Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-15T10:28:39.059Z Has data issue: false hasContentIssue false

Section 10 - Hematopoietic Cell Transplants for Acute Leukemia and Myelodysplastic Syndrome

Published online by Cambridge University Press:  24 May 2017

Hillard M. Lazarus
Affiliation:
Case Western Reserve University, Ohio
Robert Peter Gale
Affiliation:
Imperial College London
Armand Keating
Affiliation:
University of Toronto
Andrea Bacigalupo
Affiliation:
Ospedale San Martino, Genoa
Reinhold Munker
Affiliation:
Louisiana State University, Shreveport
Kerry Atkinson
Affiliation:
University of Queensland
Syed Ali Abutalib
Affiliation:
Midwestern Regional Medical Center, Cancer Treatment Centers of America, Chicago
Get access
Type
Chapter
Information
Hematopoietic Cell Transplants
Concepts, Controversies and Future Directions
, pp. 291 - 338
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Schrappe, M, Nachman, J, Hunger, S, Schmeigelow, K, Conter, V, Masera, G, et al. Educational symposium on long-term results of large prospective clinical trials for childhood acute lymphoblastic leukemia (1985–2000). Leukemia. 2010;24:253–4.Google Scholar
Schrappe, M, Hunger, S, Pui, C-H, Saha, V, Gaynon, P, Baruchel, A, et al. Outcomes after induction failure in childhood acute lymphoblastic leukemia. New Engl J Med. 2012;366:1371–81.Google Scholar
Balduzzi, A, Valsecchi, M, Uderzo, C, De Lorenzo, P, Klingbiel, T, Peters, C, et al. Chemotherapy versus allogeneic transplantation for very-high-risk childhood acute lymphoblastic leukemia in first complete remission: comparison by genetic randomisation in an international prospective study. Lancet. 2005;366:635–42.CrossRefGoogle Scholar
Schrauder, A, Reiter, A, Gadner, H, Niethammer, D, Klingbiel, T, Kremens, B, et al. Superiority of allogeneic hematopoietic stem-cell transplantation compared with chemotherapy alone in high-risk childhood T-cell acute lymphoblastic leukemia: results from ALL-BFM 90 and 95. J Clin Oncol. 2006;36:5742–9.Google Scholar
van Dongen, J, Seriu, T, Panzer-Grumayer, E, Biondi, A, Pongers-Willemse, M, Corral, L, et al. Prognostic value of minimal residual disease in acute lymphoblastic leukemia. Lancet. 1998;352:1731–8.Google Scholar
Cave, H, van de Werff, T, Bosch, J, Suciu, S, Guidal, C, Waterkeyn, C, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer – Childhood Leukemia Cooperative Group. New Engl J Med. 1998;339:591–8.Google Scholar
Jacquy, C, Delepaut, B, Van Daele, S, Vaerman, J, Zenebergh, A, Brichard, B, et al. A prospective study of minimal residual disease in childhood B-lineage acute lymphoblastic leukaemia: MRD level at the end of induction is a strong predictive factor of relapse. Br J Haematol. 1997;98:140–6.Google Scholar
Panzer-Grumayer, E, Schneider, M, Panzer, S, Fasching, K, Gadner, H. Rapid molecular response during early induction chemotherapy predicts a good outcome in childhood acute lymphoblastic leukemia. Blood. 2000;95:790–4.CrossRefGoogle ScholarPubMed
Borowitz, MJ, Wood, BL, Devidas, M, Loh, ML, Raetz, EA, Salzer, W, et al. Prognostic significance of minimal residual disease in high risk B-ALL: a report from Children’s Oncology Group study AALL0232. Blood. 2015;126(8):964–71.CrossRefGoogle Scholar
Nachman, J, Heerema, N, Sather, H, Camitta, B, Forestier, E, Harrison, C, et al. Outcome of treatment in children with hypodiploid acute lymphoblastic leukemia. Blood. 2007;110:1112–5.CrossRefGoogle ScholarPubMed
Schultz, K, Devidas, M, Bowman, W, Aledo, A, Slayton, W, Sather, H, et al. Philadelphia chromosome-negative very high-risk acute lymphoblastic leukemia in cihldren and adolescents: results from Children’s Oncology Group Study AALL0031. Leukemia. 2014;28:964–7.Google Scholar
Mehta, P, Eapen, M, Zhang, M-J. Transplant outcomes for children with hypodiploid acute lymphoblastic leukemia: The CIBMTR experience. Biol Blood Marrow Transplant. 2014;20:S87–S.Google Scholar
Mehta, PA, Zhang, MJ, Eapen, M, He, W, Seber, A, Gibson, B, et al. Transplantation outcomes for children with hypodiploid acute lymphoblastic leukemia. Biol Blood Marrow Transplant. 2015;21(7):1273–7.CrossRefGoogle ScholarPubMed
Arico, M, Schrappe, M, Hunger, S, Carroll, WL, Conter, V, Galimberti, S, et al. Clinical outcome in children with newly diagnosed Philadephia chromosome-positive acute lymphoblastic leukemia treated between 1995 and 2005. J Clin Oncol. 2010;28(31):4755–61.CrossRefGoogle Scholar
Schultz, K, Bowman, W, Aledo, A, Slayton, W, Sather, H, Devidas, M, et al. Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a Children’s Oncology Group Study. J Clin Oncol. 2009;31:5175–81.Google Scholar
Schultz, K, Carroll, A, Heerema, N, Bowman, W, Aledo, A, Slayton, W, et al. Long-term follow up of imatinib in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia: Children’s Oncology Group Study AALL0031. Leukemia. 2014:15.Google Scholar
Pui, C-H, Gayson, P, Boyett, J, Chessells, J, Baruchel, A, Kamps, W, et al. Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet. 2002;359:1909–15.Google Scholar
Pieters, R, Schrappe, M, De Lorenzo, P, Hann, I, De Rossi, G, Felice, M, et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet 2007;370:240–50.Google Scholar
Dreyer, Z, Dinndorf, P, Camitta, B, Sather, H, La, M, Devidas, M, et al. Analysis of the role of hematopoietic stem-cell transplantation in infants with acute lymphoblastic leukemia in first remission and MLL gene rearrangements: a report from the Children’s Oncology Group. J Clin Oncol. 2011;29(2):214–22.CrossRefGoogle ScholarPubMed
Koh, K, Tomizawa, D, Moriya Saito, A, Watanabe, T, Miyamura, T, Hirayama, M, et al. Early use of hematopoietic stem cell transplantation for infants with MLL gene-rearrangement-positive acute lymphoblastic leukemia. Leukemia. 2015;29(2):290–6.Google Scholar
Moorman, A, Ensor, H, Richards, S, Chilton, L, Schwab, C, Kinsey, S, et al. Prognostic effect of chromosomal abnormalities in childhood B-cell precursor acute lymphoblastic leukemia: results from the UK Medical Research Council ALL97/99 randomised trial. Lancet Oncol. 2010;11:429–38.Google Scholar
Moorman, A, Richards, S, Robinson, H, Strefford, J, Gibson, B, Kinsey, S, et al. Prognosis of children with acute lymphoblastic leukemia (ALL) and intrachromosomal amplification of chromosome 21 (iAMP21). Blood. 2007;109:2327–30.CrossRefGoogle Scholar
Heerema, N, Carroll, A, Devidas, M, Loh, ML, Borowitz, MJ, Gastier-Foster, JM, et al. Intrachromosomal amplification of chromosome 21 is associated with inferior outcomes in children with acute lymphoblastic leukemia treated in contemporary standard-risk Children’s Oncology Group Studies: A report from the Children’s Oncology Group. J Clin Oncol. 2013;31:3397–402.Google Scholar
Attarbaschi, A, Mann, G, Panzer-Grumayer, R, Rottgers, S, Steiner, M, Konig, M, et al. Minimal residual disease values discriminate between low and high relapse risk in children with B-cell precursor acute lymphoblastic leukemia and an intracromosomal amplification if chromosome 21: The Austrian and German Acute Lymphoblastic Leukemia Berline-Frankfurt-Munster (ALL-BFM) Trials. J Clin Oncol. 2008;26:3046–50.Google Scholar
Mullighan, C, Su, Z, Zhang, J, Radke, I, Phillips, L, Miller, C, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. NEJM. 2009;360:470–80.CrossRefGoogle ScholarPubMed
Waaders, E, van der Velden, V, van der Schoot, C, van Leeuwen, F, van Reijmersdal, S, de Haas, V, et al. Integrated use of minimal residual disease classification and IKZF1 alteration status accurately predicts 79% of relapses in pediatric acute lymphoblastic leukemia. Leukemia. 2011;25:254–8.Google Scholar
Coustan-Smith, E, Mullighan, C, Onciu, M, Behm, F, Raimondi, S, Pei, D, et al. Early T-cell precursor leukemia: a subtype of very high-risk acute lymphoblastic leukemia identified in two independent cohorts. Lancet Oncol. 2009;10(2):147–56.Google Scholar
Wade, R, Goulden, N, Mitchell, C, Rowntree, C, Hough, RE, Vora, AJ, editors. Characteristics and Outcome Of Children and Young Adults With Early T-Precusor (ETP) ALL Treated On UKALL 2003. ASH Annual Meeting, 15 November 2013, New Orleans, LA.Google Scholar
Conter, V, Valsecchi, MG, Buldini, B, Parasole, R, Locatelli, F, Colombini, A, et al. Early T-cell precursor acute lymphoblastic leukaemia in children treated in AIEOP centres with AIEOP-BFM protocols: a retrospective analysis. Lancet Haematol. 2016;3(2):e80–6.CrossRefGoogle ScholarPubMed
Tallen, G, Ratei, R, Mann, G, Kaspers, G, Niggli, F, Karachunsky, A, et al. Long-Term Outcome in Children with Relapsed Acute Lymphoblastic Leukemia After Time-Point and Site-of-Relapse Stratification and Intensified Short-Course Multidrug Chemotherapy: Results of Trial ALL-REZ BFM 90. J Clin Oncol. 2010;28:2339–47.CrossRefGoogle ScholarPubMed
Eckert, C, Henze, G, Seeger, K, Hagedorn, N, Mann, G, Panzer-Grumayer, R, et al. Use of allogeneic hematopoietic stem-cell transplantation based on minimal residual disease response improves outcomes for children wiht relaped acute lymphoblastic leukemia in the Intermediate-Risk Group. J Clin Oncol. 2013;31(21):2736–42.Google Scholar
Coustan-Smith, E, Gajjar, A, Hijaya, N, Razzouk, B, Ribeiro, R, Rivera, G, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia after first relapse. Leukemia. 2004;18:499504.Google Scholar
Barredo, J, Devidas, M, Lauer, S, Billett, A, Marymont, M, Pullen, J, et al. Isolated CNS relapse of acute lymphoblastic leukemia treated with intensive systemic chemotherapy and delayed CNS radiation: A pediatric oncology group study. J Clin Oncol. 2006;24:3142–9.Google Scholar
Eapen, M, Zhang, M-J, Devidas, M, Raetz, E, Barredo, J, Ritchey, A, et al. Outcomes after HLA-matched sibling transplantation or chemotherapy in children with acute lymphoblatic leukemia in a second remission after an isolated central nervous system relapse: a collaborative study of teh Children’s Oncology Group and the Center for International Blood and Marrow Transplant Research. Leukemia. 2008;22:281–6.CrossRefGoogle ScholarPubMed
Gaynon, P, Qu, R, Chappell, R, Willoughby, M, Tubergen, D, Steinherz, P, et al. Survival after relapse in childhood acute lymphoblastic leukemia: impact of site and time to first relapse – the Children’s Cancer Group Experience. Cancer. 1998;82:1387–95.Google Scholar
