Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-04-30T10:23:32.860Z Has data issue: false hasContentIssue false

Section 1 - Cognitive Function in Perioperative Care

Published online by Cambridge University Press:  11 April 2019

Roderic G. Eckenhoff
Affiliation:
University of Pennsylvania
Niccolò Terrando
Affiliation:
Duke University, North Carolina
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Shoum, S.M., 2014. Posttraumatic stress disorder: a special case of emergence delirium and anesthetic alternatives. A & A Case Reports, 3(5), 5860.CrossRefGoogle ScholarPubMed
Saczynski, J.S., et al., 2012. Cognitive trajectories after postoperative delirium. The New England Journal of Medicine, 367(1), 3039.Google Scholar
Inouye, S.K., Westendorp, R.G.J. & Saczynski, J.S., 2014. Delirium in elderly people. The Lancet, 383(9920), 911922.Google Scholar
Inouye, S.K., 2006. Delirium in older persons. The New England Journal of Medicine, 354(11), 11571165.Google Scholar
Smessaert, A., Schehr, C.A. & Artusio, J.F. Jr., 1960. Observations in the immediate postanaesthesia period. II. Mode of recovery. British Journal of Anaesthesia, 32, 181185.Google Scholar
Eckenhoff, J.E., Kneale, D.H. & Dripps, R.D., 1961. The incidence and etiology of postanesthetic excitement: a clinical survey. Anesthesiology, 22(5), 667673.Google Scholar
Cole, J.W., et al., 2002. Emergence behaviour in children: defining the incidence of excitement and agitation following anaesthesia. Paediatric Anaesthesia, 12(5), 442447.Google Scholar
Voepel-Lewis, T., Malviya, S. & Tait, A.R., 2003. A prospective cohort study of emergence agitation in the pediatric postanesthesia care unit. Anesthesia & Analgesia, 96, 16251630.Google Scholar
Munk, L., Andersen, G. & Møller, A.M., 2016. Post-anaesthetic emergence delirium in adults: incidence, predictors and consequences. Acta Anaesthesiologica Scandinavica, 60(8), 10591066.CrossRefGoogle ScholarPubMed
Lepouse, C., 2006. Emergence delirium in adults in the post-anaesthesia care unit. British Journal of Anaesthesia, 96(6), 747753.Google Scholar
Yu, D., et al., 2010. Emergence agitation in adults: risk factors in 2,000 patients. Canadian Journal of Anaesthesia/Journal canadien d’anesthesie, 57(9), 843848.CrossRefGoogle Scholar
Kim, H.-J., et al., 2015. Risk factors of emergence agitation in adults undergoing general anesthesia for nasal surgery. Clinical and Experimental Otorhinolaryngology, 8(1), 4651.Google Scholar
Radtke, F.M., et al., 2010. Risk factors for inadequate emergence after anesthesia: emergence delirium and hypoactive emergence. Minerva Anestesiologica, 76(6), 394403.Google Scholar
Slor, C.J., et al., 2011. Anesthesia and postoperative delirium in older adults undergoing hip surgery. Journal of the American Geriatrics Society, 59(7), 13131319.Google Scholar
Mei, W., et al., 2010. Independent risk factors for postoperative pain in need of intervention early after awakening from general anaesthesia. European Journal of Pain, 14(2), Article 149.Google Scholar
Card, E., et al., 2015. Emergence from general anaesthesia and evolution of delirium signs in the post-anaesthesia care unit. British Journal of Anaesthesia, 115(3), 411417.Google Scholar
Hernandez, B.A., et al., 2017. Post-anaesthesia care unit delirium: incidence, risk factors and associated adverse outcomes. British Journal of Anaesthesia, 119(2), 288290.Google Scholar
Eckenhoff, R.G., 2001. Promiscuous ligands and attractive cavities: how do the inhaled anesthetics work? Molecular Interventions, 1(5), 258268.Google ScholarPubMed
Brown, E.N., Lydic, R. & Schiff, N.D., 2010. General anesthesia, sleep, and coma. The New England Journal of Medicine, 363(27), 26382650.Google Scholar
Chen, X., Shu, S. & Bayliss, D.A., 2009. HCN1 channel subunits are a molecular substrate for hypnotic actions of ketamine. The Journal of Neuroscience, 29(3), 600609.Google Scholar
Franks, N.P. & Lieb, W.R., 1991. Stereospecific effects of inhalational general anesthetic optical isomers on nerve ion channels. Science, 254(5030), 427430.Google Scholar
Jevtović-Todorović, V., et al., 1998. Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nature Medicine, 4(4), 460463.Google Scholar
Jurd, R., et al., 2003. General anesthetic actions in vivo strongly attenuated by a point mutation in the GABAA receptor β3 subunit. The FASEB Journal, 17(2), 250252.Google Scholar
Yip, G.M.S., et al., 2013. A propofol binding site on mammalian GABAA receptors identified by photolabeling. Nature Chemical Biology, 9(11), 715720.Google Scholar
Nelson, L.E., et al., 2003. The α2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology, 98(2), 428436.CrossRefGoogle Scholar
Shafer, A., et al., 1988. Pharmacokinetics and pharmacodynamics of propofol infusions during general anesthesia. Anesthesiology, 69(3), 348356.Google Scholar
Friedman, E.B., et al., 2010. A conserved behavioral state barrier impedes transitions between anesthetic-induced unconsciousness and wakefulness: evidence for neural inertia. PLoS One, 5(7), e11903.Google Scholar
Joiner, W.J., et al., 2013. Genetic and anatomical basis of the barrier separating wakefulness and anesthetic-induced unresponsiveness. PLoS Genetics, 9(9), e1003605.Google Scholar
Kelz, M.B., et al., 2008. An essential role for orexins in emergence from general anesthesia. Proceedings of the National Academy of Sciences of the United States of America, 105(4), 13091314.CrossRefGoogle ScholarPubMed
Proekt, A. & Kelz, M., 2018. Schrödinger’s cat: anaesthetised and not! British Journal of Anaesthesia, 120(3), 424428.Google Scholar
Warnaby, C.E., et al., 2017. Investigation of slow-wave activity saturation during surgical anesthesia reveals a signature of neural inertia in humans. Anesthesiology, 127(4), 645657.Google Scholar
Kuizenga, M.H., et al., 2018. Test of neural inertia in humans during general anaesthesia. British Journal of Anaesthesia, 120(3), 525536.Google Scholar
McKinstry-Wu, A., et al., 2018. Xenon anesthesia and CT: noninvasive measures of brain anesthetic concentration. Methods in Enzymology, 602, 289298.Google Scholar
Anfinsen, C.B., 1973. Principles that govern the folding of protein chains. Science, 181(4096), 223230.Google Scholar
Levinthal, C., 1968. Are there pathways for protein folding? Journal de Chimie Physique, 65, 4445.Google Scholar
Chalmers, D.J., 1997. The Conscious Mind: In Search of a Fundamental Theory. Oxford Paperbacks.Google Scholar
Hudson, A.E., 2017. Metastability of neuronal dynamics during general anesthesia: time for a change in our assumptions? Frontiers in Neural Circuits, 11, 58.Google Scholar
Hudson, A.E., et al., 2014. Recovery of consciousness is mediated by a network of discrete metastable activity states. Proceedings of the National Academy of Sciences of the United States of America, 111(25), 92839288.Google Scholar
Alonso, L.M., et al., 2014. Dynamical criticality during induction of anesthesia in human ECoG recordings. Frontiers in Neural Circuits, 8, 20.Google Scholar
Solovey, G., et al., 2015. Loss of consciousness is associated with stabilization of cortical activity. The Journal of Neuroscience, 35(30), 1086610877.Google Scholar
Chander, D., et al., 2014. Electroencephalographic variation during end maintenance and emergence from surgical anesthesia. PLoS One, 9(9), e106291.Google Scholar
Kafashan, M., Ching, S. & Palanca, B.J.A., 2016. Sevoflurane alters spatiotemporal functional connectivity motifs that link resting-state networks during wakefulness. Frontiers in Neural Circuits, 10, 107.Google Scholar
