of Theoretical Biology 47, 75101.CrossRefGoogle Scholar
Neyman, J. 1971. Molecular studies of evolution: a source of novel statistical problems. In Statistical Decision Theory and Related Topics, eds. Gupta, S. S. and Yackel, J., New York: Academic Press, pp. 127.Google Scholar
Pickrell, J. K. and Pritchard, J. K.. 2012. Inference of population splits and mixtures from genome-wide gene frequency data. PLoS Genetics 8, e1002967.CrossRefGoogle Scholar
RoyChoudhury, A., Felsenstein, J., and Thompson, E. A.. 2008. A two-stage pruning algorithm for likelihood computation for a population tree. Genetics 180, 10951105.CrossRefGoogle ScholarPubMed
Saitou, N. and Nei, M.. 1987. The neighbor–joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406425.Google Scholar
Schröder, E. 1870. Vier combinatorishe Probleme. Zeitschrift für Mathematik und Physik 15, 361376.Google Scholar
Sokal, R. R. and Sneath, P. H. A.. 1963. Principles of Numerical Taxonomy. San Francisco, CA: W. H. Freeman.Google Scholar
Thompson, E. A., 1975. Human Evolutionary Trees. Cambridge: Cambridge University Press.Google Scholar
Wedderburn, J. H. M. 1922. The functional equation . Annals of Mathematics 24, 121140.CrossRefGoogle Scholar

References

Allman, E. S., Degnan, J. H., and Rhodes, J. A. 2010. Identifying the rooted species tree from the distribution of unrooted gene trees under the coalescent. Journal of Mathematical Biology 62, 833862.CrossRefGoogle ScholarPubMed
Avise, J. 2000. Phylogeography: The History and Formation of Species. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Bradburd, G. S., Ralph, P. L., and Coop, G. M. 2013. Disentangling the effects of geographic and ecological isolation on genetic differentiation. Evolution 67, 32583273.CrossRefGoogle ScholarPubMed
Brower, A. V. Z. 2000. Evolution is not a necessary assumption of cladistics. Cladistics 16, 143154.CrossRefGoogle Scholar
Coop, G., Witonsky, D., Rienzo, A. D., and Pritchard, J. K. 2010. Using environmental correlations to identify loci underlying local adaptation. Genetics 185, 14111423.CrossRefGoogle ScholarPubMed
Edwards, S. V. and Beerli, P. 2000. Perspective: Gene divergence, population divergence, and the variance in coalescence time in phylogeography studies. Evolution 54, 18391854.Google Scholar
Ereshefsky, M. 2001. The Poverty of the Linnaean Hierarchy: A Philosophical Study of Biological Taxonomy. Cambridge: Cambridge University Press.Google Scholar
Farris, J. S. 1983. The logical basis of phylogenetic analysis. In Platnick, N. I. and Funk, V. A., Advances in Cladistics, New York: Columbia University Press, volume 2, 736.Google Scholar
Felsenstein, J. 1973. Maximum-likelihood estimation of evolutionary trees from continuous characters. American Journal of Human Genetics 25, 471492.Google ScholarPubMed
Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17, 368376.CrossRefGoogle ScholarPubMed
Felsenstein, J. 1985. Phylogenies from gene frequencies: a statistical problem. Systematic Biology 34, 300311.CrossRefGoogle Scholar
Heled, J. and Drummond, A. J. 2010. Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution 27, 570580.CrossRefGoogle ScholarPubMed
Hudson, R. R. 1983. Properties of a neutral allele model with intragenic recombination. Theoretical Population Biology 23, 183201.CrossRefGoogle ScholarPubMed
Kingman, J. F. C. 1982. The coalescent. Stochastic Processes and their Applications 13, 235248.CrossRefGoogle Scholar
Lande, R. 1975. The maintenance of genetic variability of mutation in a polygenic character with linked loci. Genetical Research 26, 221235.CrossRefGoogle Scholar
Larget, B. R., Kotha, S. K., Dewey, C. N., and Ané, C. 2010. BUCKy: gene tree/species tree reconciliation with the Bayesian concordance analysis. Bioinformatics 26, 29102911.CrossRefGoogle ScholarPubMed
Liu, L., Yiu, L., Kubatko, L., Pearl, D. K., and Edwards, S. V. 2009. Coalescent methods for estimating phylogenetic trees. Molecular Phylogenetics and Evolution 53, 320328.CrossRefGoogle ScholarPubMed
Maddison, W. P. and Knowles, L. L. 2005. Inferring phylogeny despite incomplete lineage sorting. Systematic Biology 55, 2130.CrossRefGoogle Scholar
Mirarab, S. Bayzid, S., Boussau, B., and Warnow, T.. 2014a. Statistical binning enables an accurate coalescent-based estimation of the avian tree. Science 346, doi: 10.1126/science.1250463.CrossRefGoogle ScholarPubMed
Mirarab, S., Reaz, R., Bayzid, Md. S., Zimmerman, T., Swenson, M. S., and Warnow, T.. 2014b. ASTRAL: genome-scale coalescent-based species tree estimation. Bioinformatics 30, i541i548.CrossRefGoogle ScholarPubMed
Nielsen, R. and Beaumont, M. A.. 2009. Statistical inferences in phylogeography. Molecular Ecology 18, 10341047.CrossRefGoogle ScholarPubMed
Pamilo, P. and Nei, M. 1988. Relationships between gene trees and species trees. Molecular Biology and Evolution 5, 568583.Google ScholarPubMed
Pickrell, J. K. and Pritchard, J. K.. 2012. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genetics 8, e1002967.CrossRefGoogle ScholarPubMed
Provine, W. B. 1971. The Origins of Theoretical Population Genetics. Chicago, IL: University of Chicago Press.Google Scholar
Templeton, A. R. 2004. Statistical phylogeography: methods of evaluating and minimizing inference errors. Molecular Ecology 13, 789809.CrossRefGoogle ScholarPubMed
Thompson, E. A. 1975. Human Evolutionary Trees. Cambridge: Cambridge University Press.Google Scholar
Wright, S. 1968. Evolution and the Genetics of Populations, Volume 1: Genetic and Biometric Foundations. Chicago, IL: University of Chicago Press.Google Scholar