van den Berg, H, Langeveld, N, Veenhof, C, Behrendt, H. Treatment of isolated testicular recurrence of acute lymphoblastic leukemia without radiotherapy. Report from the Dutch Late Effects Study Group. Cancer. 1997;79:2257–63.Google Scholar
Locatelli, F, Schrappe, M, Bernardo, M, Rutella, S. How I treat relapsed childhood acute lymphoblastic leukemia. Blood. 2012;120:2807–16.Google Scholar
Uderzo, C, Grazia Zurlo, M, Adamoli, L, Zanesco, L, Arico, M, Calculli, G, et al. Treatment of isolated testicular relapse in childhood acute lymphoblastic leukemia: an Italian multicenter study. Associazione Italiana Ematologia ed Oncologia Pediatrica. J Clin Oncol. 1990;8:672–7.Google Scholar
Thakar, M, Talano, J, Tower, R, Kelly, M, Burke, M. Indications for transplantation in childhood acute leukemia and the impact of minimal residual disease on relapse: a review. Clin Pract. 2014;11(1):7990.Google Scholar
Borgmann, A, von Stackelberg, A, Hartmann, R, Ebell, W, Klingbiel, T, Peters, C, et al. Unrelated donor stem cell transplantation compared with chemotherapy for children with acute lymphoblastic leukemia in a second remission: a matched-pair analysis. Blood. 2003;101(10):3835–9.Google Scholar
Einsiedel, G, von Stackelberg, A, Hartmann, R, Fengler, R, Schrappe, M, Janka-Schaub, G, et al. Long-term outcome in children with relapsed ALL by risk-stratified salvage therapy: results of Trial Acute Lymphoblastic Leukemia-Relapse Study of the Berlin-Frankfurt-Munster Group 87. J Clin Oncol. 2005;23(31):7942–50.Google Scholar
Reismuller, B, Peters, C, Dworzak, M, Potschger, U, Urban, C, Meister, B, et al. Third relapse of acute lymphoblastic leukemia (ALL): a population-based analysis of the Austrian ALL-BFM Study Group. J Pediatr Hematol Oncol. 2013;35:e200–4.Google Scholar
Eapen, M, Raetz, E, Zhang, M, Muehlenbein, C, Devidas, M, Abshire, T, et al. Outcomes after HLA-matched sibling transplantation or chemotherapy in children with B-precursor acute lymphoblastic leukemia in a second remission: a collaborative study of the Children’s Oncology Group and the Center for International Blood and Marrow Transplant Research. Blood. 2006;107:4961–7.Google Scholar
Leung, W, Pui, C-H, Coustan-Smith, E, Yang, J, Pei, D, Gan, K, et al. Detectable minimal residual disease before hematopoietic cell transplantation is prognostic but does not preclude cure for children with very-high-risk leukemia. Blood. 2012;120:468–72.Google Scholar
Sutton, R, Shaw, PJ, Venn, NC, Law, T, Dissanayake, A, Kilo, T, et al. Persistent MRD before and after allogeneic BMT predicts relapse in children with acute lymphoblastic leukaemia. Br J Haematol. 2015;168(3):395404.Google Scholar
Bader, P, Kreyenberg, H, Henze, G, Eckert, C, Reising, M, Willasch, A, et al. Prognostic value of minimal residual disease quantification before allogeneic stem-cell transplantation in relapsed childhood acute lymphoblastic leukemia: the ALL-REZ BFM Study Group. J Clin Oncol. 2009;27:377–84.Google Scholar
Paganin, M, Zecca, M, Fabbri, G, Polato, K, Biondi, A, Rizzari, C, et al. Minimal residual disease is an important predictive factor of outcome in children with relapsed ‘high-risk’ acute lymphoblastic leukemia. Leukemia. 2008;22:2193–200.CrossRefGoogle ScholarPubMed
Wayne, A, Radich, J. Pretransplant MRD: the light is yellow, not red. Blood. 2012;120:244–6.CrossRefGoogle Scholar
Gossai, N, Vernaris, M, Karras, N, Gorman, M, Patel, N, Burke, M. A clofarabine-based bridging regimen in patients with relapsed ALL and persistent minimal residual disease (MRD). Bone Marrow Transplant. 2014;49:440–2.Google Scholar
Bleakley, M, Shaw, P, Nielsen, J. Allogeneic bone marrow transplantation for childhood relapsed acute lymphoblastic leukemia: comparison of outcome in patients with and without a matched family donor. Bone Marrow Transplant. 2002;30:17.CrossRefGoogle ScholarPubMed
Saarinen-Pihkala, U, Gustafsson, G, Ringden, O, Heilmann, C, Glomstein, A, Lonnerholm, G, et al. No disadvantage in outcome of using matched unrelated donors as compared with matched sibling donors for bone marrow transplantation in children with acute lymphoblastic leukemia in second remission. J Clin Oncol. 2001;15:3406–14.Google Scholar
Peters, C, Schrappe, M, von Stackelberg, A, Schrauder, A, Bader, P, Ebell, W, et al. Stem-cell transplantation in children with acute lymphoblastic leukemia: A prospective international multicenter trial comparing sibling donors with matched unrelated donors: The ALL-SCT-BFM-2003 trial. J Clin Oncol. 2015;33(11):1265–74.Google Scholar

References

Kantarjian, H, Thomas, D, O’Brien, S, Cortes, J, Giles, F, Jeha, S, et al. Long-term follow-up results of hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone (Hyper-CVAD), a dose-intensive regimen, in adult acute lymphocytic leukemia. Cancer. 2004;101(12):2788–801. PubMed PMID: 15481055. Epub 2004/10/14. eng.Google Scholar
Rowe, JM, Buck, G, Burnett, AK, Chopra, R, Wiernik, PH, Richards, SM, et al. Induction therapy for adults with acute lymphoblastic leukemia: results of more than 1500 patients from the international ALL trial: MRC UKALL XII/ECOG E2993. Blood. 2005;106(12):3760–7. PubMed PMID: 16105981. Epub 2005/08/18. eng.CrossRefGoogle ScholarPubMed
Weiden, PL, Flournoy, N, Thomas, ED, Prentice, R, Fefer, A, Buckner, CD, et al. Antileukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts. The New England Journal of Medicine. 1979;300(19):1068–73. PubMed PMID: 34792.Google Scholar
Oliansky, DM, Larson, RA, Weisdorf, D, Dillon, H, Ratko, TA, Wall, D, et al. The role of cytotoxic therapy with hematopoietic stem cell transplantation in the treatment of adult acute lymphoblastic leukemia: update of the 2006 evidence-based review. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2012;18(1):1836. e6. PubMed PMID: 21803017.Google Scholar
NCCN guidelines for ALL. NCCN Clinical Practice Guidelines in Oncology.Google Scholar
Gokbuget, N, Stanze, D, Beck, J, Diedrich, H, Horst, HA, Huttmann, A, et al. Outcome of relapsed adult lymphoblastic leukemia depends on response to salvage chemotherapy, prognostic factors, and performance of stem cell transplantation. Blood. 2012;120(10):2032–41. PubMed PMID: 22493293.Google Scholar
Fielding, AK, Richards, SM, Chopra, R, Lazarus, HM, Litzow, MR, Buck, G, et al. Outcome of 609 adults after relapse of acute lymphoblastic leukemia (ALL); an MRC UKALL12/ECOG 2993 study. Blood. 2007;109(3):944–50. PubMed PMID: 17032921.Google Scholar
Yanada, M, Matsuo, K, Suzuki, T, Naoe, T. Allogeneic hematopoietic stem cell transplantation as part of postremission therapy improves survival for adult patients with high-risk acute lymphoblastic leukemia: a metaanalysis. Cancer. 2006;106(12):2657–63. PubMed PMID: 16703597. Epub 2006/05/17. eng.Google Scholar
Goldstone, AH, Richards, SM, Lazarus, HM, Tallman, MS, Buck, G, Fielding, AK, et al. In adults with standard-risk acute lymphoblastic leukemia, the greatest benefit is achieved from a matched sibling allogeneic transplantation in first complete remission, and an autologous transplantation is less effective than conventional consolidation/maintenance chemotherapy in all patients: final results of the International ALL Trial (MRC UKALL XII/ECOG E2993). Blood. 2008;111(4):1827–33. PubMed PMID: 18048644. Epub 2007/12/01. eng.CrossRefGoogle Scholar
Cornelissen, JJ, van der Holt, B, Verhoef, GE, van’t Veer, MB, van Oers, MH, Schouten, HC, et al. Myeloablative allogeneic versus autologous stem cell transplantation in adult patients with acute lymphoblastic leukemia in first remission: a prospective sibling donor versus no-donor comparison. Blood. 2009;113(6):1375–82. PubMed PMID: 18988865. Epub 2008/11/08. eng.Google Scholar
Ram, R, Gafter-Gvili, A, Vidal, L, Paul, M, Ben-Bassat, I, Shpilberg, O, et al. Management of adult patients with acute lymphoblastic leukemia in first complete remission: systematic review and meta-analysis. Cancer. 116(14):3447–57. PubMed PMID: 20564092. Epub 2010/06/22. eng.CrossRefGoogle Scholar
Pidala, J, Djulbegovic, B, Anasetti, C, Kharfan-Dabaja, M, Kumar, A. Allogeneic hematopoietic cell transplantation for adult acute lymphoblastic leukemia (ALL) in first complete remission. Cochrane Database of Systematic Reviews. 2011;10:CD008818. PubMed PMID: 21975786. Epub 2011/10/07. eng.Google Scholar
Gupta, V, Richards, S, Rowe, J, Acute Leukemia Stem Cell Transplantation Trialists’ Collaborative G. Allogeneic, but not autologous, hematopoietic cell transplantation improves survival only among younger adults with acute lymphoblastic leukemia in first remission: an individual patient data meta-analysis. Blood. 2013;121(2):339–50. PubMed PMID: 23165481.Google Scholar
Patel, B, Rai, L, Buck, G, Richards, SM, Mortuza, Y, Mitchell, W, et al. Minimal residual disease is a significant predictor of treatment failure in non T-lineage adult acute lymphoblastic leukaemia: final results of the international trial UKALL XII/ECOG2993. British Journal of Haematology. 2010;148(1):80–9. PubMed PMID: 19863538.Google Scholar
Bruggemann, M, Raff, T, Flohr, T, Gokbuget, N, Nakao, M, Droese, J, et al. Clinical significance of minimal residual disease quantification in adult patients with standard-risk acute lymphoblastic leukemia. Blood. 2006;107(3):1116–23. PubMed PMID: 16195338. Epub 2005/10/01. eng.Google Scholar
Gokbuget, N, Kneba, M, Raff, T, Trautmann, H, Bartram, CR, Arnold, R, et al. Adult patients with acute lymphoblastic leukemia and molecular failure display a poor prognosis and are candidates for stem cell transplantation and targeted therapies. Blood. 2012;120(9):1868–76. PubMed PMID: 22442346.Google Scholar
Bassan, R, Spinelli, O, Oldani, E, Intermesoli, T, Tosi, M, Peruta, B, et al. Improved risk classification for risk-specific therapy based on the molecular study of minimal residual disease (MRD) in adult acute lymphoblastic leukemia (ALL). Blood. 2009;113(18):4153–62. PubMed PMID: 19141862.Google Scholar