Lee, M., et al., 2017. Network properties in transitions of consciousness during propofol-induced sedation. Scientific Reports, 7(1), 16791.Google Scholar
Ishizawa, Y., et al., 2016. Dynamics of propofol-induced loss of consciousness across primate neocortex. The Journal of Neuroscience, 36(29), 77187726.Google Scholar
Strogatz, S.H., 2000. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering. CRC Press.Google Scholar
Chan, M.T.V., et al., 2013. BIS-guided anesthesia decreases postoperative delirium and cognitive decline. Journal of Neurosurgical Anesthesiology, 25(1), 3342.Google Scholar
Radtke, F.M., et al., 2013. Monitoring depth of anaesthesia in a randomized trial decreases the rate of postoperative delirium but not postoperative cognitive dysfunction. British Journal of Anaesthesia, 110, 98105.Google Scholar
Sieber, F.E., et al., 2010. Sedation depth during spinal anesthesia and the development of postoperative delirium in elderly patients undergoing hip fracture repair. Mayo Clinic Proceedings, 85(1), 1826.Google Scholar
Whitlock, E.L., et al., 2014. Postoperative delirium in a substudy of cardiothoracic surgical patients in the BAG-RECALL clinical trial. Anesthesia & Analgesia, 118(4), 809817.Google Scholar
Soehle, M., et al., 2015. Intraoperative burst suppression is associated with postoperative delirium following cardiac surgery: a prospective, observational study. BMC Anesthesiology, 15, 61.Google Scholar
Fritz, B.A., et al., 2016. Intraoperative electroencephalogram suppression predicts postoperative delirium. Anesthesia & Analgesia, 122(1), 234242.Google Scholar
Fritz, B.A., Maybrier, H.R. & Avidan, M.S., 2018. Intraoperative electroencephalogram suppression at lower volatile anaesthetic concentrations predicts postoperative delirium occurring in the intensive care unit. British Journal of Anaesthesia. http://dx.doi.org/10.1016/j.bja.2017.10.024.Google Scholar

References

Inouye, SK, Westendorp, RG, Saczynski, JS. Delirium in elderly people. The Lancet. 2014;383(9920):911922.Google Scholar
Turrentine, FE, Wang, H, Simpson, VB, Jones, RS. Surgical risk factors, morbidity, and mortality in elderly patients. Journal of the American College of Surgeons. 2006;203(6):865877.Google Scholar
Postoperative delirium in older adults: best practice statement from the American Geriatrics Society. Journal of the American College of Surgeons. 2015;220(2):136–148.e1.Google Scholar
American Psychiatric Association DSM-5 Task Force. Diagnostic and Statistical Manual of Mental Disorders, 5th ed. Washington, DC: American Psychiatric Association, 2013.Google Scholar
Hartsell, ZC, Williams, JS. Is it ethical to provide enteral tube feedings for patients with dementia? JAAPA. 2010;23(10):5556.Google Scholar
Pisani, MA, Kong, SY, Kasl, SV, Murphy, TE, Araujo, KL, Van Ness, PH. Days of delirium are associated with 1-year mortality in an older intensive care unit population. American Journal of Respiratory and Critical Care Medicine. 2009;180(11):10921097.Google Scholar
Davis, DH, Muniz Terrera, G, Keage, H, et al. Delirium is a strong risk factor for dementia in the oldest-old: a population-based cohort study. Brain. 2012;135(Pt 9):28092816.Google Scholar
Oh, ES, Li, M, Fafowora, TM, et al. Preoperative risk factors for postoperative delirium following hip fracture repair: a systematic review. International Journal of Geriatric Psychiatry. 2014;30:900910.Google Scholar
Alsop, DC, Fearing, MA, Johnson, K, Sperling, R, Fong, TG, Inouye, SK. The role of neuroimaging in elucidating delirium pathophysiology. The Journals of Gerontology, Series A. 2006;61(12):12871293.Google Scholar
Gaudreau, JD, Gagnon, P. Psychotogenic drugs and delirium pathogenesis: the central role of the thalamus. Medical Hypotheses. 2005;64(3):471475.Google Scholar
Spiegel, BM, Melmed, G, Robbins, S, Esrailian, E. Biomarkers and health-related quality of life in end-stage renal disease: a systematic review. Clinical Journal of the American Society of Nephrology. 2008;3(6):17591768.Google Scholar
Dantzer, R, Kelley, KW. Twenty years of research on cytokine-induced sickness behavior. Brain, Behavior, and Immunity. 2007;21(2):153160.Google Scholar
Harrison, L. Researchers Uncover Mechanisms of ICU Delirium. www.medscape.com/viewarticle/819059. January 13, 2014.Google Scholar
Zeevi, N, Pachter, J, McCullough, LD, Wolfson, L, Kuchel, GA. The blood-brain barrier: geriatric relevance of a critical brain-body interface. Journal of the American Geriatrics Society. 2010;58(9):17491757.Google Scholar
Ahmed, S, Leurent, B, Sampson, EL. Risk factors for incident delirium among older people in acute hospital medical units: a systematic review and meta-analysis. Age and Ageing. 2014;43(3):326333.Google Scholar
Roche, JJ, Wenn, RT, Sahota, O, Moran, CG. Effect of comorbidities and postoperative complications on mortality after hip fracture in elderly people: prospective observational cohort study. BMJ. 2005;331(7529):1374.Google Scholar
Morrison, RS, Magaziner, J, Gilbert, M, et al. Relationship between pain and opioid analgesics on the development of delirium following hip fracture. The Journals of Gerontology, Series A. 2003;58(1):7681.Google Scholar
van Meenen, LC, van Meenen, DM, de Rooij, SE, ter Riet, G. Risk prediction models for postoperative delirium: a systematic review and meta-analysis. Journal of the American Geriatrics Society. 2014;62(12):23832390.Google Scholar
Min, L, Hall, K, Finlayson, E, et al. Estimating risk of postsurgical general and geriatric complications using the VESPA Preoperative Tool. JAMA Surgery. 2017;152(12):11261133.Google Scholar
Marcantonio, ER, Goldman, L, Mangione, CM, et al. A clinical prediction rule for delirium after elective noncardiac surgery. JAMA. 1994;271(2):134139.Google Scholar
Dworkin, A, Lee, DS, An, AR, Goodlin, SJ. A simple tool to predict development of delirium after elective surgery. Journal of the American Geriatrics Society. 2016;64(11):149153.Google Scholar
Ansaloni, L, Catena, F, Chattat, R, et al. Risk factors and incidence of postoperative delirium in elderly patients after elective and emergency surgery. The British Journal of Surgery. 2010;97(2):273280.Google Scholar
Sieber, FE. Postoperative delirium in the elderly surgical patient. Anesthesiology Clinics. 2009;27(3):451464.Google Scholar
Sieber, FE, Neufeld, KJ, Gottschalk, A, et al. Effect of depth of sedation in older patients undergoing hip fracture repair on postoperative delirium: the STRIDE randomized clinical trial. JAMA Surgery. 2018;85:1826.Google Scholar
Choi, PT, Bhandari, M, Scott, J, Douketis, J. Epidural analgesia for pain relief following hip or knee replacement. The Cochrane Database of Systematic Reviews. 2003(3):CD003071.Google Scholar
Fong, HK, Sands, LP, Leung, JM. The role of postoperative analgesia in delirium and cognitive decline in elderly patients: a systematic review. Anesthesia & Analgesia. 2006;102(4):12551266.Google Scholar
Deiner, S, Luo, X, Lin, HM, et al. Intraoperative infusion of dexmedetomidine for prevention of postoperative delirium and cognitive dysfunction in elderly patients undergoing major elective noncardiac surgery: a randomized clinical trial. JAMA Surgery. 2017;152(8):e171505.CrossRefGoogle Scholar
Wang, J, Li, Z, Yu, Y, Li, B, Shao, G, Wang, Q. Risk factors contributing to postoperative delirium in geriatric patients postorthopedic surgery. Asia Pacific Psychiatry. 2015;7(4):375382.Google Scholar