References

Edwards, A. W. F. 1972. Likelihood. Cambridge: Cambridge University Press.Google Scholar
Felsenstein, J. 1985. Phylogenies and the comparative method. American Naturalist 125, 115.CrossRefGoogle Scholar
Felsenstein, J. 2004. Inferring Phylogenies. Sunderland, MA: Sinauer Associates.Google Scholar
Harvey, P. H. and Pagel, M. D. 1991. The Comparative Method in Evolutionary Biology. Oxford: Oxford University Press.CrossRefGoogle Scholar
Lynch, M. 1991. Methods for the analysis of comnparative data in evolutionary biology. Evolution 45, 10651080.CrossRefGoogle Scholar
Mullis, K. B. and Faloona, F. A. 1987. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods in Enzymology 155, 335350.CrossRefGoogle Scholar
Pagel, M. 1994. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proceedings of the Royal Society B 255, 3745.Google Scholar
Pagel, M. 1999a Inferring the historical patterns of biological evolution. Nature 401, 877884.CrossRefGoogle ScholarPubMed
Pagel, M. 1999b. The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Systematic Biology 48, 612622.CrossRefGoogle Scholar
Pagel, M. 2000. Maximum likelihood models for glottochronology and for reconstructing linguistic phylogenies. In Time-Depth in Historical Linguistics, eds. Renfrew, C., MacMahon, A., Trask, L., Cambridge: The McDonald Institute of Archaeology, 189207.Google Scholar

References

Boos, D. D. Stefanski, L. A. 2011. p-Value precision and reproducibility. American Statistician 65, 213221.CrossRefGoogle ScholarPubMed
Cotterman, C. W. 1940. A Calculus for Statistico-Genetics. PhD thesis, Ohio State University. Published in Genetics and Social Structure, ed. Ballonoff, P. A., New York: Academic Press, 1974.Google Scholar
Dempster, A. P., Laird, N. M., and Rubin, D. B. 1977. Maximum likelihood from incomplete data via the EM algorithm (with Discussion). Journal of the Royal Statistical Society B 39, 137.Google Scholar
Gelfand, A. E. and Smith, A. F. M. 1990. Sampling based approaches to calculating marginal densities. Journal of the American Statistical Association 46, 193227.Google Scholar
Leslie, S., Donnelly, P., Bodmer, W., et al. 2015. The fine-scale genetic structure of the British population. Nature 519, 309314.CrossRefGoogle ScholarPubMed
Rosenberg, N. A., Pritchard, J. K., Weber, J. L., et al. 2002. Genetic structure of human populations. Science 298, 23812385.CrossRefGoogle ScholarPubMed
Thompson, E. A. 1975. Human Evolutionary Trees. Cambridge: Cambridge University Press.Google Scholar
Thompson, E. A. 2014. A journey with statistical genetics. In COPSS 50th Anniversary Volume: Past, Present and Future of Statistical Science, Boca Raton, FL: CRC Press, pp. 307316.Google Scholar