Ribera, JM, Oriol, A, Morgades, M, Montesinos, P, Sarra, J, Gonzalez-Campos, J, et al. Treatment of high-risk Philadelphia chromosome-negative acute lymphoblastic leukemia in adolescents and adults according to early cytologic response and minimal residual disease after consolidation assessed by flow cytometry: final results of the PETHEMA ALL-AR-03 trial. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2014;32(15):1595–604. PubMed PMID: 24752047.Google Scholar
Stock, W, La, M, Sanford, B, Bloomfield, CD, Vardiman, JW, Gaynon, P, et al. What determines the outcomes for adolescents and young adults with acute lymphoblastic leukemia treated on cooperative group protocols? A comparison of Children’s Cancer Group and Cancer and Leukemia Group B studies. Blood. 2008;112(5):1646–54. PubMed PMID: 18502832. Pubmed Central PMCID: 2518876.Google Scholar
Boissel, N, Auclerc, MF, Lheritier, V, Perel, Y, Thomas, X, Leblanc, T, et al. Should adolescents with acute lymphoblastic leukemia be treated as old children or young adults? Comparison of the French FRALLE-93 and LALA-94 trials. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2003;21(5):774–80. PubMed PMID: 12610173.Google Scholar
Ramanujachar, R, Richards, S, Hann, I, Goldstone, A, Mitchell, C, Vora, A, et al. Adolescents with acute lymphoblastic leukaemia: outcome on UK national paediatric (ALL97) and adult (UKALLXII/E2993) trials. Pediatric blood & Cancer. 2007;48(3):254–61. PubMed PMID: 16421910.CrossRefGoogle ScholarPubMed
Thomas, DA, Kantarjian, H, Smith, TL, Koller, C, Cortes, J, O’Brien, S, et al. Primary refractory and relapsed adult acute lymphoblastic leukemia: characteristics, treatment results, and prognosis with salvage therapy. Cancer. 1999;86(7):1216–30. PubMed PMID: 10506707.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Oriol, A, Vives, S, Hernandez-Rivas, JM, Tormo, M, Heras, I, Rivas, C, et al. Outcome after relapse of acute lymphoblastic leukemia in adult patients included in four consecutive risk-adapted trials by the PETHEMA Study Group. Haematologica. 2010;95(4):589–96. PubMed PMID: 20145276. Pubmed Central PMCID: 2857188.Google Scholar
Tavernier, E, Boiron, JM, Huguet, F, Bradstock, K, Vey, N, Kovacsovics, T, et al. Outcome of treatment after first relapse in adults with acute lymphoblastic leukemia initially treated by the LALA-94 trial. Leukemia. 2007;21(9):1907–14. PubMed PMID: 17611565.CrossRefGoogle ScholarPubMed
Duval, M, Klein, JP, He, W, Cahn, JY, Cairo, M, Camitta, BM, et al. Hematopoietic stem-cell transplantation for acute leukemia in relapse or primary induction failure. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2010;28(23):3730–8. PubMed PMID: 20625136. Pubmed Central PMCID: 2917308.Google Scholar
Terwey, TH, Massenkeil, G, Tamm, I, Hemmati, PG, Neuburger, S, Martus, P, et al. Allogeneic SCT in refractory or relapsed adult ALL is effective without prior reinduction chemotherapy. Bone Marrow Transplantation. 2008;42(12):791–8. PubMed PMID: 18711350. Epub 2008/08/20. eng.Google Scholar
Doney, K, Hagglund, H, Leisenring, W, Chauncey, T, Appelbaum, FR, Storb, R. Predictive factors for outcome of allogeneic hematopoietic cell transplantation for adult acute lymphoblastic leukemia. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2003;9(7):472–81. PubMed PMID: 12869961. Epub 2003/07/19. eng.Google Scholar
Cornelissen, JJ, Carston, M, Kollman, C, King, R, Dekker, AW, Lowenberg, B, et al. Unrelated marrow transplantation for adult patients with poor-risk acute lymphoblastic leukemia: strong graft-versus-leukemia effect and risk factors determining outcome. Blood. 2001;97(6):1572–7. PubMed PMID: 11238093. Epub 2001/03/10. eng.Google Scholar
Kiehl, MG, Kraut, L, Schwerdtfeger, R, Hertenstein, B, Remberger, M, Kroeger, N, et al. Outcome of allogeneic hematopoietic stem-cell transplantation in adult patients with acute lymphoblastic leukemia: no difference in related compared with unrelated transplant in first complete remission. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2004;22(14):2816–25. PubMed PMID: 15254049.Google Scholar
Granados, E, de La Camara, R, Madero, L, Diaz, MA, Martin-Regueira, P, Steegmann, JL, et al. Hematopoietic cell transplantation in acute lymphoblastic leukemia: better long term event-free survival with conditioning regimens containing total body irradiation. Haematologica. 2000;85(10):1060–7. PubMed PMID: 11025598.Google Scholar
Daly, A, Savoie, ML, Geddes, M, Chaudhry, A, Stewart, D, Duggan, P, et al. Fludarabine, busulfan, antithymocyte globulin, and total body irradiation for pretransplantation conditioning in acute lymphoblastic leukemia: excellent outcomes in all but older patients with comorbidities. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2012;18(12):1921–6. PubMed PMID: 22842330.Google Scholar
Santarone, S, Pidala, J, Di Nicola, M, Field, T, Alsina, M, Ayala, E, et al. Fludarabine and pharmacokinetic-targeted busulfan before allografting for adults with acute lymphoid leukemia. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2011;17(10):1505–11. PubMed PMID: 21385623.Google Scholar
Kebriaei, P, Basset, R, Ledesma, C, Ciurea, S, Parmar, S, Shpall, EJ, et al. Clofarabine combined with busulfan provides excellent disease control in adult patients with acute lymphoblastic leukemia undergoing allogeneic hematopoietic stem cell transplantation. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2012;18(12):1819–26. PubMed PMID: 22750645.Google Scholar
Mohty, M, Labopin, M, Volin, L, Gratwohl, A, Socie, G, Esteve, J, et al. Reduced-intensity versus conventional myeloablative conditioning allogeneic stem cell transplantation for patients with acute lymphoblastic leukemia: a retrospective study from the European Group for Blood and Marrow Transplantation. Blood. 2010;116(22):4439–43. PubMed PMID: 20716774.Google Scholar
Marks, DI, Wang, T, Perez, WS, Antin, JH, Copelan, E, Gale, RP, et al. The outcome of full-intensity and reduced-intensity conditioning matched sibling or unrelated donor transplantation in adults with Philadelphia chromosome-negative acute lymphoblastic leukemia in first and second complete remission. Blood. 2010;116(3):366–74. PubMed PMID: 20404137. Pubmed Central PMCID: 2913452.Google Scholar
Cho, BS, Lee, S, Kim, YJ, Chung, NG, Eom, KS, Kim, HJ, et al. Reduced-intensity conditioning allogeneic stem cell transplantation is a potential therapeutic approach for adults with high-risk acute lymphoblastic leukemia in remission: results of a prospective phase 2 study. Leukemia. 2009;23(10):1763–70. PubMed PMID: 19440217. Epub 2009/05/15. eng.Google Scholar
Stein, AS, Palmer, JM, O’Donnell, MR, Kogut, NM, Spielberger, RT, Slovak, ML, et al. Reduced-intensity conditioning followed by peripheral blood stem cell transplantation for adult patients with high-risk acute lymphoblastic leukemia. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2009;15(11):1407–14. PubMed PMID: 19822300. Pubmed Central PMCID: 2795637.CrossRefGoogle ScholarPubMed
Ram, R, Storb, R, Sandmaier, BM, Maloney, DG, Woolfrey, A, Flowers, ME, et al. Non-myeloablative conditioning with allogeneic hematopoietic cell transplantation for the treatment of high-risk acute lymphoblastic leukemia. Haematologica. 2011;96(8):1113–20. PubMed PMID: 21508120. Epub 2011/04/22. eng.Google Scholar
Arnold, R, Massenkeil, G, Bornhauser, M, Ehninger, G, Beelen, DW, Fauser, AA, et al. Nonmyeloablative stem cell transplantation in adults with high-risk ALL may be effective in early but not in advanced disease. Leukemia. 2002;16(12):2423–8. PubMed PMID: 12454748.Google Scholar
Eapen, M, Rocha, V, Sanz, G, Scaradavou, A, Zhang, MJ, Arcese, W, et al. Effect of graft source on unrelated donor haemopoietic stem-cell transplantation in adults with acute leukaemia: a retrospective analysis. Lancet Oncol. 2010;11(7):653–60. PubMed PMID: 20558104. Epub 2010/06/19. eng.CrossRefGoogle ScholarPubMed
Marks, DI, Woo, KA, Zhong, X, Appelbaum, FR, Bachanova, V, Barker, JN, et al. Unrelated umbilical cord blood transplant for adult acute lymphoblastic leukemia in first and second complete remission: a comparison with allografts from adult unrelated donors. Haematologica. 2014;99(2):322–8. PubMed PMID: 24056817. Pubmed Central PMCID: 3912963.Google Scholar
Ferra, C, Sanz, J, de la Camara, R, Sanz, G, Bermudez, A, Valcarcel, D, et al. Unrelated transplantation for poor-prognosis adult acute lymphoblastic leukemia: long-term outcome analysis and study of the impact of hematopoietic graft source. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2010;16(7):957–66. PubMed PMID: 20144909.Google Scholar
Bachanova, V, Verneris, MR, DeFor, T, Brunstein, CG, Weisdorf, DJ. Prolonged survival in adults with acute lymphoblastic leukemia after reduced-intensity conditioning with cord blood or sibling donor transplantation. Blood. 2009;113(13):2902–5. PubMed PMID: 19179301. Epub 2009/01/31. eng.Google Scholar
Tomblyn, MB, Arora, M, Baker, KS, Blazar, BR, Brunstein, CG, Burns, LJ, et al. Myeloablative hematopoietic cell transplantation for acute lymphoblastic leukemia: analysis of graft sources and long-term outcome. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2009;27(22):3634–41. PubMed PMID: 19581540. Epub 2009/07/08. eng.Google Scholar
Ciceri, F, Labopin, M, Aversa, F, Rowe, JM, Bunjes, D, Lewalle, P, et al. A survey of fully haploidentical hematopoietic stem cell transplantation in adults with high-risk acute leukemia: a risk factor analysis of outcomes for patients in remission at transplantation. Blood. 2008;112(9):3574–81. PubMed PMID: 18606875. Epub 2008/07/09. eng.Google Scholar
Yan, CH, Jiang, Q, Wang, J, Xu, LP, Liu, DH, Jiang, H, et al. Superior survival of unmanipulated haploidentical hematopoietic stem cell transplantation compared with chemotherapy alone used as post-remission therapy in adults with standard-risk acute lymphoblastic leukemia in first complete remission. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2014;20(9):1314–21. PubMed PMID: 24747334.CrossRefGoogle ScholarPubMed
Luznik, L, Bolaños-Meade, J, Zahurak, M, Chen, AR, Smith, BD, Brodsky, R, et al. High-dose cyclophosphamide as single-agent, short-course prophylaxis of graft-versus-host disease. Blood. 2010;115(16):3224–30.Google Scholar