Bilotta, F, Lauretta, MP, Borozdina, A, Mizikov, VM, Rosa, G. Postoperative delirium: risk factors, diagnosis and perioperative care. Minerva Anestesiologica. 2013;79(9):10661076.Google Scholar
Grudzen, CR, Richardson, LD, Morrison, M, Cho, E, Morrison, RS. Palliative care needs of seriously ill, older adults presenting to the emergency department. Academic Emergency Medicine. 2010;17(11):12531257.Google Scholar
Marcantonio, ER, Ngo, LH, O’Connor, M, et al. 3D-CAM: derivation and validation of a 3-minute diagnostic interview for CAM-defined delirium: a cross-sectional diagnostic test study. Annals of Internal Medicine. 2014;161(8):554561.Google Scholar
Bellelli, G, Morandi, A, Davis, DH, et al. Validation of the 4AT, a new instrument for rapid delirium screening: a study in 234 hospitalised older people. Age and Ageing. 2014;43(4):496502.Google Scholar
Ingraham, AM, Richards, KE, Hall, BL, Ko, CY. Quality improvement in surgery: the American College of Surgeons National Surgical Quality Improvement Program approach. Advances in Surgery. 2010;44:251267.Google Scholar
Chen, CC, Saczynski, J, Inouye, SK. The modified Hospital Elder Life Program: adapting a complex intervention for feasibility and scalability in a surgical setting. Journal of Gerontological Nursing. 2014;40(5):1622.Google Scholar
Logeart, D, Tabet, JY, Hittinger, L, et al. Transient worsening of renal function during hospitalization for acute heart failure alters outcome. International Journal of Cardiology. 2008;127(2):228232.Google Scholar
American Geriatrics Society. 2015 updated Beers criteria for potentially inappropriate medication use in older adults. Journal of the American Geriatrics Society. 2015;63(11):22272246.Google Scholar

References

Bedford, PD. Adverse cerebral effects of anaesthesia on old people. The Lancet 1955;266:259263.CrossRefGoogle Scholar
Moller, JT, Cluitmans, P, Rasmussen, LS, et al. Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD investigators. International Study of Post-Operative Cognitive Dysfunction. The Lancet 1998;351:857861.Google Scholar
Nadelson, MR, Sanders, RD, Avidan, MS. Perioperative cognitive trajectory in adults. British Journal of Anaesthesiology 2014;112:440451.Google Scholar
Dijkstra, JB, Jolles, J. Postoperative cognitive dysfunction versus complaints: a discrepancy in long-term findings. Neuropsychology Review 2002;12:114.Google Scholar
Johnson, T, Monk, T, Rasmussen, LS, et al. Postoperative cognitive dysfunction in middle-aged patients. Anesthesiology 2002;96:13511357.Google Scholar
Evered, LA, Silbert, B, Knopman, D, et al. Recommended nomenclature for perioperative cognitive disorders. British Journal of Anesthesiology 2018;121:10051012.Google Scholar
Price, CC, Garvan, CW, Monk, TG. Type and severity of cognitive decline in older adults after noncardiac surgery. Anesthesiology 2008;108:817.Google Scholar
Price, CC, Tanner, JJ, Schmalfuss, I, et al. A pilot study evaluating presurgery neuroanatomical biomarkers for postoperative cognitive decline after total knee arthroplasty in older adults. Anesthesiology 2014;120:601613.Google Scholar
Monk, TG, Weldon, BC, Garvan, CW, et al. Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology 2008;108:1830.Google Scholar
Abildstrom, H, Rasmussen, LS, Rentowl, P, et al. Cognitive dysfunction 1–2 years after non-cardiac surgery in the elderly. ISPOCD group. International Study of Post-Operative Cognitive Dysfunction. Acta Anaesthesiologica Scandinavica 2000;44:12461251.Google Scholar
Avidan, MS, Evers, AS. The fallacy of persistent postoperative cognitive decline. Anesthesiology 2016;124:255258.Google Scholar
Eckenhoff, RG, Hogan, KJ, Evered, L. Fallacy … really? Anesthesiology 2016;125:426428.Google Scholar
Steinmetz, J, Christensen, KB, Lund, T, Lohse, N, Rasmussen, L, ISPOCD Group. Long-term consequences of postoperative cognitive dysfunction. Anesthesiology 2009;110:548555.Google Scholar
Schupf, N, Tang, MX, Albert, SM, et al. Decline in cognitive and functional skills increases mortality risk in nondemented elderly. Neurology 2005;65:12181226.Google Scholar
Vutskits, L, Xie, Z. Lasting impact of general anaesthesia on the brain: mechanisms and relevance. Nature Reviews Neuroscience 2016;17:705717.CrossRefGoogle ScholarPubMed
O’Brien, H, Mohan, H, Hare, CO, Reynolds, JV, Kenny, RA. Mind over matter? The hidden epidemic of cognitive dysfunction in the older surgical patient. Annals of Surgery 2016;265:1.Google Scholar
Newman, MF, Croughwell, ND, Blumenthal, JA, et al. Predictors of cognitive decline after cardiac operation. Annals of Thoracic Surgery 1995;59:13261330.Google Scholar
McDonagh, DL, Mathew, JP, White, WD, et al. Cognitive function after major noncardiac surgery, apolipoprotein E4 genotype, and biomarkers of brain injury. Anesthesiology 2010;112:852859.Google Scholar
Martucci, KT, Mackey, SC. Imaging pain. Anesthesiology Clinics 2016;34:255269.Google Scholar
Vaurio, LE, Sands, LP, Wang, Y, Mullen, EA, Leung, JM. Postoperative delirium: the importance of pain and pain management. Anesthesia & Analgesia 2006;102:12671273.Google Scholar
Culley, DJ, Flaherty, D, Reddy, S, et al. Preoperative cognitive stratification of older elective surgical patients: a cross-sectional study. Anesthesia & Analgesia 2016;123:186192.Google Scholar
Culley, DJ, Flaherty, D, Fahey, MC, et al. Poor performance on a preoperative cognitive screening test predicts postoperative complications in older orthopedic surgical patients. Anesthesiology 2017;127:765774.Google Scholar
Leslie, M. The post-op brain. Science 2017;356:898900.CrossRefGoogle ScholarPubMed
Sprung, J, Roberts, RO, Weingarten, TN, et al. Postoperative delirium in elderly patients is associated with subsequent cognitive impairment. British Journal of Anaesthesiology 2017;119:316323.Google Scholar
Franck, M, Nerlich, K, Neuner, B, et al. No convincing association between post-operative delirium and post-operative cognitive dysfunction: a secondary analysis. Acta Anaesthesiologica Scandinavica 2016;60:14041414.Google Scholar
Culley, DJ, Crosby, G. Prehabilitation for prevention of postoperative cognitive dysfunction? Anesthesiology 2015;123:1.CrossRefGoogle ScholarPubMed
McDonald, SR, Heflin, MT, Whitson, HE, et al. Association of integrated care coordination with postsurgical outcomes in high-risk older adults: the Perioperative Optimization of Senior Health (POSH) initiative. JAMA Surgery 2018;153:454462.Google Scholar
Cibelli, M, Fidalgo, AR, Terrando, N, et al. Role of interleukin-1beta in postoperative cognitive dysfunction. Annals of Neurology 2010;68:360368.Google Scholar
Fidalgo, AR, Cibelli, M, White, JPM, Nagy, I, Maze, M, Ma, D. Systemic inflammation enhances surgery-induced cognitive dysfunction in mice. Neuroscience Letters 2011;498:6366.Google Scholar
Terrando, N, Monaco, C, Ma, D, Foxwell, BMJ, Feldmann, M, Maze, M. Tumor necrosis factor-α triggers a cytokine cascade yielding postoperative cognitive decline. Proceedings of the National Academy of Sciences of the United States of America 2010;107:2051820522.Google Scholar
Fidalgo, AR, Cibelli, M, White, JPM, et al. Peripheral orthopaedic surgery down-regulates hippocampal brain-derived neurotrophic factor and impairs remote memory in mouse. Neuroscience 2011;190:194199.CrossRefGoogle Scholar
Canet, J, Raeder, J, Rasmussen, LS, et al. Cognitive dysfunction after minor surgery in the elderly. Acta Anaesthesiologica Scandinavica 2003;47:12041210.Google Scholar