References

Chen, M.-H., Kuo, L., and Lewis, P. 2014. Bayesian Phylogenetics: Methods, Algorithms, and Applications. London: Chapman & Hall/CRC.CrossRefGoogle Scholar
Drummond, A. J. and Rambaut, A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214.CrossRefGoogle ScholarPubMed
Edwards, A. W. F. 1972. Likelihood. Cambridge: Cambridge University Press.Google Scholar
Edwards, A. W. F. 2004. Comment on Bellhouse, David R. ‘The Reverend Thomas Bayes FRS: a biography to celebrate the tercentenary of his birth’. Statistical Science 19, 3437.Google Scholar
Felsenstein, J. 1973a. Maximum-likelihood estimation of evolutionary trees from continuous characters. American Journal of Human Genetics 25, 471492.Google ScholarPubMed
Felsenstein, J. 1973b. Maximum likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. Systematic Zoology 22, 240249.CrossRefGoogle Scholar
Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17, 368376.CrossRefGoogle ScholarPubMed
Felsenstein, J. 2004. Inferring Phylogenies. Sunderland, MA. Sinauer Associates.Google Scholar
Felsenstein, J. and Kishino, H. 1993. Is there something wrong with the bootstrap on phylogenies? A reply to Hillis and Bull. Systematic Biology 42, 193200.CrossRefGoogle Scholar
Fienberg, S. E. 2006. When did Bayesian inference become “Bayesian”? Bayesian Analysis 1, 140.CrossRefGoogle Scholar
Guindon, S. and Gascuel, O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52, 696704.CrossRefGoogle ScholarPubMed
Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and their application. Biometrika 57, 97109.CrossRefGoogle Scholar
Hillis, D. M. and Bull, J. J. 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42, 182192.CrossRefGoogle Scholar
Horai, S., Satta, Y., Hayasaka, K., et al. 1992. Man’s place in Hominoidea revealed by mitochondrial DNA genealogy [Erratum J Mol Evol 1993; 37:89]. Journal of Molecular Evolution 35, 3243.CrossRefGoogle ScholarPubMed
Huelsenbeck, J. P. and Ronquist, F. 2001. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754755.CrossRefGoogle ScholarPubMed
Kendall, D. G. 1948. On the generalized birth-and-death process. Annals of Mathematical Statistics 19, 115.CrossRefGoogle Scholar
Kingman, J. F. C. 1982. The coalescent. Stochastic Processes and their Applications 13, 235248.CrossRefGoogle Scholar
Kishino, H. and Hasegawa, M. 1989. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. Journal of Molecular Evolution 29, 170179.Google Scholar
Lartillot, N. and Poujol, R. 2011. A phylogenetic model for investigating correlated evolution of substitution rates and continuous phenotypic characters. Molecular Biology and Evolution 28, 729744.CrossRefGoogle ScholarPubMed
Lartillot, N., Lepage, T., and Blanquart, S. 2009. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25, 22862288.CrossRefGoogle ScholarPubMed
Lewis, P. O., Holder, M. T., and Holsinger, K. E. 2005. Polytomies and Bayesian phylogenetic inference. Systematic Biology 54, 241253.CrossRefGoogle ScholarPubMed
Li, S., Pearl, D., and Doss, H. 2000. Phylogenetic tree reconstruction using Markov chain Monte Carlo. Journal of the American Statistical Association 95, 493508.CrossRefGoogle Scholar
Mau, B. and Newton, M. A. 1997. Phylogenetic inference for binary data on dendrograms using Markov chain Monte Carlo. Journal of Computational and Graphical Statistics 6, 122131.Google Scholar