Luznik, L, O’Donnell, PV, Symons, HJ, Chen, AR, Leffell, MS, Zahurak, M, et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2008;14(6):641–50. PubMed PMID: S1083-8791(08)00114–6.Google Scholar
Le Jeune, C, Thomas, X. Antibody-based therapies in B-cell lineage acute lymphoblastic leukaemia. European Journal of Haematology. 2015;94(2):99–10. PubMed PMID: 24981395.Google Scholar
Kantarjian, H, Thomas, D, Wayne, AS, O’Brien, S. Monoclonal antibody-based therapies: a new dawn in the treatment of acute lymphoblastic leukemia. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2012;30(31):3876–83. PubMed PMID: 22891271. Pubmed Central PMCID: 3478578.Google Scholar
Kantarjian, H, Thomas, D, Jorgensen, J, Jabbour, E, Kebriaei, P, Rytting, M, et al. Inotuzumab ozogamicin, an anti-CD22-calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: a phase 2 study. Lancet Oncol. 2012;13(4):403–11. PubMed PMID: 22357140.Google Scholar
Kebriaei, P, Wilhelm, K, Ravandi, F, Brandt, M, de Lima, M, Ciurea, S, et al. Feasibility of allografting in patients with advanced acute lymphoblastic leukemia after salvage therapy with inotuzumab ozogamicin. Clinical Lymphoma, Myeloma & Leukemia. 2013;13(3):296301. PubMed PMID: 23313065. Pubmed Central PMCID: PMC4102410. Epub 2013/01/15. eng.Google Scholar
Topp, MS, Gokbuget, N, Zugmaier, G, Degenhard, E, Goebeler, ME, Klinger, M, et al. Long-term follow-up of hematologic relapse-free survival in a phase 2 study of blinatumomab in patients with MRD in B-lineage ALL. Blood. 2012;120(26):5185–7. PubMed PMID: 23024237.Google Scholar
Topp, MS. Anti-CD19 BiTE Blinatumomab induces high complete remission rate and prolongs overall survival in adult patients with relapsed/refractory B-precursor acute lymphoblastic leukemia (ALL). American Society of Hematology Annual Meeting. 2012;670.Google Scholar
Schlegel, P, Lang, P, Zugmaier, G, Ebinger, M, Kreyenberg, H, Witte, KE, et al. Pediatric posttransplant relapsed/refractory B-precursor acute lymphoblastic leukemia shows durable remission by therapy with the T-cell engaging bispecific antibody blinatumomab. Haematologica. 2014;99(7):1212–9. PubMed PMID: 24727818. Pubmed Central PMCID: 4077083.Google Scholar
Grupp, SA, Kalos, M, Barrett, D, Aplenc, R, Porter, DL, Rheingold, SR, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. The New England Journal of Medicine. 2013;368(16):1509–18. PubMed PMID: 23527958. Pubmed Central PMCID: 4058440.Google Scholar
Pui, CH, Evans, WE. Acute lymphoblastic leukemia. The New England Journal of Medicine. 1998;339(9):605–15. PubMed PMID: 9718381. Epub 1998/08/27. eng.Google Scholar
Moorman, AV, Harrison, CJ, Buck, GA, Richards, SM, Secker-Walker, LM, Martineau, M, et al. Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial. Blood. 2007;109(8):3189–97. PubMed PMID: 17170120. Epub 2006/12/16. eng.Google Scholar
Moorman, AV, Ensor, HM, Richards, SM, Chilton, L, Schwab, C, Kinsey, SE, et al. Prognostic effect of chromosomal abnormalities in childhood B-cell precursor acute lymphoblastic leukaemia: results from the UK Medical Research Council ALL97/99 randomised trial. Lancet Oncol.;11(5):429–38. PubMed PMID: 20409752. Epub 2010/04/23. eng.Google Scholar
Marks, DI, Paietta, EM, Moorman, AV, Richards, SM, Buck, G, DeWald, G, et al. T-cell acute lymphoblastic leukemia in adults: clinical features, immunophenotype, cytogenetics, and outcome from the large randomized prospective trial (UKALL XII/ECOG 2993). Blood. 2009;114(25):5136–45. PubMed PMID: 19828704. Pubmed Central PMCID: 2792210.Google Scholar
Orsi, C, Bartolozzi, B, Messori, A, Bosi, A. Event-free survival and cost-effectiveness in adult acute lymphoblastic leukaemia in first remission treated with allogeneic transplantation. Bone Marrow Transplant. 2007;40(7):643–9. PubMed PMID: 17660839.Google Scholar

References

Moorman, AV, Harrison, CJ, Buck, GA, Richards, SM, Secker-Walker, LM, Martineau, M, et al. Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial. Blood. 2007;109(8):3189–97.Google Scholar
Rowley, JD. Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243(5405):290–3.Google Scholar
Hu, Y, Liu, Y, Pelletier, S, Buchdunger, E, Warmuth, M, Fabbro, D, et al. Requirement of Src kinases Lyn, Hck and Fgr for BCR-ABL1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia. Nat Genet. 2004;36(5):453–61.Google Scholar
Larson, RA. Management of acute lymphoblastic leukemia in older patients. Semin Hematol. 2006;43(2):126–33.Google Scholar
Dombret, H, Gabert, J, Boiron, JM, Rigal-Huguet, F, Blaise, D, Thomas, X, et al. Outcome of treatment in adults with Philadelphia chromosome-positive acute lymphoblastic leukemia: results of the prospective multicenter LALA-94 trial. Blood. 2002;100(7):2357–66.Google Scholar
Forman, SJ, O’Donnell, MR, Nademanee, AP, Snyder, DS, Bierman, PJ, Schmidt, GM, et al. Bone marrow transplantation for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 1987;70(2):587–8.Google Scholar
Chao, NJ, Blume, KG, Forman, SJ, Snyder, DS. Long-term follow-up of allogeneic bone marrow recipients for Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 1995;85(11):3353–4.Google Scholar
Barrett, AJ, Horowitz, MM, Ash, RC, Atkinson, K, Gale, RP, Goldman, JM, et al. Bone marrow transplantation for Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 1992;79(11):3067–70.Google Scholar
Fielding, AK, Rowe, JM, Richards, SM, Buck, G, Moorman, AV, Durrant, IJ, et al. Prospective outcome data on 267 unselected adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia confirms superiority of allogeneic transplantation over chemotherapy in the pre-imatinib era: results from the International ALL Trial MRC UKALLXII/ECOG2993. Blood. 2009;113(19):4489–96.Google Scholar
Kebriaei, P, Saliba, R, Rondon, G, Chiattone, A, Luthra, R, Anderlini, P, et al. Long-term follow-up of allogeneic hematopoietic stem cell transplantation for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: impact of tyrosine kinase inhibitors on treatment outcomes. Biol Blood Marrow Transplant. 2012;18(4):584–92.Google Scholar
Fielding, AK, Richards, SM, Lazarus, HM, Litzow, MR, Luger, SM, Marks, DI, et al. Does imatinib change the outcome in Philapdelphia chromosome positive acute lymphoblastic leukaemia in adults? Data from the UKALLXII/ECOG2993 Study. Blood. 2007;110(11):10a.Google Scholar
Fielding, AK, Rowe, JM, Buck, G, Foroni, L, Gerrard, G, Litzow, MR, et al. UKALLXII/ECOG2993: addition of imatinib to a standard treatment regimen enhances long-term outcomes in Philadelphia positive acute lymphoblastic leukemia. Blood. 2014;123(6):843–50.Google Scholar
Mizuta, S, Matsuo, K, Maeda, T, Yujiri, T, Hatta, Y, Kimura, Y, et al. Prognostic factors influencing clinical outcome of allogeneic hematopoietic stem cell transplantation following imatinib-based therapy in BCR-ABL-positive ALL. Blood Cancer J. 2012;2(5):e72.Google Scholar
O’Hare, T, Walters, DK, Stoffregen, EP, Jia, T, Manley, PW, Mestan, J, et al. In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res. 2005;65(11):4500–5.Google Scholar
Ottmann, O, Dombret, H, Martinelli, G, Simonsson, B, Guilhot, F, Larson, RA, et al. Dasatinib induces rapid hematologic and cytogenetic responses in adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia with resistance or intolerance to imatinib: interim results of a phase 2 study. Blood. 2007;110(7):2309–15.Google ScholarPubMed
Lilly, MB, Ottmann, OG, Shah, NP, Larson, RA, Reiffers, JJ, Ehninger, G, et al. Dasatinib 140 mg once daily versus 70 mg twice daily in patients with Ph-positive acute lymphoblastic leukemia who failed imatinib: Results from a phase 3 study. Am J Hematol. 2010;85(3):164–70.Google Scholar
Rousselot, P, Coudé, MM, Huguet, F, Lafage, M, Leguay, T, Salanoubat, C, et al. Dasatinib (Sprycel®) and Low intensity chemotherapy for first-line treatment in patients with de novo Philadelphia positive ALL aged 55 and over: final results of the EWALL-Ph-01 Study. Blood. 2012;120(21):666a.Google Scholar
Foa, R, Vitale, A, Vignetti, M, Meloni, G, Guarini, A, De Propris, MS, et al. Dasatinib as first-line treatment for adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2011;118(25):6521–8.Google Scholar
Porkka, K, Koskenvesa, P, Lundan, T, Rimpilainen, J, Mustjoki, S, Smykla, R, et al. Dasatinib crosses the blood-brain barrier and is an efficient therapy for central nervous system Philadelphia chromosome-positive leukemia. Blood. 2008;112(4):1005–12.Google Scholar
Takayama, N, Sato, N, O’Brien, SG, Ikeda, Y, Okamoto, S. Imatinib mesylate has limited activity against the central nervous system involvement of Philadelphia chromosome-positive acute lymphoblastic leukaemia due to poor penetration into cerebrospinal fluid. Br J Haematol. 2002;119(1):106–8.Google Scholar
Pfeifer, H, Goekbuget, N, Völp, C, Hüttmann, A, Lübbert, M, Stuhlmann, R, et al. Long-term outcome of 335 adult patients receiving different schedules of imatinib and chemotherapy as front-line treatment for Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Blood. 2010;116:173Google Scholar
Ottmann, OG, Wassmann, B, Pfeifer, H, Giagounidis, A, Stelljes, M, Duhrsen, U, et al. Imatinib compared with chemotherapy as front-line treatment of elderly patients with Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ALL). Cancer. 2007;109(10):2068–76.Google Scholar
Vignetti, M, Fazi, P, Cimino, G, Martinelli, G, Di Raimondo, F, Ferrara, F, et al. Imatinib plus steroids induces complete remissions and prolonged survival in elderly Philadelphia chromosome-positive patients with acute lymphoblastic leukemia without additional chemotherapy: results of the Gruppo Italiano Malattie Ematologiche dell’Adulto (GIMEMA) LAL0201-B protocol. Blood. 2007;109(9):3676–8.Google Scholar
Bachanova, V, Burke, MJ, Yohe, S, Cao, Q, Sandhu, K, Singleton, TP, et al. Unrelated cord blood transplantation in adult and pediatric acute lymphoblastic leukemia: effect of minimal residual disease on relapse and survival. Biol Blood Marrow Transplant. 2012;18(6):963–8.Google Scholar
Pinana, JL, Sanz, J, Picardi, A, Ferra, C, Martino, R, Barba, P, et al. Umbilical cord blood transplantation from unrelated donors in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Haematologica. 2014;99(2):378–84.Google Scholar