Evered, L, Scott, DA, Silbert, B, Maruff, P. Postoperative cognitive dysfunction is independent of type of surgery and anesthetic. Anesthesia & Analgesia 2011;112:11791185.Google Scholar
Newman, MF, Kirchner, JL, Phillips-Bute, B, et al. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. New England Journal of Medicine 2001;344:395402.Google Scholar
van Dijk, D, Spoor, M, Hijman, R, et al. Cognitive and cardiac outcomes 5 years after off-pump vs. on-pump coronary artery bypass graft surgery. JAMA 2007;297:701708.Google Scholar
Abdul-Jawad Altisent, O, Ferreira-Gonzalez, I, Marsal, JR, et al. Neurological damage after transcatheter aortic valve implantation compared with surgical aortic valve replacement in intermediate risk patients. Clinical Research in Cardiology 2016;105:508517.Google Scholar
Selnes, OA, Grega, MA, Borowicz, LM, Royall, RM, McKhann, GM, Baumgartner, WA. Cognitive changes with coronary artery disease: a prospective study of coronary artery bypass graft patients and nonsurgical controls. Annals of Thoracic Surgery 2003;75:137784.Google Scholar
Selnes, OA, Grega, MA, Bailey, MM, et al. Do management strategies for coronary artery disease influence 6-year cognitive outcomes? Annals of Thoracic Surgery 2009;88:445454.Google Scholar
Forsberg, A, Cervenka, S, Jonsson Fagerlund, M, et al. The immune response of the human brain to abdominal surgery. Annals of Neurology 2017;81:572582.Google Scholar
Choi, HA. The brain’s immune system hibernates in response to systemic injury. Science Translational Medicine 2017;9:eaan2771.Google Scholar
Culley, DJ, Baxter, M, Yukhananov, R, Crosby, G. The memory effects of general anesthesia persist for weeks in young and aged rats. Anesthesia & Analgesia 2003;96:10041009.Google Scholar
Xie, Z, Culley, DJ, Dong, Y, et al. The common inhalation anesthetic isoflurane induces caspase activation and increases amyloid-beta protein level in vivo. Annals of Neurology 2008;64:618627.Google Scholar
Planel, E, Bretteville, A, Liu, L, et al. Acceleration and persistence of neurofibrillary pathology in a mouse model of tauopathy following anesthesia. FASEB Journal 2009;23:25952604.Google Scholar
Futterer, CD, Maurer, MH, Schmitt, A, Feldmann, RE Jr., Kuschinsky, W, Waschke, KF. Alterations in rat brain proteins after desflurane anesthesia. Anesthesiology 2004;100:302308.Google Scholar
Rasmussen, LS, Johnson, T, Kuipers, HM, et al. Does anaesthesia cause postoperative cognitive dysfunction? A randomised study of regional versus general anaesthesia in 438 elderly patients. Acta Anaesthesiologica Scandinavica 2003;47:260266.Google Scholar
Sieber, FE, Gottshalk, A, Zakriya, KJ, Mears, SC, Lee, H. General anesthesia occurs frequently in elderly patients during propofol-based sedation and spinal anesthesia. Journal of Clinical Anesthesiology 2010;22:179183.CrossRefGoogle ScholarPubMed
Purdon, PL, Pavone, KJ, Akeju, O, et al. The ageing brain: age-dependent changes in the electroencephalogram during propofol and sevoflurane general anaesthesia. British Journal of Anaesthesiology 2015;115:4657.Google Scholar
Silbert, BS, Evered, LA, Scott, DA. Incidence of postoperative cognitive dysfunction after general or spinal anaesthesia for extracorporeal shock wave lithotripsy. British Journal of Anaesthesiology 2014;113:784791.Google Scholar
Chan, MT, Cheng, BC, Lee, TM, Gin, T, CODA Trial Group. BIS-guided anesthesia decreases postoperative delirium and cognitive decline. Journal of Neurosurgery & Anesthesiology 2013;25:3342.CrossRefGoogle ScholarPubMed
Sprung, J, Roberts, RO, Knopman, DS, et al. Association of mild cognitive impairment with exposure to general anesthesia for surgical and nonsurgical procedures: a population-based study. Mayo Clinic Proceedings 2016;91:208217.Google Scholar
Sprung, J, Jankowski, CJ, Roberts, RO, et al. Anesthesia and incident dementia: a population-based, nested, case-control study. Mayo Clinic Proceedings 2013;88:552561.Google Scholar
Sprung, J, Roberts, RO, Knopman, DS, et al. Mild cognitive impairment and exposure to general anesthesia for surgeries and procedures: a population-based case-control study. Anesthesia & Analgesia 2017;124:12771290.Google Scholar
Hughes, CG, Patel, MB, Jackson, JC, et al. Surgery and anesthesia exposure is not a risk factor for cognitive impairment after major noncardiac surgery and critical illness. Annals of Surgery 2016;265:11261133.CrossRefGoogle Scholar
Aiello Bowles, EJ, Larson, EB, Pong, RP, et al. Anesthesia exposure and risk of dementia and Alzheimer’s disease: a prospective study. Journal of the American Geriatrics Society 2016;64:602607.Google Scholar
Seitz, DP, Shah, PS, Herrmann, N, Beyene, J, Siddiqui, N. Exposure to general anesthesia and risk of Alzheimer’s disease: a systematic review and meta-analysis. BMC Geriatrics 2011;11:83.Google Scholar
Dokkedal, U, Hansen, TG, Rasmussen, LS, Mengel-From, J, Christensen, K. Cognitive functioning after surgery in middle-aged and elderly Danish twins. Anesthesiology 2016;124:312321.Google Scholar
Hogan, KJ, Bratzke, LC, Hogan, KL. Informed consent and cognitive dysfunction after noncardiac surgery in the elderly. Anesthesia & Analgesia 2018;126:629631.Google Scholar

References

Ballard, C., Jones, E., Gauge, N., Aarsland, D., Nilsen, O. B., Saxby, B. K., Lowery, D., Corbett, A., Wesness, K., Katsaiti, E., Arden, J., Amaoko, D., Prophet, N., Purushothaman, B., & Green, D. (2012). Optimised anaesthesia to reduce post-operative cognitive decline (POCD) in older patients undergoing elective surgery, a randomised controlled trial. PLoS One, 7(6), e37410.Google Scholar
Culley, D. J., Flaherty, D., Fahey, M. C., Rudolph, J. L., Javedan, H., Huang, C. C., Wright, J., Bader, A. M., Hyman, B. T., Blacker, D., & Crosby, G. (2017). Poor performance on a preoperative cognitive screening test predicts postoperative complications in older orthopedic surgical patients. Anesthesiology, 124, 312321.Google Scholar
Monk, T. G., Weldon, B. C., Garvan, C. W., Dede, D. E., Van Der Aa, M. T., Heilman, K. M., & Gravenstein, J. S. (2008). Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology, 108(1), 1830.CrossRefGoogle ScholarPubMed
Newman, S., Stygall, J., Hirani, S., Shaefi, S., & Maze, M. (2007). Postoperative cognitive dysfunction after noncardiac surgery: a systematic review. Anesthesiology, 106(3), 572590.Google Scholar
Engel, G. L. (1977). The need for a new medical model: a challenge for biomedicine. Science, 196(4286), 129136.Google Scholar
Jones-Gotman, M., Harnadek, M. C., & Kubu, C. S. (2000). Neuropsychological assessment for temporal lobe epilepsy surgery. Canadian Journal of Neurological Sciences, 27(S1), S39S43.Google Scholar
Moberg, P. J., & Rick, J. H. (2008). Decision-making capacity and competency in the elderly: a clinical and neuropsychological perspective. NeuroRehabilitation, 23(5), 403413.Google Scholar
Maestu, F., Martin, P., Gil-Nagel, A., Franch, O., & Sola, R. G. (2000). Evaluation of epilepsy surgery. Revista de neurologia, 30(5), 477482.Google Scholar
Kilpatrick, C., Cook, M., Kaye, A., Murphy, M., & Matkovic, Z. (1997). Non-invasive investigations successfully select patients for temporal lobe surgery. Journal of Neurology, Neurosurgery, and Psychiatry, 63(3), 327333.Google Scholar
Sherman, E., Wiebe, S., Fay‐McClymont, T. B., Tellez‐Zenteno, J., Metcalfe, A., Hernandez‐Ronquillo, L., Hader, W. J., & Jetté, N. (2011). Neuropsychological outcomes after epilepsy surgery: systematic review and pooled estimates. Epilepsia, 52(5), 857869.Google Scholar