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. 1953. Equations of state calculations by fast computing machines. Journal of Chemical Physics 21, 10871092.CrossRefGoogle Scholar
Neyman, J. 1971. Molecular studies of evolution: a source of novel statistical problems. In Statistical Decision Theory and Related Topics, eds. Gupta, S. S. and Yackel, J., New York: Academic Press, 127.Google Scholar
Rannala, B. and Yang, Z. 1996. Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. Journal of Molecular Evolution 43, 304311.Google Scholar
Ronquist, F., Teslenko, M., van der Mark, P., et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539542.CrossRefGoogle ScholarPubMed
Smouse, P. E. and Li, W.-H. 1987. Likelihood analysis of mitochondrial restriction-cleavage patterns for the human-chimpanzee-gorilla trichotomy. Evolution 41, 11621176.CrossRefGoogle ScholarPubMed
Solis-Lemus, C., Knowles, L. L. and Ane, C. 2015. Bayesian species delimitation combining multiple genes and traits in a unified framework. Evolution 69, 492507.CrossRefGoogle Scholar
Stadler, T. 2010. Sampling-through-time in birth-death trees. Journal of Theoretical Biology 267, 396404.CrossRefGoogle ScholarPubMed
Stamatakis, A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 26882690.CrossRefGoogle ScholarPubMed
Swofford, D. L., Olsen, G. J., Waddell, P. J., and Hillis, D. M. 1996. In Molecular Systematics, eds. Hillis, D. M., Moritz, C., and Mable, B. K., Sunderland, MA: Sinauer Associates, 407514.Google Scholar
Thompson, E. A. 1975. Human Evolutionary Trees. Cambridge: Cambridge University Press.Google Scholar
Yang, Z. 1997. How often do wrong models produce better phylogenies? Molecular Biology and Evolution 14, 105108.CrossRefGoogle ScholarPubMed
Yang, Z. 2007. Fair-balance paradox, star-tree paradox and Bayesian phylogenetics. Molecular Biology and Evolution 24, 16391655.Google Scholar
Yang, Z. 2014. Molecular Evolution: A Statistical Approach. Oxford: Oxford University Press.Google Scholar
Yang, Z. 2016. In Encyclopedia of Evolutionary Biology, ed. Kliman, R. M., New York: Elsevier, 137140,Google Scholar
Yang, Z. and Roberts, D. 1995. On the use of nucleic acid sequences to infer early branchings in the tree of life. Molecular Biology and Evolution 12, 451458.Google Scholar
Yang, Z. and Rannala, B. 1997. Bayesian phylogenetic inference using DNA sequences: a Markov chain Monte Carlo Method. Molecular Biology and Evolution 14, 717724.CrossRefGoogle ScholarPubMed
Yang, Z. and Rannala, B. 2005. Branch-length prior influences Bayesian posterior probability of phylogeny. Systematic Biology 54, 455470.CrossRefGoogle ScholarPubMed
Yang, Z. and Zhu, T. 2018. Bayesian selection of misspecified models is overconfident and may cause spurious posterior probabilities for phylogenetic trees. Proceedings of the National Academy of Sciences of the USA 115, 18541859.CrossRefGoogle ScholarPubMed
Zharkikh, A. and Li, W.-H. 1992. Statistical properties of bootstrap estimation of phylogenetic variability from nucleotide sequences. I. Four taxa with a molecular clock. Molecular Biology and Evolution 9, 11191147.Google ScholarPubMed
Zwickl, D. J. and Holder, M. T. 2004. Model parameterization, prior distributions, and the general time-reversible model in Bayesian phylogenetics. Systematic Biology 53, 877888.CrossRefGoogle ScholarPubMed