Tucunduva, L, Ruggeri, A, Sanz, G, Furst, S, Cornelissen, J, Linkesch, W, et al. Impact of minimal residual disease on outcomes after umbilical cord blood transplantation for adults with Philadelphia-positive acute lymphoblastic leukaemia: an analysis on behalf of Eurocord, Cord Blood Committee and the Acute Leukaemia working party of the European group for Blood and Marrow Transplantation. Br J Haematol. 2014;166(5):749–57.Google Scholar
Sun, YQ, Wang, J, Jiang, Q, Xu, LP, Liu, DH, Zhang, XH, et al. Haploidentical hematopoietic SCT may be superior to conventional consolidation/maintenance chemotherapy as post-remission therapy for high-risk adult ALL. Bone Marrow Transplant. 2015;50(1):20–5.Google Scholar
Bachanova, V, Marks, DI, Zhang, MJ, Wang, H, de Lima, M, Aljurf, MD, et al. Ph+ ALL patients in first complete remission have similar survival after reduced intensity and myeloablative allogeneic transplantation: impact of tyrosine kinase inhibitor and minimal residual disease. Leukemia. 2014;28(3):658–65.Google Scholar
Wetzler, M, Watson, D, Stock, W, Koval, G, Mulkey, FA, Hoke, EE, et al. Autologous transplantation for Philadelphia chromosome-positive acute lymphoblastic leukemia achieves outcomes similar to allogeneic transplantation: results of CALGB Study 10001 (Alliance). Haematologica. 2014;99(1):111–5.Google Scholar
Topp, MS, Gokbuget, N, Zugmaier, G, Degenhard, E, Goebeler, ME, Klinger, M, et al. Long-term follow-up of hematologic relapse-free survival in a phase 2 study of blinatumomab in patients with MRD in B-lineage ALL. Blood. 2012;120(26):5185–7.Google Scholar
Kantarjian, H, Thomas, D, Jorgensen, J, Jabbour, E, Kebriaei, P, Rytting, M, et al. Inotuzumab ozogamicin, an anti-CD22-calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: a phase 2 study. Lancet Oncol. 2012;13(4):403–11.Google Scholar
Maude, SL, Frey, N, Shaw, PA, Aplenc, R, Barrett, DM, Bunin, NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17.Google Scholar
Mohty, M, Labopin, M, Tabrizzi, R, Theorin, N, Fauser, AA, Rambaldi, A, et al. Reduced intensity conditioning allogeneic stem cell transplantation for adult patients with acute lymphoblastic leukemia: a retrospective study from the European Group for Blood and Marrow Transplantation. Haematologica. 2008;93(2):303–6.Google Scholar
Bachanova, V, Verneris, MR, DeFor, T, Brunstein, CG, Weisdorf, DJ. Prolonged survival in adults with acute lymphoblastic leukemia after reduced-intensity conditioning with cord blood or sibling donor transplantation. Blood. 2009;113(13):2902–5.Google Scholar
Ram, R, Storb, R, Sandmaier, BM, Maloney, DG, Woolfrey, A, Flowers, ME, et al. Non-myeloablative conditioning with allogeneic hematopoietic cell transplantation for the treatment of high-risk acute lymphoblastic leukemia. Haematologica. 2011;96(8):1113–20.Google Scholar
Stein, AS, Palmer, JM, O’Donnell, MR, Kogut, NM, Spielberger, RT, Slovak, ML, et al. Reduced-intensity conditioning followed by peripheral blood stem cell transplantation for adult patients with high-risk acute lymphoblastic leukemia. Biol Blood Marrow Transplant. 2009;15(11):1407–14.Google Scholar
Arnold, R, Massenkeil, G, Bornhauser, M, Ehninger, G, Beelen, DW, Fauser, AA, et al. Nonmyeloablative stem cell transplantation in adults with high-risk ALL may be effective in early but not in advanced disease. Leukemia. 2002;16(12):2423–8.Google Scholar

References

Passweg, JR, Baldomero, H, Gratwohl, A, Bregni, M, Cesaro, S, Dreger, P, et al. The EBMT activity survey: 1990–2010. Bone Marrow Transplantation. 2012;47(7):906–23.Google Scholar
Passweg, JR, Baldomero, H, Bregni, M, Cesaro, S, Dreger, P, Duarte, RF, et al. Hematopoietic SCT in Europe: data and trends in 2011. Bone Marrow Transplantation. 2013;48(9):1161–7.Google Scholar
Pasquini, MC,Wang, Z. Current use and outcome of hematopoietic stem cell transplantation: CIBMTR Summary Slides. 2013.Google Scholar
Horan, JT, Logan, BR, Agovi-Johnson, MA, Lazarus, HM, Bacigalupo, AA, Ballen, KK, et al. Reducing the risk for transplantation-related mortality after allogeneic hematopoietic cell transplantation: how much progress has been made? Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2011;29(7):805–13.Google Scholar
Gooley, TA, Chien, JW, Pergam, SA, Hingorani, S, Sorror, ML, Boeckh, M, et al. Reduced mortality after allogeneic hematopoietic-cell transplantation. The New England Journal of Medicine. 2010;363(22):2091–101.Google Scholar
Luger, SM, Ringden, O, Zhang, MJ, Perez, WS, Bishop, MR, Bornhauser, M, et al. Similar outcomes using myeloablative vs reduced-intensity allogeneic transplant preparative regimens for AML or MDS. Bone Marrow Transplantation. 2012;47(2):203–11.Google Scholar
Chang, YJ, Huang, XJ. Donor lymphocyte infusions for relapse after allogeneic transplantation: when, if and for whom? Blood Reviews. 2013;27(1):5562.Google Scholar
Bleakley, M, Riddell, SR. Exploiting T cells specific for human minor histocompatibility antigens for therapy of leukemia. Immunology and Cell Biology. 2011;89(3):396407.Google Scholar
Norde, WJ, Overes, IM, Maas, F, Fredrix, H, Vos, JC, Kester, MG, et al. Myeloid leukemic progenitor cells can be specifically targeted by minor histocompatibility antigen LRH-1-reactive cytotoxic T cells. Blood. 2009;113(10):2312–23.Google Scholar
Warren, EH, Fujii, N, Akatsuka, Y, Chaney, CN, Mito, JK, Loeb, KR, et al. Therapy of relapsed leukemia after allogeneic hematopoietic cell transplantation with T cells specific for minor histocompatibility antigens. Blood. 2010;115(19):3869–78.Google Scholar
Rezvani, K, Yong, AS, Mielke, S, Savani, BN, Musse, L, Superata, J, et al. Leukemia-associated antigen-specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood. 2008;111(1):236–42.Google Scholar
Oka, Y, Tsuboi, A, Taguchi, T, Osaki, T, Kyo, T, Nakajima, H, et al. Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proceedings of the National Academy of Sciences of the USA. 2004;101(38):13885–90.Google Scholar
Van Tendeloo, VF, Van de Velde, A, Van Driessche, A, Cools, N, Anguille, S, Ladell, K, et al. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination. Proceedings of the National Academy of Sciences of the USA. 2010;107(31):13824–9.Google Scholar
Miller, JS, Soignier, Y, Panoskaltsis-Mortari, A, McNearney, SA, Yun, GH, Fautsch, SK, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 2005;105(8):3051–7.Google Scholar
Bashey, A, Medina, B, Corringham, S, Pasek, M, Carrier, E, Vrooman, L, et al. CTLA4 blockade with ipilimumab to treat relapse of malignancy after allogeneic hematopoietic cell transplantation. Blood. 2009;113(7):1581–8.Google Scholar
Yanada, M, Matsuo, K, Emi, N, Naoe, T. Efficacy of allogeneic hematopoietic stem cell transplantation depends on cytogenetic risk for acute myeloid leukemia in first disease remission: a metaanalysis. Cancer. 2005;103(8):1652–8.Google Scholar
Cornelissen, JJ, van Putten, WL, Verdonck, LF, Theobald, M, Jacky, E, Daenen, SM, et al. Results of a HOVON/SAKK donor versus no-donor analysis of myeloablative HLA-identical sibling stem cell transplantation in first remission acute myeloid leukemia in young and middle-aged adults: benefits for whom? Blood. 2007;109(9):3658–66.Google Scholar
Koreth, J, Schlenk, R, Kopecky, KJ, Honda, S, Sierra, J, Djulbegovic, BJ, et al. Allogeneic stem cell transplantation for acute myeloid leukemia in first complete remission: systematic review and meta-analysis of prospective clinical trials. JAMA: The Journal of the American Medical Association. 2009;301(22):2349–61.Google Scholar
Burnett, AK, Wheatley, K, Goldstone, AH, Stevens, RF, Hann, IM, Rees, JH, et al. The value of allogeneic bone marrow transplant in patients with acute myeloid leukaemia at differing risk of relapse: results of the UK MRC AML 10 trial. British Journal of Haematology. 2002;118(2):385400.Google Scholar
Sorror, ML, Maris, MB, Storb, R, Baron, F, Sandmaier, BM, Maloney, DG, et al. Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood. 2005;106(8):2912–9.Google Scholar
Sorror, ML, Sandmaier, BM, Storer, BE, Maris, MB, Baron, F, Maloney, DG, et al. Comorbidity and disease status based risk stratification of outcomes among patients with acute myeloid leukemia or myelodysplasia receiving allogeneic hematopoietic cell transplantation. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2007;25(27):4246–54.Google Scholar
Gratwohl, A, Stern, M, Brand, R, Apperley, J, Baldomero, H, de Witte, T, et al. Risk score for outcome after allogeneic hematopoietic stem cell transplantation: a retrospective analysis. Cancer. 2009;115(20):4715–26.Google Scholar
Armand, P, Kim, HT, Zhang, MJ, Perez, WS, Dal Cin, PS, Klumpp, TR, et al. Classifying cytogenetics in patients with acute myelogenous leukemia in complete remission undergoing allogeneic transplantation: a Center for International Blood and Marrow Transplant Research study. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2012;18(2):280–8.Google Scholar
Cornelissen, JJ, Breems, D, van Putten, WL, Gratwohl, AA, Passweg, JR, Pabst, T, et al. Comparative analysis of the value of allogeneic hematopoietic stem-cell transplantation in acute myeloid leukemia with monosomal karyotype versus other cytogenetic risk categories. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2012;30(17):2140–6.Google Scholar
Goldman, JM, Gale, RP. What does MRD in leukemia really mean? Leukemia. 2014;28(5):1131.Google Scholar
Walter, RB, Buckley, SA, Pagel, JM, Wood, BL, Storer, BE, Sandmaier, BM, et al. Significance of minimal residual disease before myeloablative allogeneic hematopoietic cell transplantation for AML in first and second complete remission. Blood. 2013;122(10):1813–21.Google Scholar
Appelbaum, FR. Measurement of minimal residual disease before and after myeloablative hematopoietic cell transplantation for acute leukemia. Best Practice & Research Clinical Haematology. 2013;26(3):279–84.Google Scholar
Patel, JP, Gonen, M, Figueroa, ME, Fernandez, H, Sun, Z, Racevskis, J, et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. The New England Journal of Medicine. 2012;366(12):1079–89.Google Scholar