Nakhutina, L., Pramataris, P., Morrison, C., Devinsky, O., & Barr, W. B. (2010). Reliable change indices and regression-based measures for the Rey-Osterreith Complex Figure test in partial epilepsy patients. The Clinical Neuropsychologist, 24(1), 3844.Google Scholar
Helmstaedter, C., & Witt, J. A. (2017). How neuropsychology can improve the care of individual patients with epilepsy: looking back and into the future. Seizure, 44, 113120.Google Scholar
Wilson, S. J., Baxendale, S., Barr, W., Hamed, S., Langfitt, J., Samson, S., Watanabe, M., Baker, G. A., Hemstaedter, C., Hermann, B. P., & Smith, M. L. (2015). Indications and expectations for neuropsychological assessment in routine epilepsy care: report of the ILAE Neuropsychology Task Force, Diagnostic Methods Commission, 2013–2017. Epilepsia, 56(5), 674681.Google Scholar
Helmstaedter, C., Kurthen, M., Lux, S., Reuber, M., & Elger, C. E. (2003). Chronic epilepsy and cognition: a longitudinal study in temporal lobe epilepsy. Annals of Neurology, 54(4), 425432.CrossRefGoogle ScholarPubMed
Head, D., Buckner, R. L., Shimony, J. S., Williams, L. E., Akbudak, E., Conturo, T. E., McAvoy, M., Morris, J. C., & Snyder, A. Z. (2004). Differential vulnerability of anterior white matter in nondemented aging with minimal acceleration in dementia of the Alzheimer type: evidence from diffusion tensor imaging. Cerebral Cortex, 14(4), 410423.Google Scholar
Scahill, R. I., Frost, C., Jenkins, R., Whitwell, J. L., Rossor, M. N., & Fox, N. C. (2003). A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Archives of Neurology, 60(7), 989994.Google Scholar
Cabeza, R., Daselaar, S. M., Dolcos, F., Prince, S. E., Budde, M., & Nyberg, L. (2004). Task-independent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval. Cerebral Cortex, 14(4), 364375.Google Scholar
Lee, T., Yip, J. T., & Jones‐Gotman, M. (2002). Memory deficits after resection from left or right anterior temporal lobe in humans: a meta‐analytic review. Epilepsia, 43(3), 283291.Google Scholar
Potter, J. L., Schefft, B. K., Beebe, D. W., Howe, S. R., Yeh, H. S., & Privitera, M. D. (2009). Presurgical neuropsychological testing predicts cognitive and seizure outcomes after anterior temporal lobectomy. Epilepsy & Behavior, 16(2), 246253.Google Scholar
Stroup, E., Langfitt, J., Berg, M., McDermott, M., Pilcher, W. M. D. P., & Como, P. (2003). Predicting verbal memory decline following anterior temporal lobectomy (ATL). Neurology, 60(8), 12661273.Google Scholar
Liimatainen, J., Peräkylä, J., Järvelä, K., Sisto, T., Yli-Hankala, A., & Hartikainen, K. M. (2016). Improved cognitive flexibility after aortic valve replacement surgery. Interactive Cardiovascular and Thoracic Surgery, 23(4), 630636.Google Scholar
Knipp, S. C., Weimar, C., Schlamann, M., Schweter, S., Wendt, D., Thielmann, M., Benedik, J., & Jakob, H. (2017). Early and long-term cognitive outcome after conventional cardiac valve surgery. Interactive Cardiovascular and Thoracic Surgery, 24(4), 534540.Google Scholar
Thiara, G., Cigliobianco, M., Muravsky, A., Paoli, R. A., Mansur, R., Hawa, R., McIntyre, R.S., & Sockalingam, S. (2017). Evidence for neurocognitive improvement after bariatric surgery: a systematic review. Psychosomatics, 58(3), 217227.Google Scholar
Handley, J. D., Williams, D. M., Caplin, S., Stephens, J. W., & Barry, J. (2016). Changes in cognitive function following bariatric surgery: a systematic review. Obesity Surgery, 26(10), 25302537.Google Scholar
Kaya, Y., Ozturkeri, O. A., Benli, U. S., & Colak, T. (2013). Evaluation of the cognitive functions in patients with chronic renal failure before and after renal transplantation. Acta Neurologica Belgica, 113(2), 147155.Google Scholar
Joshee, P., Wood, A. G., Wood, E. R., & Grunfeld, E. A. (2017). Meta-analysis of cognitive functioning in patients following kidney transplantation. Nephrology Dialysis Transplantation, 33, 12681277.Google Scholar
Santa Mina, D., Clarke, H., Ritvo, P., Leung, Y. W., Matthew, A. G., Katz, J., Trachtenberg, J., & Alibhai, S. M. H. (2014). Effect of total-body prehabilitation on postoperative outcomes: a systematic review and meta-analysis. Physiotherapy, 100(3), 196207.Google Scholar
Wallis, J. A., & Taylor, N. F. (2011). Pre-operative interventions (non-surgical and non-pharmacological) for patients with hip or knee osteoarthritis awaiting joint replacement surgery–a systematic review and meta-analysis. Osteoarthritis and Cartilage, 19(12), 13811395.Google Scholar
Topp, R., Swank, A. M., Quesada, P. M., Nyland, J., & Malkani, A. (2009). The effect of prehabilitation exercise on strength and functioning after total knee arthroplasty. Physical Medicine and Rehabilitation, 1(8), 729735.Google Scholar
Carli, F., Brown, R., & Kennepohl, S. (2012). Prehabilitation to enhance postoperative recovery for an octogenarian following robotic-assisted hysterectomy with endometrial cancer. Canadian Journal of Anaesthesia/Journal canadien d’anesthesie, 59, 779784.Google Scholar
Angevaren, M., Aufdemkampe, G., Verhaar, H. J., Aleman, A., & Vanhees, L. (2008). Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Systematic Reviews, 3(3), CD005831.Google Scholar
Desjardins-Crépeau, L., Berryman, N., Fraser, S. A., Vu, T., Kergoat, M. J., Li, K., Bosquet, L., & Bherer, L. (2016). Effects of combined physical and cognitive training on fitness and neuropsychological outcomes in healthy older adults. Clinical Interventions in Aging, 11, 1287.Google Scholar
Barber, P. A., Hach, S., Tippett, L. J., Ross, L., Merry, A. F., & Milsom, P. (2008). Cerebral ischemic lesions on diffusion-weighted imaging are associated with neurocognitive decline after cardiac surgery. Stroke, 39(5), 14271433.Google Scholar
Browndyke, J. N., Berger, M., Harshbarger, T. B., Smith, P. J., White, W., Bisanar, T. L., Alexander, J. H., Gaca, J. G., Welsh-Bohmer, K., Newman, M. F., & Mathew, J. P. (2017). Resting‐state functional connectivity and cognition after major cardiac surgery in older adults without preoperative cognitive impairment: preliminary findings. Journal of the American Geriatrics Society, 65(1), 612.Google Scholar
Ghoneim, M. M., & O’Hara, M. W. (2016). Depression and postoperative complications: an overview. BMC Surgery, 16(1), 5.Google Scholar
Price, C. C., Tanner, J. J., Schmalfuss, I., Garvan, C. W., Gearen, P., Dickey, D., Heilman, K., McDonagh, D. L., Libon, D. J., Leonard, C., Bowers, D., & Monk, T. (2014). A pilot study evaluating presurgery neuroanatomical biomarkers for postoperative cognitive decline after total knee arthroplasty in older adults. Journal of the American Society of Anesthesiologists, 120(3), 601613.Google Scholar
Huang, H., Tanner, J., Parvataneni, H., Rice, M., Horgas, A., Ding, M., & Price, C. (2018). Impact of total knee arthroplasty with general anesthesia on brain networks: cognitive efficiency and ventricular volume predict functional connectivity decline in older adults. Journal of Alzheimer’s Disease, 62(1), 319333.Google Scholar
Hawkins, M. A., Alosco, M. L., Spitznagel, M. B., Strain, G., Devlin, M., Cohen, R., Crosby, R., Mitchell, J., & Gunstad, J. (2015). The association between reduced inflammation and cognitive gains after bariatric surgery. Psychosomatic Medicine, 77(6), 688.Google Scholar
Veronese, N., Facchini, S., Stubbs, B., Luchini, C., Solmi, M., Manzato, E., Sergi, G., Maggi, S., Cosco, T., & Fontana, L. (2017). Weight loss is associated with improvements in cognitive function among overweight and obese people: a systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews, 72, 8794.Google Scholar