References

Box, J. F. 1978. R. A. Fisher: The Life of a Scientist. New York: Wiley.Google Scholar
Charlesworth, B. 1970. Selection in populations with overlapping generations. I. The use of Malthusian parameters in population genetics. Theoretical Population Biology 1, 352370.CrossRefGoogle ScholarPubMed
Denniston, C. 1978. An incorrect definition of fitness revisited. Annals of Human Genetics 42, 7785.CrossRefGoogle ScholarPubMed
Ewens, W. J. 2004. Mathematical Population Genetics. New York: Springer.Google Scholar
Fisher, R. A. 1930. The Genetical Theory of Natural Selection. Oxford: Clarendon Press.CrossRefGoogle Scholar
Fisher, R. A. 1958. The Genetical Theory of Natural Selection, 2nd edition. New York: Dover.Google Scholar
Kimura, M. 1957. Some problems of stochastic processes in population genetics. Annals of Mathematical Statistics 28, 882901.CrossRefGoogle Scholar
Watterson, G. A. 1975. On the number of segregating sites in genetic models without recombination. Theoretical Population Biology 7, 256276.CrossRefGoogle ScholarPubMed
Winther, R. G. 2000. Darwin on variation and heredity. Journal of the History of Biology 33, 425455.CrossRefGoogle Scholar
Winther, R. G., Giordano, R., Edge, M. D., and Nielsen, R. 2015. The mind, the lab and the field: three kinds of populations in scientific practice. Studies in History and Philosophy of Science Part C: Studies in the History and Philosophy of Biological and Biomedical Sciences 52, 1221.CrossRefGoogle ScholarPubMed

References

Bennett, J. H. 1956. Population genetics and natural selection. Genetics 28, 297307.Google ScholarPubMed
Edwards, A. W. F. 1990. Fisher, and the fundamental theorem. Theoretical Population Biology 38, 276284.Google Scholar
Edwards, A. W. F. 2000. Foundations of Mathematical Genetics, 2nd edition. Cambridge: Cambridge University Press.Google Scholar
Edwards, A. W. F. 2002. The Fundamental Theorem of Natural Selection. Theoretical Population Biology 61, 335337.Google Scholar
Ewens, W. 1989. An interpretation and proof of the Fundamental Theorem of Natural Selection. Theoretical Population Biology 36, 167180.CrossRefGoogle ScholarPubMed
Fisher, R. A. 1930. The Genetical Theory of Natural Selection. Oxford: Clarendon Press.Google Scholar
Fisher, R. A. 1941. Average excess and average effect of a gene substitution. Annals of Eugenics 11, 5363.Google Scholar
Gardner, A. 2009. Adaptation as organism design. Biology Letters 5, 861864.Google Scholar
Gayon, J. 1992. Darwin et l‘après-Darwin. Une histoire de l’Hypothèse de sélection naturelle. Paris: Kimé.Google Scholar
Grafen, A. 2003. Fisher the evolutionary biologist. The Statistician 52, 319329.CrossRefGoogle Scholar
Hamilton, W. D. 1967. Extraordinary sex ratios. Science 156, 477488.CrossRefGoogle ScholarPubMed
Hodge, M. J. S. 1992. Biology and philosophy (including ideology): a study of Fisher and Wright. In The Founders of Evolutionary Genetics: A Centenary Reappraisal, ed. Sarkar, S., Dordrecht: Kluwer Academic Press, 231293.CrossRefGoogle Scholar
Karlin, S. 1975. General two-locus selection models: some objectives, results and interpretations. Theoretical Population Biology 7, 364398.CrossRefGoogle ScholarPubMed
Kimura, M. 1958. On the change of population fitness by natural selection. Heredity 12, 145167.Google Scholar
Lewontin, R. C. and Kojima, K. I. 1960. The evolutionary dynamics of complex polymorphisms. Evolution 14, 458472.Google Scholar
Maynard Smith, J. 1985. In Haldane‘s footsteps. In Studying Animal Behavior: Autobiographies of the Founders, ed. Dewsbury, D., Chicago: University of Chicago Press, 347354.Google Scholar
Mitchison, A. 2003. Jim’s cool reception among the British geneticists. In Inspiring Science: Jim Watson and the Age of DNA, eds. Inglis, J. R., Sambrook, J., and Witkowski, J. A., New York: Cold Spring Harbor Laboratory, 4953.Google Scholar
O’Donald, P. 1980. Genetic Models of Sexual Selection. Cambridge: Cambridge University Press.Google Scholar
Price, G. 1972. Fisher’s ‘fundamental theorem’ made clear. Annals of Human Genetics 36, 129140.Google Scholar
Rice, S. H. 2004. Evolutionary Theory. Sunderland, MA: Sinauer Associates.Google Scholar