Ley, TJ, Ding, L, Walter, MJ, McLellan, MD, Lamprecht, T, Larson, DE, et al. DNMT3A mutations in acute myeloid leukemia. The New England Journal of Medicine. 2010;363(25):2424–33.Google Scholar
Allen, C, Hills, RK, Lamb, K, Evans, C, Tinsley, S, Sellar, R, et al. The importance of relative mutant level for evaluating impact on outcome of KIT, FLT3 and CBL mutations in core-binding factor acute myeloid leukemia. Leukemia. 2013;27(9):1891–901.Google Scholar
Paschka, P, Du, J, Schlenk, RF, Gaidzik, VI, Bullinger, L, Corbacioglu, A, et al. Secondary genetic lesions in acute myeloid leukemia with inv(16) or t(16;16): a study of the German-Austrian AML Study Group (AMLSG). Blood. 2013;121(1):170–7.Google Scholar
Kurosawa, S, Yamaguchi, T, Miyawaki, S, Uchida, N, Sakura, T, Kanamori, H, et al. Prognostic factors and outcomes of adult patients with acute myeloid leukemia after first relapse. Haematologica. 2010;95(11):1857–64.Google Scholar
Duval, M, Klein, JP, He, W, Cahn, JY, Cairo, M, Camitta, BM, et al. Hematopoietic stem-cell transplantation for acute leukemia in relapse or primary induction failure. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2010;28(23):3730–8.Google Scholar
Burnett, AK, Goldstone, A, Hills, RK, Milligan, D, Prentice, A, Yin, J, et al. Curability of patients with acute myeloid leukemia who did not undergo transplantation in first remission. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2013;31(10):1293–301.Google Scholar
San Miguel, JF, Martinez, A, Macedo, A, Vidriales, MB, Lopez-Berges, C, Gonzalez, M, et al. Immunophenotyping investigation of minimal residual disease is a useful approach for predicting relapse in acute myeloid leukemia patients. Blood. 1997;90(6):2465–70.Google Scholar
Kern, W, Voskova, D, Schoch, C, Hiddemann, W, Schnittger, S, Haferlach, T. Determination of relapse risk based on assessment of minimal residual disease during complete remission by multiparameter flow cytometry in unselected patients with acute myeloid leukemia. Blood. 2004;104(10):3078–85.Google Scholar
Terwijn, M, van Putten, WL, Kelder, A, van der Velden, VH, Brooimans, RA, Pabst, T, et al. High prognostic impact of flow cytometric minimal residual disease detection in acute myeloid leukemia: data from the HOVON/SAKK AML 42A study. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2013;31(31):3889–97.Google Scholar
Buccisano, F, Maurillo, L, Del Principe, MI, Del Poeta, G, Sconocchia, G, Lo-Coco, F, et al. Prognostic and therapeutic implications of minimal residual disease detection in acute myeloid leukemia. Blood. 2012;119(2):332–41.Google Scholar
Rubnitz, JE, Inaba, H, Dahl, G, Ribeiro, RC, Bowman, WP, Taub, J, et al. Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: results of the AML02 multicentre trial. The Lancet Oncology. 2010;11(6):543–52.Google Scholar
Fang, M, Storer, B, Wood, B, Gyurkocza, B, Sandmaier, BM, Appelbaum, FR. Prognostic impact of discordant results from cytogenetics and flow cytometry in patients with acute myeloid leukemia undergoing hematopoietic cell transplantation. Cancer. 2012;118(9):2411–9.Google Scholar
Copelan, EA, Hamilton, BK, Avalos, B, Ahn, KW, Bolwell, BJ, Zhu, X, et al. Better leukemia-free and overall survival in AML in first remission following cyclophosphamide in combination with busulfan compared with TBI. Blood. 2013;122(24):3863–70.Google Scholar
Bredeson, C, LeRademacher, J, Kato, K, Dipersio, JF, Agura, E, Devine, SM, et al. Prospective cohort study comparing intravenous busulfan to total body irradiation in hematopoietic cell transplantation. Blood. 2013;122(24):3871–8.Google Scholar
Nagler, A, Rocha, V, Labopin, M, Unal, A, Ben Othman, T, Campos, A, et al. Allogeneic hematopoietic stem-cell transplantation for acute myeloid leukemia in remission: comparison of intravenous busulfan plus cyclophosphamide (Cy) versus total-body irradiation plus Cy as conditioning regimen–a report from the acute leukemia working party of the European group for blood and marrow transplantation. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2013;31(28):3549–56.Google Scholar
Bacigalupo, A, Ballen, K, Rizzo, D, Giralt, S, Lazarus, H, Ho, V, et al. Defining the intensity of conditioning regimens: working definitions. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2009;15(12):1628–33.Google Scholar
Aoudjhane, M, Labopin, M, Gorin, NC, Shimoni, A, Ruutu, T, Kolb, HJ, et al. Comparative outcome of reduced intensity and myeloablative conditioning regimen in HLA identical sibling allogeneic haematopoietic stem cell transplantation for patients older than 50 years of age with acute myeloblastic leukaemia: a retrospective survey from the Acute Leukemia Working Party (ALWP) of the European group for Blood and Marrow Transplantation (EBMT). Leukemia. 2005;19(12):2304–12.Google Scholar
Scott, BL, Pasquini, MC, Logan, B, et al. Results of a phase III randomized, multi-center study of allogeneic stem cell transplantation after high versus reduced intensity conditioning in patients with myelodysplastic syndrome or acute myeloid leukemia: Blood and Marrow Transplant Clinical Trials network (BMT CTN) 0901. Blood. 2015;126.Google Scholar
Bensinger, WI, Martin, PJ, Storer, B, Clift, R, Forman, SJ, Negrin, R, et al. Transplantation of bone marrow as compared with peripheral-blood cells from HLA-identical relatives in patients with hematologic cancers. The New England Journal of Medicine. 2001;344(3):175–81.Google Scholar
Stem Cell Trialists’ Collaborative G. Allogeneic peripheral blood stem-cell compared with bone marrow transplantation in the management of hematologic malignancies: an individual patient data meta-analysis of nine randomized trials. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2005;23(22):5074–87.Google Scholar
Anasetti, C, Logan, BR, Lee, SJ, Waller, EK, Weisdorf, DJ, Wingard, JR, et al. Peripheral-blood stem cells versus bone marrow from unrelated donors. The New England Journal of Medicine. 2012;367(16):1487–96.Google Scholar
Appelbaum, FR. Pursuing the goal of a donor for everyone in need. The New England Journal of Medicine. 2012;367(16):1555–6.Google Scholar
Walter, RB, Pagel, JM, Gooley, TA, Petersdorf, EW, Sorror, ML, Woolfrey, AE, et al. Comparison of matched unrelated and matched related donor myeloablative hematopoietic cell transplantation for adults with acute myeloid leukemia in first remission. Leukemia. 2010;24(7):1276–82.Google Scholar
Imahashi, N, Suzuki, R, Fukuda, T, Kakihana, K, Kanamori, H, Eto, T, et al. Allogeneic hematopoietic stem cell transplantation for intermediate cytogenetic risk AML in first CR. Bone Marrow Transplantation. 2013;48(1):5662.Google Scholar
Gupta, V, Tallman, MS, He, W, Logan, BR, Copelan, E, Gale, RP, et al. Comparable survival after HLA-well-matched unrelated or matched sibling donor transplantation for acute myeloid leukemia in first remission with unfavorable cytogenetics at diagnosis. Blood. 2010;116(11):1839–48.Google Scholar
Gragert, L, Eapen, M, Williams, E, Freeman, J, Spellman, S, Baitty, R, et al. HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. The New England Journal of Medicine. 2014;371(4):339–48.Google Scholar
Lee, SJ, Klein, J, Haagenson, M, Baxter-Lowe, LA, Confer, DL, Eapen, M, et al. High-resolution donor-recipient HLA-matching contributes to the success of unrelated donor marrow transplantation. Blood. 2007;110(13):4576–83.Google Scholar
Barker, JN, Scaradavou, A, Stevens, CE. Combined effect of total nucleated cell dose and HLA match on transplantation outcome in 1061 cord blood recipients with hematologic malignancies. Blood. 2010;115(9):1843–9.Google Scholar
Eapen, M, Klein, JP, Sanz, GF, Spellman, S, Ruggeri, A, Anasetti, C, et al. Effect of donor-recipient HLA matching at HLA A, B, C, and DRB1 on outcomes after umbilical-cord blood transplantation for leukaemia and myelodysplastic syndrome: a retrospective analysis. The Lancet Oncology. 2011;12(13):1214–21.Google Scholar
Ruggeri, A, Sanz, G, Bittencourt, H, Sanz, J, Rambaldi, A, Volt, F, et al. Comparison of outcomes after single or double cord blood transplantation in adults with acute leukemia using different types of myeloablative conditioning regimen, a retrospective study on behalf of Eurocord and the Acute Leukemia Working Party of EBMT. Leukemia. 2014;28(4):779–86.Google Scholar
Scaradavou, A, Brunstein, CG, Eapen, M, Le-Rademacher, J, Barker, JN, Chao, N, et al. Double unit grafts successfully extend the application of umbilical cord blood transplantation in adults with acute leukemia. Blood. 2013;121(5):752–8.Google Scholar
Verneris, MR, Brunstein, CG, Barker, J, MacMillan, ML, DeFor, T, McKenna, DH, et al. Relapse risk after umbilical cord blood transplantation: enhanced graft-versus-leukemia effect in recipients of 2 units. Blood. 2009;114(19):4293–9.Google Scholar
Wagner, JE Jr., Eapen, M, Carter, S, Wang, Y, Schultz, KR, Wall, DA, et al. One-unit versus two-unit cord-blood transplantation for hematologic cancers. The New England Journal of Medicine. 2014;371(18):1685–94.Google Scholar
Ciceri, F, Labopin, M, Aversa, F, Rowe, JM, Bunjes, D, Lewalle, P, et al. A survey of fully haploidentical hematopoietic stem cell transplantation in adults with high-risk acute leukemia: a risk factor analysis of outcomes for patients in remission at transplantation. Blood. 2008;112(9):3574–81.Google Scholar
Huang, XJ, Liu, DH, Liu, KY, Xu, LP, Chen, H, Han, W, et al. Treatment of acute leukemia with unmanipulated HLA-mismatched/haploidentical blood and bone marrow transplantation. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2009;15(2):257–65.Google Scholar
Champlin, RE, Passweg, JR, Zhang, MJ, Rowlings, PA, Pelz, CJ, Atkinson, KA, et al. T-cell depletion of bone marrow transplants for leukemia from donors other than HLA-identical siblings: advantage of T-cell antibodies with narrow specificities. Blood. 2000;95(12):39964003.Google Scholar
Baron, F, Labopin, M, Blaise, D, Lopez-Corral, L, Vigouroux, S, Craddock, C, et al. Impact of in vivo T-cell depletion on outcome of AML patients in first CR given peripheral blood stem cells and reduced-intensity conditioning allo-SCT from a HLA-identical sibling donor: a report from the Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplantation. 2014;49(3):389–96.Google Scholar