Van Sandwijk, M. S., Ten Berge, I. J., Majoie, C. B., Caan, M. W., De Sonneville, L. M., Van Gool, W. A., & Bemelman, F. J. (2016). Cognitive changes in chronic kidney disease and after transplantation. Transplantation, 100(4), 734742.CrossRefGoogle ScholarPubMed
Berger, M., Nadler, J., Browndyke, J., Posunammy, V., Cohen, H. J., Whitson, H. E., & Mathew, J. P. (2015). Postoperative cognitive dysfunction: minding the gaps in our knowledge of a common postoperative complication in the elderly. Anesthesiology Clinics, 33(3), 517.Google Scholar
Satz, P. (1993). Brain reserve capacity on symptom onset after brain injury: a formulation and review of evidence for threshold theory. Neuropsychology, 7(3), 273.Google Scholar
Engel, G. L. (1980). The clinical application of the biopsychosocial model. American Journal of Psychiatry, 137(5), 535544.Google Scholar
Lutgendorf, S. K., Cole, S., Costanzo, E., Bradley, S., Coffin, J., Jabbari, S., Rainwater, K., Ritchie, J. M., Yang, M., & Sood, A. K. (2003). Stress-related mediators stimulate vascular endothelial growth factor secretion by two ovarian cancer cell lines. Clinical Cancer Research, 9(12), 45144521.Google Scholar
Guillemin, M., & Barnard, E. (2015). George Libman Engel: the biopsychosocial model and the construction of medical practice. In The Palgrave Handbook of Social Theory in Health, Illness and Medicine (pp. 236250). London: Palgrave Macmillan UK.Google Scholar
Sadler, J. Z., & Hulgus, Y. F. (1992). Clinical problem solving and the biopsychosocial model. American Journal of Psychiatry, 149(10), 13151323.Google Scholar
Santor, D. A., Messervey, D., & Kusumakar, V. (2000). Measuring peer pressure, popularity, and conformity in adolescent boys and girls: predicting school performance, sexual attitudes, and substance abuse. Journal of Youth and Adolescence, 29(2), 163182.Google Scholar
Buckner, J. D., Heimberg, R. G., Ecker, A. H., & Vinci, C. (2013). A biopsychosocial model of social anxiety and substance use. Depression and Anxiety, 30(3), 276284.Google Scholar
Hendershot, C. S., Witkiewitz, K., George, W. H., & Marlatt, A. (2011). Relapse prevention for addictive behaviors. Substance Abuse Treatment, Prevention, and Policy, 6(1), 17.Google Scholar
Segal, L., Leach, M. J., May, E., & Turnbull, C. (2013). Regional primary care team to deliver best-practice diabetes care. Diabetes Care, 36(7), 18981907.Google Scholar
Hilliard, M. E., Powell, P. W., & Anderson, B. J. (2016). Evidence-based behavioral interventions to promote diabetes management in children, adolescents, and families. American Psychologist, 71(7), 590.Google Scholar
Ghaffary, S., Talasaz, A. H., Ghaeli, P., Karimi, A., Salehiomran, A., Hajighasemi, A., Bina, P., Darabi, S., Jalali, A., Dianatkhah, M., Noroozian, M., & Noroozian, M. (2015). Association between perioperative parameters and cognitive impairment in post-cardiac surgery patients. Journal of Tehran University Heart Center, 10(2), 85.Google Scholar
Le Manach, Y., Esteves, C. I., Bertrand, M., Goarin, J. P., Fléron, M. H., Coriat, P., Koskas, F., Riou, B., & Landais, P. (2011). Impact of preoperative statin therapy on adverse postoperative outcomes in patients undergoing vascular surgery. Anesthesiology, 114(1), 98104.Google Scholar
Katznelson, R., Djaiani, G. N., Borger, M. A., Friedman, Z., Abbey, S. E., Fedorko, L., Karski, J., Mitsaskakis, N., Caroll, J., & Beattie, W. S. (2009). Preoperative use of statins is associated with reduced early delirium rates after cardiac surgery. Journal of the American Society of Anesthesiologists, 110(1), 6773.Google Scholar
Fontes, M. T., Swift, R. C., Phillips-Bute, B., Podgoreanu, M. V., Stafford-Smith, M., Newman, M. F., & Mathew, J. P. (2013). Predictors of cognitive recovery after cardiac surgery. Anesthesia & Analgesia, 116(2), 435.Google Scholar
Madden, D. J., Bennett, I. J., & Song, A. W. (2009). Cerebral white matter integrity and cognitive aging: contributions from diffusion tensor imaging. Neuropsychology Review, 19(4), 415.Google Scholar
Charlton, R. A., Barrick, T. R., McIntyre, D. J., Shen, Y., O’Sullivan, M., Howe, F. A., Clark, C. A., Morris, R. G., & Markus, H. S. (2006). White matter damage on diffusion tensor imaging correlates with age-related cognitive decline. Neurology, 66(2), 217222.Google Scholar
Brickman, A. M., Provenzano, F. A., Muraskin, J., Manly, J. J., Blum, S., Apa, Z., Stern, Y., Brown, T., Luchsinger, J., & Mayeux, R. (2012). Regional white matter hyperintensity volume, not hippocampal atrophy, predicts incident Alzheimer disease in the community. Archives of Neurology, 69(12), 16211627.Google Scholar
Price, C. C., Tanner, J., Nguyen, P. T., Schwab, N. A., Mitchell, S., Slonena, E., Brumback, B., Okun, M., Mareci, T. H., & Bowers, D. (2016). Gray and white matter contributions to cognitive frontostriatal deficits in non-demented Parkinson’s disease. PLoS One, 11(1), e0147332.CrossRefGoogle ScholarPubMed
Storandt, M., Mintun, M. A., Head, D., & Morris, J. C. (2009). Cognitive decline and brain volume loss as signatures of cerebral amyloid-β peptide deposition identified with Pittsburgh compound B: cognitive decline associated with Aβ deposition. Archives of Neurology, 66(12), 14761481.Google Scholar
Sato, Y., Ito, K., Ogasawara, K., Sasaki, M., Kudo, K., Murakami, T., Nanba, T., Nishimoto, H., Yoshida, K., Kobayashi, M., Kuno, Y., Mase, T., & Ogawa, A. (2013). Postoperative increase in cerebral white matter fractional anisotropy on diffusion tensor magnetic resonance imaging is associated with cognitive improvement after uncomplicated carotid endarterectomy: tract-based spatial statistics analysis. Neurosurgery, 73(4), 592599.Google Scholar
Kant, I. M., de Bresser, J., van Montfort, S. J., Slooter, A. J., & Hendrikse, J. (2017). MRI markers of neurodegenerative and neurovascular changes in relation to postoperative delirium and postoperative cognitive decline. American Journal of Geriatric Psychiatry, 25(10), 10481061.Google Scholar
Yoshida, K., Ogasawara, K., Saura, H., Saito, H., Kobayashi, M., Yoshida, K., Terazaki, K., Fujiwara, S., & Ogawa, A. (2015). Post-carotid endarterectomy changes in cerebral glucose metabolism on 18F-fluorodeoxyglucose positron emission tomography associated with postoperative improvement or impairment in cognitive function. Journal of Neurosurgery, 123(6), 15461554.Google Scholar
Kao-Li, H. L., Lin, M. S., Wu, W. C., Tseng, W. Y. I., Su, M. Y., Chen, Y. F., Chiu, M., Wang, S.-Y., Yang, W., Tzen, K., & Wu, Y. W. (2015). Improvement of cerebral glucose metabolism in symptomatic patients with carotid artery stenosis after stenting. Clinical Nuclear Medicine, 40(9), 701707.Google Scholar
Raj, D., Yin, Z., Breur, M., Doorduin, J., Holtman, I. R., Olah, M., Mantingh-Otter, L., Van Dam, D., De Deyn, P., den Dunnen, W., Eggen, B. J., Amor, S., & Boddeke, E. (2017). Increased white matter inflammation in aging-and Alzheimer’s disease brain. Frontiers in Molecular Neuroscience, 10, 206.Google Scholar
Rydbirk, R., Elfving, B., Andersen, M. D., Langbøl, M. A., Folke, J., Winge, K., Pakkenberg, B., Brudek, T., & Aznar, S. (2017). Cytokine profiling in the prefrontal cortex of Parkinson’s disease and multiple system atrophy patients. Neurobiology of Disease, 106, 269278.Google Scholar