References

Bennett, J. H. 1983. Natural Selection, Heredity, and Eugenics. Oxford: Clarendon Press.Google Scholar
Bennett, J. H. 1971–4, Collected Papers of R. A. Fisher. 5 volumes, Adelaide: University of Adelaide.Google Scholar
Crow, J. F. 1990. R. A. Fisher, a centennial view. Genetics 124, 207211.CrossRefGoogle Scholar
Danchin, E., Charmantier, A., Champagne, F., et al. 2011. Beyond DNA: integrating inclusive inheritance into an extended theory of evolution. Nature Reviews Genetics 12, 475486.Google Scholar
Edwards, A. W. F. 2000. The Genetical Theory of Natural Selection. Genetics 154, 14191426.CrossRefGoogle ScholarPubMed
Esposito, M. 2016. From human science to biology. The second synthesis of Ronald Fisher. History of the Human Science 29, 4462.CrossRefGoogle Scholar
Fisher, A. R. 1930. The Genetical Theory of Natural Selection. Oxford: Clarendon Press.CrossRefGoogle Scholar
Gayon, J. 2014. Population genetics, economic theory, and eugenics in R. A. Fisher. In Evolutionary Biology: Conceptual, Ethical, and Religious Issues, eds. Thompson, P., and Walsh, D., Cambridge: Cambridge University Press, 137150.CrossRefGoogle Scholar
Gould, S. J. 1996. The smoking gun of eugenics. In Dinosaur in a Haystack: Reflections in Natural History, ed. Gould, S. J., London: Cape, 296308.Google Scholar
Grafen, A. 2003. Fisher the evolutionary biologist. The Statistician 52, 319329.Google Scholar
Haldane, J. B. S. 1931. Mathematical Darwinism, a discussion of the Genetical Theory of Natural Selection. Eugenics Review 23, 1.Google ScholarPubMed
Hodge, J. S. 1992. Biology and philosophy (including ideology): a study of Fisher and Wright. in The Founders of Evolutionary Genetics: a Reappraisal, ed. Sarkar, S., Dordrecht: Kluwer Academic Publishers.Google Scholar
Jablonka, E. and Lamb, M. 2005. Evolution in Four Dimensions: Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life. Cambridge MA: MIT Press.Google Scholar
Mackenzie, D. A. 1981. Statistics in Britain, 1865–1930. Edinburgh: Edinburgh University Press.Google Scholar
Moore, J. 2007. R. A. Fisher: a faith fit for eugenics. Studies in History and Philosophy of Biological and Biomedical Sciences 38, 110135.Google Scholar
Norton, B. 1978. Fisher and the Neo-Darwinian synthesis. In Human Implications of Scientific Advance, Proceedings XV International Congress of the History of Science, ed. Forbes, E. G., Edinburgh: Edinburgh University Press, 481494.Google Scholar
Punnett, R. 1930. A review of ‘The Genetical Theory of Natural Selection’. Nature 126, 595597.Google Scholar
Ruse, M. 1996. Monad to Man: The Concept of Progress in Evolutionary Biology. Cambridge, MA: HUP.Google Scholar
Wright, S. 1930. The Genetical Theory of Natural Selection: A review. The Journal of Heredity 21, 349356.CrossRefGoogle Scholar