Bayraktar, UD, de Lima, M, Saliba, RM, Maloy, M, Castro-Malaspina, HR, Chen, J, et al. Ex vivo T cell-depleted versus unmodified allografts in patients with acute myeloid leukemia in first complete remission. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2013;19(6):898903.Google Scholar
Pavletic, SZ, Kumar, S, Mohty, M, de Lima, M, Foran, JM, Pasquini, M, et al. NCI First International Workshop on the Biology, Prevention, and Treatment of Relapse after Allogeneic Hematopoietic Stem Cell Transplantation: report from the Committee on the Epidemiology and Natural History of Relapse following Allogeneic Cell Transplantation. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2010;16(7):871–90.CrossRefGoogle Scholar
Fung, HC, Stein, A, Slovak, M, O’Donnell, M R, Snyder, DS, Cohen, S, et al. A long-term follow-up report on allogeneic stem cell transplantation for patients with primary refractory acute myelogenous leukemia: impact of cytogenetic characteristics on transplantation outcome. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2003;9(12):766–71.Google Scholar
Ferrant, A, Labopin, M, Frassoni, F, Prentice, HG, Cahn, JY, Blaise, D, et al. Karyotype in acute myeloblastic leukemia: prognostic significance for bone marrow transplantation in first remission: a European Group for Blood and Marrow Transplantation study. Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation (EBMT). Blood. 1997;90(8):2931–8.Google Scholar
Tallman, MS, Dewald, GW, Gandham, S, Logan, BR, Keating, A, Lazarus, HM, et al. Impact of cytogenetics on outcome of matched unrelated donor hematopoietic stem cell transplantation for acute myeloid leukemia in first or second complete remission. Blood. 2007;110(1):409–17.Google Scholar
Brunet, S, Labopin, M, Esteve, J, Cornelissen, J, Socie, G, Iori, AP, et al. Impact of FLT3 internal tandem duplication on the outcome of related and unrelated hematopoietic transplantation for adult acute myeloid leukemia in first remission: a retrospective analysis. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2012;30(7):735–41.Google Scholar
Randolph, SS, Gooley, TA, Warren, EH, Appelbaum, FR, Riddell, SR. Female donors contribute to a selective graft-versus-leukemia effect in male recipients of HLA-matched, related hematopoietic stem cell transplants. Blood. 2004;103(1):347–52.Google Scholar
Goldstone, AH, Burnett, AK, Wheatley, K, Smith, AG, Hutchinson, RM, Clark, RE, et al. Attempts to improve treatment outcomes in acute myeloid leukemia (AML) in older patients: the results of the United Kingdom Medical Research Council AML11 trial. Blood. 2001;98(5):1302–11.Google Scholar
Buyse, M, Squifflet, P, Lange, BJ, Alonzo, TA, Larson, RA, Kolitz, JE, et al. Individual patient data meta-analysis of randomized trials evaluating IL-2 monotherapy as remission maintenance therapy in acute myeloid leukemia. Blood. 2011;117(26):7007–13.Google Scholar
de Lima, M, Giralt, S, Thall, PF, de Padua, Silva L, Jones, RB, Komanduri, K, et al. Maintenance therapy with low-dose azacitidine after allogeneic hematopoietic stem cell transplantation for recurrent acute myelogenous leukemia or myelodysplastic syndrome: a dose and schedule finding study. Cancer. 2010;116(23):5420–31.Google Scholar
Platzbecker, U, Wermke, M, Radke, J, Oelschlaegel, U, Seltmann, F, Kiani, A, et al. Azacitidine for treatment of imminent relapse in MDS or AML patients after allogeneic HSCT: results of the RELAZA trial. Leukemia. 2012;26(3):381–9.Google Scholar
Metzelder, SK, Schroeder, T, Finck, A, Scholl, S, Fey, M, Gotze, K, et al. High activity of sorafenib in FLT3-ITD-positive acute myeloid leukemia synergizes with allo-immune effects to induce sustained responses. Leukemia. 2012;26(11):2353–9.Google Scholar
Keilholz, U, Letsch, A, Busse, A, Asemissen, AM, Bauer, S, Blau, IW, et al. A clinical and immunologic phase 2 trial of Wilms tumor gene product 1 (WT1) peptide vaccination in patients with AML and MDS. Blood. 2009;113(26):6541–8.Google Scholar
Rezvani, K, Yong, AS, Mielke, S, Jafarpour, B, Savani, BN, Le, RQ, et al. Repeated PR1 and WT1 peptide vaccination in Montanide-adjuvant fails to induce sustained high-avidity, epitope-specific CD8+ T cells in myeloid malignancies. Haematologica. 2011;96(3):432–40.Google Scholar
Gale, RP and Fuchs, EJ. Is there really a specific graft-versus-leukaemia effect? Bone Marrow Transplant. 2016; Nov; 51(11):1413–15.Google Scholar
Deol, A, Sengsayadeth, S, Ahn, KW, et al. Does FLT 3 mutation impact survival after hematopoietic stem cell transplantation for acute myeloid leukemia? A Center for International Blood and Marrow Transplant Research (CIBMTR) analysis. Cancer. 2016;122(19):3005–14.Google Scholar
Papaemmanuil, E, Gerstung, M, Bullinger, L, et al. Genomic classification and prognosis in acute myeloid leukemia. New England Journal of Medicine. 2016;374(23):2209–21.Google Scholar
Schlenk, RF, Kayser, S, Bullinger, L, et al. Differential impact of allelic ratio and insertion site in FLT3-ITD-positive AML with respect to allogeneic transplantation. Blood. 2014;124(23):3441–9.Google Scholar
Linch, DC, Hills, RK, Burnett, AK, et al. Impact of FLT3(ITD) mutant allele level on relapse risk in intermediate-risk acute myeloid leukemia. Blood. 2014;124(2):273–6.Google Scholar
Krug, U, Berdel, WE, Gale, RP. Increasing intensity of therapies assigned at diagnosis does not improve survival of adults with acute myeloid leukemia. Leukemia. 2016;30(6):1230–6.Google Scholar
Sanz, J, Gale, RP. One or two umbilical cord blood cell units? Caveat emptor. Bone Marrow Transplantation. In press.Google Scholar
Bacigalupo, A, Lamparelli, T, Barisione, G, et al. Thymoglobulin prevents chronic graft-versus-host disease, chronic lung dysfunction, and late transplant-related mortality: long-term follow-up of a randomized trial in patients undergoing unrelated donor transplantation. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2006;12:560–5.Google Scholar
Finke, J, Bethge, WA, Schmoor, C, et al. Standard graft-versus-host disease prophylaxis with or without anti-T-cell globulin in haematopoietic cell transplantation from matched unrelated donors: a randomised, open-label, multicentre phase 3 trial. Lancet Oncology. 2009;10(9):855–64.Google Scholar
Kroger, N, Solano, C, Wolschke, C, et al. Antilymphocyte globulin for prevention of chronic graft-versus-host-disease. New England Journal of Medicne. 2016;374(1):4353. PMID: 26735993.Google Scholar
Walker, I, Panzarella, T, Couban, S, et al. Pretreatment with anti-thymocyte globulin versus no anti-thymocyte globulin in patients witih haematological malignancies undergoing haemopoietic cell transplantation from unrelated donors: a randomised, controlled, open-label, phase 3, multicenter trial. Lancet Oncology. 2016;17:164–73.Google Scholar
Ivey, A, Hills, RK, Simpson, MA, et al. Assessment of minimal residual disease in standard-risk AML. New England Journal of Medicine. 2016;374(5):422–33.Google Scholar
Othus, M, Estey, E, Gale, RP. Assessment of minimal residual disease in standard-risk AML. New England Journal of Medicine. 2016;375(6): e9.Google Scholar
Adults with acute myeloid leukaemia or high-risk myelodysplastic syndrome (AML 19): a randomized, controlled, open label Phase III trial. Retrieved December 21, 2016, from www.isrctn.com/ISRCTN78449203.Google Scholar
Milano, F, Gooley, T, Wood, B, et al. Cord-blood transplantation in patients with minimal residual disease. New England Journal of Medicine. 2016;375(10):944–53.Google Scholar

References

Cogle, CR, Craig, BM, Rollison, DE, List, AF. Incidence of the myelodysplastic syndromes using a novel claims-based algorithm: high number of uncaptured cases by cancer registries. Blood. 2011;117(26):7121–5.Google Scholar
Greenberg, P, Cox, C, LeBeau, MM, Fenaux, P, Morel, P, Sanz, G, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89(6):2079–88.Google Scholar
Malcovati, L, Germing, U, Kuendgen, A, Della Porta, MG, Pascutto, C, Invernizzi, R, et al. Time-dependent prognostic scoring system for predicting survival and leukemic evolution in myelodysplastic syndromes. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2007;25(23):3503–10.Google Scholar
Greenberg, PL, Tuechler, H, Schanz, J, Sanz, G, Garcia-Manero, G, Sole, F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120(12):2454–65.Google Scholar
Estey, E, de Lima, M, Tibes, R, Pierce, S, Kantarjian, H, Champlin, R, et al. Prospective feasibility analysis of reduced-intensity conditioning (RIC) regimens for hematopoietic stem cell transplantation (HCT) in elderly patients with acute myeloid leukemia (AML) and high-risk myelodysplastic syndrome (MDS). Blood. 2007;109(4):1395–400.Google Scholar
McClune, BL, Weisdorf, DJ, Pedersen, TL, Tunes da Silva, G, Tallman, MS, Sierra, J, et al. Effect of age on outcome of reduced-intensity hematopoietic cell transplantation for older patients with acute myeloid leukemia in first complete remission or with myelodysplastic syndrome. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2010;28(11):1878–87.Google Scholar
Pasquini, MC, Wang, Z. Current use and outcome of hematopoietic stem cell transplantation: CIBMTR Summary Slides. Updated 2013. Available from: www.cibmtr.org.Google Scholar
Park, S, Grabar, S, Kelaidi, C, Beyne-Rauzy, O, Picard, F, Bardet, V, et al. Predictive factors of response and survival in myelodysplastic syndrome treated with erythropoietin and G-CSF: the GFM experience. Blood. 2008;111(2):574–82.Google Scholar
Fenaux, P, Mufti, GJ, Hellstrom-Lindberg, E, Santini, V, Finelli, C, Giagounidis, A, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. The Lancet Oncology. 2009;10(3):223–32.Google Scholar
Lubbert, M, Suciu, S, Baila, L, Ruter, BH, Platzbecker, U, Giagounidis, A, et al. Low-dose decitabine versus best supportive care in elderly patients with intermediate- or high-risk myelodysplastic syndrome (MDS) ineligible for intensive chemotherapy: final results of the randomized phase III study of the European Organisation for Research and Treatment of Cancer Leukemia Group and the German MDS Study Group. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2011;29(15):1987–96.Google Scholar