Moreno-Navarrete, J. M., Blasco, G., Puig, J., Biarnés, C., Rivero, M., Gich, J., Fernandez-Aranda, F., Garre-Olmo, J., Ramio-Torrenta, L., Alberich-Bayarri, A., & García-Castro, F. (2017). Neuroinflammation in obesity: circulating lipopolysaccharide-binding protein associates with brain structure and cognitive performance. International Journal of Obesity, 41(11), 16271635.Google Scholar
Ziebell, J. M., & Morganti-Kossmann, M. C. (2010). Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics, 7(1), 2230.Google Scholar
Li, Y.-C., Xi, C.-H., An, Y.-F., Dong, W.-H., & Zhou, M. (2012). Perioperative inflammatory response and protein S‐100β concentrations – relationship with post‐operative cognitive dysfunction in elderly patients. Acta Anaesthesiologica Scandinavica, 56(5), 595600.Google Scholar
Peng, L., Xu, L., & Ouyang, W. (2013). Role of peripheral inflammatory markers in postoperative cognitive dysfunction (POCD): a meta-analysis. PLoS One, 8(11), e79624.Google Scholar
Baker, K. S., Gibson, S., Georgiou-Karistianis, N., Roth, R. M., & Giummarra, M. J. (2016). Everyday executive functioning in chronic pain: specific deficits in working memory and emotion control, predicted by mood, medications, and pain interference. Clinical Journal of Pain, 32(8), 673680.Google Scholar
Vaurio, L. E., Sands, L. P., Wang, Y., Mullen, E. A., & Leung, J. M. (2006). Postoperative delirium: the importance of pain and pain management. Anesthesia & Analgesia, 102(4), 12671273.Google Scholar
Nimmo, S. M., Foo, I. T., & Paterson, H. M. (2017). Enhanced recovery after surgery: pain management. Journal of Surgical Oncology, 116(5), 583591.Google Scholar
Tully, P. J., Baker, R. A., Winefield, H. R., & Turnbull, D. A. (2010). Depression, anxiety disorders, and Type D personality as risk factors for delirium after cardiac surgery. Australian and New Zealand Journal of Psychiatry, 44(11), 10051011.Google Scholar
Patron, E., Benvenuti, S. M., Zanatta, P., Polesel, E., & Palomba, D. (2013). Preexisting depressive symptoms are associated with long-term cognitive decline in patients after cardiac surgery. General Hospital Psychiatry, 35(5), 472479.Google Scholar
Hudetz, J. A., Hoffmann, R. G., Patterson, K. M., Byrne, A. J., Iqbal, Z., Gandhi, S. D., Warltier, D. C., & Pagel, P. S. (2010). Preoperative dispositional optimism correlates with a reduced incidence of postoperative delirium and recovery of postoperative cognitive function in cardiac surgical patients. Journal of Cardiothoracic and Vascular Anesthesia, 24(4), 560567.Google Scholar
Hudetz, A. G. (2012). General anesthesia and human brain connectivity. Brain Connectivity, 2(6), 291302.Google Scholar
Gillis, C., Nguyen, T. H., Liberman, A. S., & Carli, F. (2015). Nutrition adequacy in enhanced recovery after surgery: a single academic center experience. Nutrition in Clinical Practice, 30(3), 414419.Google Scholar
Carli, F., & Zavorsky, G. S. (2005). Optimizing functional exercise capacity in the elderly surgical population. Current Opinion in Clinical Nutrition & Metabolic Care, 8(1), 2332.Google Scholar
National Alliance for Caregiving (NAC) & American Association for Retired Persons (AARP) Public Policy Institute. (2015). Caregiving in the United States. Available at: https://www.aarp.org/content/dam/aarp/ppi/2015/caregiving-in-the-united-states-2015-report-revised.pdfGoogle Scholar
Torres, J., Carvalho, D., Molinos, E., Vales, C., Ferreira, A., Dias, C. C., Araujo, R., & Gomes, E. (2017). The impact of the patient post-intensive care syndrome components upon caregiver burden. Medicina Intensiva, 8, 454460.Google Scholar
Miller, E. T. (2002). Targeting interventions for primary informal caregivers of adults with cognitive and physical losses. Rehabilitation Nursing, 27(2), 4651.Google Scholar
Setacci, C., Sirignano, A., Ricci, G., Spagnolo, A. G., Pugliese, F., & Speziale, F. (2015). A new ethical and medico-legal issue: vascular surgery and the postoperative cognitive dysfunction. Journal of Cardiovascular Surgery (Torino), 56(4), 607615.Google Scholar

References

Silbert, B, Evered, L, Scott, DA, McMahon, S, Choong, P, Ames, D, et al. Preexisting cognitive impairment is associated with postoperative cognitive dysfunction after hip joint replacement surgery. Anesthesiology 2015;122(6):12241234.Google Scholar
Beydoun, MA, Beydoun, HA, Gamaldo, AA, Teel, A, Zonderman, AB, Wang, Y. Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis. BMC Public Health 2014;14:643.Google Scholar
Kapila, AK, Watts, HR, Wang, T, Ma, D. The impact of surgery and anesthesia on post-operative cognitive decline and Alzheimer’s disease development: biomarkers and preventive strategies. J Alzheimers Dis 2014;41:113.Google Scholar
Arora, SS, Gooch, JL, Garcia, PS. Postoperative cognitive dysfunction, Alzheimer’s disease, and anesthesia. Int J Neurosci 2014;124(4):236242.Google Scholar
Berger, M, Burke, J, Eckenhoff, R, Mathew, J. Alzheimer’s disease, anesthesia, and surgery: a clinically focused review. J Cardiothorac Vasc Anesth 2014;28(6):16091623.Google Scholar
Hussain, M, Berger, M, Eckenhoff, RG, Seitz, DP. General anesthetic and the risk of dementia in elderly patients: current insights. Clin Interv Aging 2014;9:16191628.Google Scholar
Jiang, J, Jiang, H. Effect of the inhaled anesthetics isoflurane, sevoflurane and desflurane on the neuropathogenesis of Alzheimer’s disease (review). Mol Med Rep 2015;12(1):312.Google Scholar
Silverstein, JH. Influence of anesthetics on Alzheimer’s disease: biophysical, animal model, and clinical reports. J Alzheimers Dis 2014;40(4):839848.Google Scholar
Evered, LA, Silbert, B, Scott, DA. The impact of the peri-operative period on cognition in older individuals. J Pharm Pract Res 2015;45(1):9399.Google Scholar
Knopman, DS, Petersen, RC. Mild cognitive impairment and mild dementia: a clinical perspective. Mayo Clin Proc 2014;89(10):14521459.Google Scholar
McKhann, GM, Knopman, DS, Chertkow, H, Hyman, BT, Jack, CR Jr, Kawas, CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging–Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011;7(3):263269.Google Scholar
Jack, CR, Knopman, DS, Jagust, WJ, Petersen, RC, Weiner, MW, Aisen, PS, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 2013;12(2):207216.Google Scholar
Shua-Haim, JR, Gross, JS. Alzheimer’s syndrome, not Alzheimer’s disease. J Am Geriatr Soc 1996;44(1):9697.Google Scholar
Morris, JK, Honea, RA, Vidoni, ED, Swerdlow, RH, Burns, JM. Is Alzheimer’s disease a systemic disease? Biochim Biophys Acta 2014;1842(9):13401349.Google Scholar
Van Cauwenberghe, C, Van Broeckhoven, C, Sleegers, K. The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med 2015;18:421430.Google Scholar
Herrup, K. The case for rejecting the amyloid cascade hypothesis. Nat Neurosci 2015;18(6):794799.Google Scholar
Caroli, A, Prestia, A, Galluzzi, S, Ferrari, C, van der Flier, WM, Ossenkoppele, R, et al. Mild cognitive impairment with suspected nonamyloid pathology (SNAP): prediction of progression. Neurology 2015;84(5):508515.Google Scholar
Liu, Y, Pan, N, Ma, Y, Zhang, S, Guo, W, Li, H, et al. Inhaled sevoflurane may promote progression of amnestic mild cognitive impairment. Am J Med Sci 2013;345(5):355360.Google Scholar
Seitz, DP, Reimer, CL, Siddiqui, N. A review of epidemiological evidence for general anesthesia as a risk factor for Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 2013;47:122127.Google Scholar
Sprung, J, Jankowski, CJ, Roberts, RO, Weingarten, TN, Aguilar, AL, Runkle, KJ, et al. Anesthesia and incident dementia: a population-based, nested, case-control study. Mayo Clin Proc 2013;88(6):552561.Google Scholar