References

Bennett, J. H., ed. 1983. Natural Selection, Heredity, and Eugenics: Including Selected Correspondence of R. A. Fisher with Leonard Darwin and Others. Oxford: Clarendon Press.Google Scholar
Bodmer, W. 2009. Sam Karlin: A personal appreciation. Theoretical Population Biology 75, 230232.Google Scholar
Bodmer, W. F. and Edwards, A. W. F. 1960. Natural selection and the sex ratio. Annals of Human Genetics 24, 239244.Google Scholar
Bull, J. J. and Charnov, E. 1988. How fundamental are Fisherian sex ratios? Oxford Surveys in Evolutionary Biology 5, 96135.Google Scholar
De Winter, W. 1997. The beanbag genetics controversy: Towards a synthesis of opposing views of natural selection. Biology and Philosophy 12, 149184.CrossRefGoogle Scholar
Edwards, A. W. F. 1974. On Kimura’s maximum principle in the genetical theory of natural selection. Advances in Applied Probability 6, 1013.Google Scholar
Edwards, A. W. F. 1977. Foundations of Mathematical Genetics. Cambridge: Cambridge University Press.Google Scholar
Edwards, A. W. F. 1987. Evolution and optimization. Nature 326, 10.Google Scholar
Edwards, A. W. F. 1990. Fisher, , and the fundamental theorem. Theoretical Population Biology 38, 276284.Google Scholar
Edwards, A. W. F. 1995. Fiducial inference and the Fundamental Theorem of Natural Selection. Biometrics 51, 799809.Google Scholar
Felsenstein, J. 1986. Evolution in the twentieth century. Nature 324, 175176.CrossRefGoogle Scholar
Fincham, J. R. S. and John, B. 1995. David Guthrie Catcheside. 31 May 1907–1 June 1994. Biographical Memoirs of Fellows of the Royal Society 41, 119134.Google Scholar
Fisher, R. A. 1930. The Genetical Theory of Natural Selection. Oxford: Clarendon Press.Google Scholar
Fisher, R. A. 1932. The evolutionary modification of genetic phenomena. In Proceedings of the Sixth International Congress of Genetics, 1932, Ithaca, New York, Volume 1, ed. Jones, D. F. New York: Brooklyn Botanic Garden, 165172.Google Scholar
Fisher, R. A. 1941. Average excess and average effect of a gene substitution. Annals of Eugenics 11, 5363.Google Scholar
Fisher, R. A. 1953. Croonian Lecture: Population genetics. Proceedings of the Royal Society of London. Series B, Biological Sciences 141, 510523.Google Scholar
Fisher, R. A. 1958. The Genetical Theory of Natural Selection, 2nd edition. New York: Dover.Google Scholar
Fisher Box, J. 1978. R. A. Fisher: The Life of a Scientist. New York: Wiley.Google Scholar
Grafen, A. 2015. Biological fitness and the Fundamental Theorem of Natural Selection. The American Naturalist 186, 114.Google Scholar
Hamilton, W. D. 1967. Extraordinary sex ratios. Science 156, 477488.Google Scholar
Hodge, M. J. S. 1992. Biology and philosophy (including ideology): a study of Fisher and Wright. In The Founders of Evolutionary Genetics: A Centenary Reappraisal, ed. Sarkar, S., Dordrecht: Kluwer Academic Press, 231293.CrossRefGoogle Scholar
Karlin, S. 1975. General two-locus selection models: some objectives, results and interpretations. Theoretical Population Biology 7, 364398.Google Scholar
Kimura, M. 1958. On the change of population fitness by natural selection. Heredity 12, 145167.Google Scholar
Lewontin, R. C. and Kojima, K. I. 1960. The evolutionary dynamics of complex polymorphisms. Evolution 14, 458472.Google Scholar
Mitchison, A. 2003. Jim’s cool reception among the British geneticists. In Inspiring Science: Jim Watson and the Age of DNA, eds. Inglis, J. R. Sambrook, J., and Witkowski, J. A., New York: Cold Spring Harbor Laboratory, 4953.Google Scholar
O’Donald, P. 1980. Genetic Models of Sexual Selection. Cambridge: Cambridge University Press.Google Scholar
Price, G. R. 1972. Fisher’s ‘fundamental theorem’ made clear. Annals of Human Genetics 36, 129140.Google Scholar
Provine, W. B. 1989. Sewall Wright and Evolutionary Biology. Chicago, IL: University of Chicago Press.Google Scholar
Provine, W. B. 1992. The R. A. Fisher–Sewall Wright controversy. In The Founders of Evolutionary Genetics: A Centenary Reappraisal, Sarkar, S. ed., Dordrecht: Kluwer Academic Press, 201229.CrossRefGoogle Scholar
Segerstrale, U. 2013. Nature’s Oracle: The Life and Work of W. D. Hamilton. Oxford: Oxford University Press.Google Scholar
Shaw, R. F. and Mohler, J. D. 1953. The selective significance of the sex ratio. The American Naturalist 87, 337342.Google Scholar
Skipper, R. A. 2002. The persistence of the R.A. Fisher-Sewall Wright controversy. Biology and Philosophy 17, 341367.CrossRefGoogle Scholar
Thoday, J. M. 1953. Components of fitness. In Symposia of the Society for Experimental Biology, ed. Brown, R. and Danielli, F., Cambridge: Cambridge University Press, 96113.Google Scholar
Williams, C. B. 1964. Some experiences of a biologist with R. A. Fisher and statistics. Biometrics 20, 301306.Google Scholar
Winther, R. G., Wade, M. J., and Dimond, C. C. 2013. Pluralism in evolutionary controversies: styles and averaging strategies in hierarchical selection theories. Biology & Philosophy 28, 957979.CrossRefGoogle Scholar
Wright, S. 1932. The roles of mutation, inbreeding, crossbreeding and selection in evolution. In Proceedings of the Sixth International Congress on Genetics, Ithaca, New York 1932, ed. Jones, D. F., Ithaca, NY: Brooklyn Botanic Garden, vol. 1, 356366.Google Scholar
Wright, S. 1969. Evolution and the Genetics of Populations: A Treatise in Four Volumes. Volume 2: The Theory of Genetic Frequencies. Chicago, IL: University of Chicago Press.Google Scholar