Greenberg, PL, Attar, E, Bennett, JM, Bloomfield, CD, De Castro, CM, Deeg, HJ, et al. NCCN Clinical Practice Guidelines in Oncology: myelodysplastic syndromes. Journal of the National Comprehensive Cancer Network: JNCCN. 2011;9(1):3056.Google Scholar
Prebet, T, Gore, SD, Esterni, B, Gardin, C, Itzykson, R, Thepot, S, et al. Outcome of high-risk myelodysplastic syndrome after azacitidine treatment failure. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2011;29(24):3322–7.Google Scholar
de Witte, T, Hermans, J, Vossen, J, Bacigalupo, A, Meloni, G, Jacobsen, N, et al. Haematopoietic stem cell transplantation for patients with myelo-dysplastic syndromes and secondary acute myeloid leukaemias: a report on behalf of the Chronic Leukaemia Working Party of the European Group for Blood and Marrow Transplantation (EBMT). British Journal of Haematology. 2000;110(3):620–30.Google Scholar
Brand, R, Putter, H, van Biezen, A, Niederwieser, D, Martino, R, Mufti, G, et al. Comparison of allogeneic stem cell transplantation and non-transplant approaches in elderly patients with advanced myelodysplastic syndrome: optimal statistical approaches and a critical appraisal of clinical results using non-randomized data. PLoS One. 2013;8(10):e74368.Google Scholar
Platzbecker, U, Schetelig, J, Finke, J, Trenschel, R, Scott, BL, Kobbe, G, et al. Allogeneic hematopoietic cell transplantation in patients age 60-70 years with de novo high-risk myelodysplastic syndrome or secondary acute myelogenous leukemia: comparison with patients lacking donors who received azacitidine. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2012;18(9):1415–21.Google Scholar
Robin, M, Porcher, R, Ades, L, Raffoux, E, Michallet, M, Francois, S, et al. Outcome of patients with IPSS intermediate (int) or high risk myelodysplastic syndrome (MDS) according to donor availability: a multicenter prospective non interventional study for the SFGM-TC and GFM. Blood. 2013;122(301).Google Scholar
Cutler, CS, Lee, SJ, Greenberg, P, Deeg, HJ, Perez, WS, Anasetti, C, et al. A decision analysis of allogeneic bone marrow transplantation for the myelodysplastic syndromes: delayed transplantation for low-risk myelodysplasia is associated with improved outcome. Blood. 2004;104(2):579–85.Google Scholar
Alessandrino, EP, Porta, MG, Malcovati, L, Jackson, CH, Pascutto, C, Bacigalupo, A, et al. Optimal timing of allogeneic hematopoietic stem cell transplantation in patients with myelodysplastic syndrome. American Journal of Hematology. 2013;88(7):581–8.Google Scholar
Koreth, J, Pidala, J, Perez, WS, Deeg, HJ, Garcia-Manero, G, Malcovati, L, et al. Role of reduced-intensity conditioning allogeneic hematopoietic stem-cell transplantation in older patients with de novo myelodysplastic syndromes: an international collaborative decision analysis. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2013;31(21):2662–70.Google Scholar
Della Porta, MG, Alessandrino, EP, Bacigalupo, A, van Lint, MT, Malcovati, L, Pascutto, C, et al. Predictive factors for the outcome of allogeneic transplantation in patients with MDS stratified according to the revised IPSS-R. Blood. 2014;123(15):2333–42.Google Scholar
Hahn, T, McCarthy, PL Jr., Hassebroek, A, Bredeson, C, Gajewski, JL, Hale, GA, et al. Significant improvement in survival after allogeneic hematopoietic cell transplantation during a period of significantly increased use, older recipient age, and use of unrelated donors. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2013;31(19):2437–49.Google Scholar
Brunner, AM, Kim, HT, Coughlin, E, Alyea, EP, 3rd, Armand, P, Ballen, KK, et al. Outcomes in patients age 70 or older undergoing allogeneic hematopoietic stem cell transplantation for hematologic malignancies. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2013;19(9):1374–80.Google Scholar
Luger, SM, Ringden, O, Zhang, MJ, Perez, WS, Bishop, MR, Bornhauser, M, et al. Similar outcomes using myeloablative vs reduced-intensity allogeneic transplant preparative regimens for AML or MDS. Bone Marrow Transplantation. 2012;47(2):203–11.Google Scholar
Martino, R, de Wreede, L, Fiocco, M, van Biezen, A, von dem Borne, PA, Hamladji, RM, et al. Comparison of conditioning regimens of various intensities for allogeneic hematopoietic SCT using HLA-identical sibling donors in AML and MDS with <10% BM blasts: a report from EBMT. Bone Marrow Transplantation. 2013;48(6):761–70.Google Scholar
Chen, YB, Coughlin, E, Kennedy, KF, Alyea, EP, Armand, P, Attar, EC, et al. Busulfan dose intensity and outcomes in reduced-intensity allogeneic peripheral blood stem cell transplantation for myelodysplastic syndrome or acute myeloid leukemia. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2013;19(6):981–7.Google Scholar
Soiffer, RJ, Lerademacher, J, Ho, V, Kan, F, Artz, A, Champlin, RE, et al. Impact of immune modulation with anti-T-cell antibodies on the outcome of reduced-intensity allogeneic hematopoietic stem cell transplantation for hematologic malignancies. Blood. 2011;117(25):6963–70.Google Scholar
Finke, J, Bethge, WA, Schmoor, C, Ottinger, HD, Stelljes, M, Zander, AR, et al. Standard graft-versus-host disease prophylaxis with or without anti-T-cell globulin in haematopoietic cell transplantation from matched unrelated donors: a randomised, open-label, multicentre phase 3 trial. The Lancet Oncology. 2009;10(9):855–64.Google Scholar
Kroger, N, Zabelina, T, de Wreede, L, Berger, J, Alchalby, H, van Biezen, A, et al. Allogeneic stem cell transplantation for older advanced MDS patients: improved survival with young unrelated donor in comparison with HLA-identical siblings. Leukemia. 2013;27(3):604–9.Google Scholar
Saber, W, Cutler, CS, Nakamura, R, Zhang, MJ, Atallah, E, Rizzo, JD, et al. Impact of donor source on hematopoietic cell transplantation outcomes for patients with myelodysplastic syndromes (MDS). Blood. 2013;122(11):1974–82.Google Scholar
Kim, Y, Kim, IH, Kim, HJ, Park, S, Lee, KH, Kim, SJ, et al. Multicenter study evaluating the impact of hypomethylating agents as bridging therapy to hematopoietic stem cell transplantation in myelodysplastic syndromes. International Journal of Hematology. 2014;99(5):635–43.Google Scholar
Damaj, G, Duhamel, A, Robin, M, Beguin, Y, Michallet, M, Mohty, M, et al. Impact of azacitidine before allogeneic stem-cell transplantation for myelodysplastic syndromes: a study by the Societe Francaise de Greffe de Moelle et de Therapie-Cellulaire and the Groupe-Francophone des Myelodysplasies. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2012;30(36):4533–40.Google Scholar
Gerds, AT, Gooley, TA, Estey, EH, Appelbaum, FR, Deeg, HJ, Scott, BL. Pretransplantation therapy with azacitidine vs induction chemotherapy and post-transplantation outcome in patients with MDS. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2012;18(8):1211–8.Google Scholar
Pollyea, DA, Artz, AS, Stock, W, Daugherty, C, Godley, L, Odenike, OM, et al. Outcomes of patients with AML and MDS who relapse or progress after reduced intensity allogeneic hematopoietic cell transplantation. Bone Marrow Transplantation. 2007;40(11):1027–32.Google Scholar
Schroeder, T, Czibere, A, Platzbecker, U, Bug, G, Uharek, L, Luft, T, et al. Azacitidine and donor lymphocyte infusions as first salvage therapy for relapse of AML or MDS after allogeneic stem cell transplantation. Leukemia. 2013;27(6):1229–35.Google Scholar
Platzbecker, U, Wermke, M, Radke, J, Oelschlaegel, U, Seltmann, F, Kiani, A, et al. Azacitidine for treatment of imminent relapse in MDS or AML patients after allogeneic HCT: results of the RELAZA trial. Leukemia. 2012;26(3):381–9.Google Scholar
de Lima, M, Giralt, S, Thall, PF, de Padua, Silva L, Jones, RB, Komanduri, K, et al. Maintenance therapy with low-dose azacitidine after allogeneic hematopoietic stem cell transplantation for recurrent acute myelogenous leukemia or myelodysplastic syndrome: a dose and schedule finding study. Cancer. 2010;116(23):5420–31.Google Scholar
Goodyear, OC, Dennis, M, Jilani, NY, Loke, J, Siddique, S, Ryan, G, et al. Azacitidine augments expansion of regulatory T cells after allogeneic stem cell transplantation in patients with acute myeloid leukemia (AML). Blood. 2012;119(14):3361–9.Google Scholar
Ho, VT, Vanneman, M, Kim, H, Sasada, T, Kang, YJ, Pasek, M, et al. Biologic activity of irradiated, autologous, GM-CSF-secreting leukemia cell vaccines early after allogeneic stem cell transplantation. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(37):15825–30.Google Scholar
Haferlach, T, Nagata, Y, Grossmann, V, Okuno, Y, Bacher, U, Nagae, G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28(2):241–7.Google Scholar
Papaemmanuil, E, Gerstung, M, Malcovati, L, Tauro, S, Gundem, G, Van Loo, P, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013;122(22):3616–27; quiz 99.Google Scholar
Bejar, R, Stevenson, K, Abdel-Wahab, O, Galili, N, Nilsson, B, Garcia-Manero, G, et al. Clinical effect of point mutations in myelodysplastic syndromes. The New England Journal of Medicine. 2011;364(26):2496–506.Google Scholar
Bejar, R, Stevenson, KE, Caughey, BA, Abdel-Wahab, O, Steensma, DP, Galili, N, et al. Validation of a prognostic model and the impact of mutations in patients with lower-risk myelodysplastic syndromes. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2012;30(27):3376–82.Google Scholar
Bejar, R. Prognostic models in myelodysplastic syndromes. Hematology/the Education Program of the American Society of Hematology American Society of Hematology Education Program. 2013;2013:504–10.Google Scholar
Bejar, R, Stevenson, KE, Caughey, B, Lindsley, RC, Mar, BG, Stojanov, P, et al. Somatic mutations predict poor outcome in patients with myelodysplastic syndrome after hematopoietic stem-cell transplantation. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2014;32(25):2691–8.Google Scholar
Deeg, HJ, Scott, BL, Fang, M, Shulman, HM, Gyurkocza, B, Myerson, D, et al. Five-group cytogenetic risk classification, monosomal karyotype, and outcome after hematopoietic cell transplantation for MDS or acute leukemia evolving from MDS. Blood. 2012;120(7):1398–408.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×