Chen, PL, Yang, CW, Tseng, YK, Sun, WZ, Wang, JL, Wang, SJ, et al. Risk of dementia after anaesthesia and surgery. Br J Psychiatry 2014;204(3):188193.Google Scholar
Chen, CW, Lin, CC, Chen, KB, Kuo, YC, Li, CY, Chung, CJ. Increased risk of dementia in people with previous exposure to general anesthesia: a nationwide population-based case-control study. Alzheimers Dement 2014;10(2):196204.Google Scholar
Kline, RP, Pirraglia, E, Cheng, H, De Santi, S, Li, Y, Haile, M, et al. Surgery and brain atrophy in cognitively normal elderly subjects and subjects diagnosed with mild cognitive impairment. Anesthesiology 2012;116(3):603612.Google Scholar
Avidan, MS, Benzinger, TL. Surgery and the plastic brain. Anesthesiology 2012;116(3):510512.Google Scholar
Palotas, A, Reis, HJ, Bogats, G, Babik, B, Racsmany, M, Engvau, L, et al. Coronary artery bypass surgery provokes Alzheimer’s disease-like changes in the cerebrospinal fluid. J Alzheimers Dis 2010;21(4):11531164.Google Scholar
Tang, JX, Mardini, F, Caltagarone, BM, Garrity, ST, Li, RQ, Bianchi, SL, et al. Anesthesia in presymptomatic Alzheimer’s disease: a study using the triple-transgenic mouse model. Alzheimers Dement 2011;7(5):521531.Google Scholar
Xie, Z, Swain, CA, Ward, SA, Zheng, H, Dong, Y, Sunder, N, et al. Preoperative cerebrospinal fluid beta-Amyloid/Tau ratio and postoperative delirium. Ann Clin Transl Neurol 2014;1(5):319328.Google Scholar
Hogan, KJ. Hereditary vulnerabilities to post-operative cognitive dysfunction and dementia. Prog Neuropsychopharmacol Biol Psychiatry 2013;47:128134.Google Scholar
Cao, L, Wang, K, Gu, T, Du, B, Song, J. Association between APOE epsilon 4 allele and postoperative cognitive dysfunction: a meta-analysis. Int J Neurosci 2014;124(7):478485.Google Scholar
Veliz-Reissmuller, G, Aguero Torres, H, van der Linden, J, Lindblom, D, Eriksdotter Jonhagen, M. Pre-operative mild cognitive dysfunction predicts risk for post-operative delirium after elective cardiac surgery. Aging Clin Exp Res 2007;19(3):172177.Google Scholar
Britton, ME. Drugs, delirium and older people. J Pharm Pract Res 2011;41(3):233238.Google Scholar
Silverstein, JH, Deiner, SG. Perioperative delirium and its relationship to dementia. Prog Neuropsychopharmacol Biol Psychiatry 2013;43:108115.Google Scholar
Lundström, M, Edlund, A, Bucht, G, Karlsson, S, Gustafson, Y. Dementia after delirium in patients with femoral neck fractures. J Am Geriatr Soc 2003;51(7):10021006.Google Scholar
Steinmetz, J, Siersma, V, Kessing, LV, Rasmussen, LS. Is postoperative cognitive dysfunction a risk factor for dementia? A cohort follow-up study. Br J Anaesth 2012;110(suppl 1):9297.Google Scholar
Nadelson, MR, Sanders, RD, Avidan, MS. Perioperative cognitive trajectory in adults. Br J Anaesth 2014;112(3):440451.Google Scholar
Erten-Lyons, D, Sherbakov, LO, Piccinin, AM, Hofer, SM, Dodge, HH, Quinn, JF, et al. Review of selected databases of longitudinal aging studies. Alzheimers Dement 2012;8(6):584589.Google Scholar
Clark, LR, Koscik, RL, Nicholas, CR, Okonkwo, OC, Engelman, CD, Bratzke, LC, et al. Mild cognitive impairment in late middle age in the Wisconsin Registry for Alzheimer's Prevention study: prevalence and characteristics using robust and standard neuropsychological normative data. Arch Clin Neuropsych 2016;31:675688Google Scholar
Adluru, N, Destiche, DJ, Lu, SY, Doran, ST, Birdsill, AC, Melah, KE, et al. White matter microstructure in late middle-age: effects of apolipoprotein E4 and parental family history of Alzheimer’s disease. NeuroImage Clin 2014;4:730742.Google Scholar
Dennis, EL, Thompson, PM. Functional brain connectivity using fMRI in aging and Alzheimer’s disease. Neuropsychol Rev 2014;24(1):4962.Google Scholar
Ramani, R. Connectivity. Curr Opin Anaesthesiol 2015;28(5):498504.Google Scholar
Dani, M, Edison, P, Brooks, DJ. Imaging biomarkers in tauopathies. Parkinsonism Relat Disord 2015;22:2628.Google Scholar
Zhang, J. Mapping neuroinflammation in frontotemporal dementia with molecular PET imaging. J Neuroinflammation 2015;12:108.Google Scholar
Mapstone, M, Cheema, AK, Fiandaca, MS, Zhong, X, Mhyre, TR, MacArthur, LH, et al. Plasma phospholipids identify antecedent memory impairment in older adults. Nat Med 2014;20(4):415418.Google Scholar
Muenchhoff, J, Poljak, A, Song, F, Raftery, M, Brodaty, H, Duncan, M, et al. Plasma protein profiling of mild cognitive impairment and Alzheimer’s disease across two independent cohorts. J Alzheimers Dis 2015;43(4):13551373.Google Scholar
Perneczky, R, Guo, LH. Plasma proteomics biomarkers in Alzheimer’s disease: latest advances and challenges. Methods Mol Biol 2016;1303:521529.Google Scholar
Land, WG. The role of damage-associated molecular patterns (DAMPs) in human diseases: Part II: DAMPs as diagnostics, prognostics and therapeutics in clinical medicine. Sultan Qaboos Univ Med J 2015;15(2):157170.Google Scholar
Mann, M, Kulak, NA, Nagaraj, N, Cox, J. The coming age of complete, accurate, and ubiquitous proteomes. Mol Cell 2013;49(4):583590.Google Scholar
Marioni, RE, Shah, S, McRae, AF, Chen, BH, Colicino, E, Harris, SE, et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol 2015;16:25.Google Scholar
Goetzl, EJ, Boxer, A, Schwartz, JB, Abner, EL, Petersen, RC, Miller, BL, et al. Low neural exosomal levels of cellular survival factors in Alzheimer’s disease. Ann Clin Transl Neurol 2015;2(7):769773.CrossRefGoogle ScholarPubMed
Lee, H, Morin, P, Wells, J, Hanlon, EB, Xia, W. Induced pluripotent stem cells (iPSCs) derived from frontotemporal dementia patient’s peripheral blood mononuclear cells. Stem Cell Res 2015;15(2):325327.Google Scholar
Bárrios, H, Narciso, S, Guerreiro, M, Maroco, J, Logsdon, R, de Mendonça, A. Quality of life in patients with mild cognitive impairment. Aging Mental Health 2013;17(3):287292.Google Scholar
Wells, GA, O’Connell, D, Peterson, J, Welch, V, Losos, M, Tugwell, P. The Newcastle Scale for assessing the quality of nonrandomised studies in meta-analyses. Available at: www.medicine.mcgill.ca/rtamblyn/Readings/The Newcastle - Scale for assessing the quality of nonrandomised studies in meta-analyses.pdf.Google Scholar
Littlejohns, TJ, Henley, WE, Lang, IA, Annweiler, C, Beauchet, O, Chaves, PH, et al. Vitamin D and the risk of dementia and Alzheimer disease. Neurology 2014;83(10):920928.Google Scholar
Cooper, C, Sommerlad, A, Lyketsos, CG, Livingston, G. Modifiable predictors of dementia in mild cognitive impairment: a systematic review and meta-analysis. Am J Psychiatry 2015;172(4):323334.Google Scholar
Keeney, JT, Butterfield, DA. Vitamin D deficiency and Alzheimer disease: common links. Neurobiol Dis 2015;84:8498.Google Scholar
Madsen, SK, Rajagopalan, P, Joshi, SH, Toga, AW, Thompson, PM. Higher homocysteine associated with thinner cortical gray matter in 803 participants from the Alzheimer’s Disease Neuroimaging Initiative. Neurobiol Aging 2015;36:S203S210.Google Scholar
Douaud, G, Refsum, H, de Jager, CA, Jacoby, R, Nichols, T, Smith, SM, et al. Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment. Proc Nat Acad Sci USA 2013;110(23):95239528.Google Scholar
Iglar, PJ, Hogan, KJ. Vitamin D status and surgical outcomes: a systematic review. Patient Safety Surg 2015;9(1):14.Google Scholar
Jerneren, F, Elshorbagy, AK, Oulhaj, A, Smith, SM, Refsum, H, Smith, AD. Brain atrophy in cognitively impaired elderly: the importance of long-chain ω-3 fatty acids and B vitamin status in a randomized controlled trial. Am J Clin Nutr 2015;102(1):215221.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×