References

Barbujani, G. and Colonna, V. 2010. Human genome diversity: frequently asked questions. Trends in Genetics 26, 285295.Google Scholar
Chakraborty, R. 1978. Single-locus and multilocus analysis of genetic differentiation of the races of man: a critique. The American Naturalist 112, 11341138.Google Scholar
Chakraborty, R. 1982. Allocation versus variation: the issue of genetic differences between human racial groups. The American Naturalist 120, 403404.Google Scholar
Edge, M. D. and Rosenberg, N. A. 2015. Implications of the apportionment of human genetic diversity for the apportionment of human phenotypic diversity. Studies in History and Philosophy of Science, Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 52, 3245.Google Scholar
Feldman, M. W. and Lewontin, R. C. 2008. Race, ancestry, and medicine. In Revisiting Race in a Genomic Age, eds. Koenig, B. A., Lee, S. S. J., Richardson, S.S., Piscataway, NJ: Rutgers University Press, 89101.Google Scholar
Lewontin, R. C. 1972. The apportionment of human diversity. In Evolutionary Biology, eds. Dobzhansky, T., Hecht, M. K., Steere, W. C., New York: Appleton-Century-Crofts, vol. 6, 381398.CrossRefGoogle Scholar
Lewontin, R. C. 1978. Single- and multiple-locus measures of genetic distance between groups. The American Naturalist 112, 11381139.Google Scholar
Mitton, J. B. 1977. Genetic differentiation of races of man as judged by single-locus and multilocus analyses. The American Naturalist 111, 203212.Google Scholar
Mitton, J. B. 1978. Measurement of differentiation: reply to Lewontin, Powell, and Taylor. The American Naturalist 112, 11421144.CrossRefGoogle Scholar
Neel, J. V. 1981. The major ethnic groups: diversity in the midst of similarity. The American Naturalist 117, 8387.CrossRefGoogle Scholar
Nei, M. and Roychoudhury, A. K. 1972. Gene differences between Caucasian, Negro, and Japanese populations. Science 177, 434436.Google Scholar
Nei, M. and Roychoudhury, A. K. 1974. Genic variation within and between the three major races of man, Caucasoids, Negroids, and Mongoloids. American Journal of Human Genetics 26, 421443.Google Scholar
Powell, J. R. and Taylor, C. E. 1978. Are human races “substantially” different genetically? The American Naturalist 112, 11391142.Google Scholar
Rosenberg, N. A. 2011. A population-genetic perspective on the similarities and differences among worldwide human populations. Human Biology 83, 659684.Google Scholar
Smouse, P. E. and Spielman, R. S. 1977. How allocation of individuals depends on genetic differences among populations. In Human Genetics: Proceedings of the Fifth International Congress of Human Genetics, Mexico City, 10–15 October 1976, eds. Armendares, S., Lisker, R., Amsterdam: Excerpta Medica, 255260.Google Scholar
Smouse, P. E., Spielman, R. S., and Park, M. H. 1982. Multiple-locus allocation of individuals to groups as a function of the genetic variation within and differences among human populations. The American Naturalist 119, 445463.Google Scholar
Spielman, R. S. and Smouse, P. E. 1976. Multivariate classification of human populations I. Allocation of Yanomama Indians to villages. American Journal of Human Genetics 28, 317331.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×