Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-29T02:24:21.625Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 November 2015

D. M. Walsh
Affiliation:
University of Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, A., Laforsch, C. and Tollrian, R. (1999). Transgenerational Induction of Defences in Animals and Plants. Nature 401: 6063.CrossRefGoogle Scholar
Alexander, S. (1920). Space, Time, and Deity, the Gifford Lectures for 1916–18, 2 vols. (London: Macmillan).Google Scholar
Allen, G.E. (2005). Mechanism, Vitalism and Organicism in Late Nineteenth and Twentieth-Century Biology: The Importance of Historical Context. Studies in the History and Philosophy of Biology and the Biomedical Sciences 36: 261283.CrossRefGoogle ScholarPubMed
Amundson, R. (1994). Two Concepts of Constraint: Adaptationism and the Challenge from Developmental Biology. Philosophy of Science 61: 556578.CrossRefGoogle Scholar
Amundson, R. (2001). Adaptation and Development: On the Lack of Common Ground. In Orzack, S.H. and Sober, E. (Eds.), Adaptationism and Optimality (pp. 303334). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Amundson, R. (2005). The Changing Role of the Embryo in Evolution. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Anscombe, E. (1957). Intention. Cambridge: Cambridge University Press.Google Scholar
Aquinas, T. (2006). Summa Theologica. New Advent Organization. www.Newadvent.Org/Summa/1002.Htm.Google Scholar
Arber, A. (1964). The Mind and the Eye. Cambridge: Cambridge University Press.Google Scholar
Ariew, A. (1996). Innateness and Canalization. Philosophy of Science 63: S19S27.CrossRefGoogle Scholar
Ariew, A. (1999). Innateness Is Canalisation: A Defense of a Developmental Account of Innateness. In Hardcastle, V. (Ed.), Where Biology Meets Psychology: Philosophical Essays (pp. 117138). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Ariew, A. (2008). Population Thinking. In Ruse, M. (Ed.), Oxford Handbook of Philosophy of Biology (pp. 6486). Oxford: Oxford University Press.Google Scholar
Ariew, A., and Ernst, Z.. (2009). What Fitness Can’t Be. Erkenntnis 71: 289301.CrossRefGoogle Scholar
Ariew, A., Rice, C. and Rohwer, J. (2015). Galtonian Explanations. British Journal for the Philosophy of Science 66: 635658.CrossRefGoogle Scholar
Aristotle, (1995). De Anima. In Irwin, T. and Fine, G. (Eds.), Aristotle Selections (pp. 169218). London: Hackett.Google Scholar
Aristotle, (1996). Physics. Trans. Waterfield, R.. Oxford: Oxford University Press.Google Scholar
Aristotle, (N.D.). On the Gait of Animals. Trans. Farquharson, A.S.L.. Raleigh, NC: Alex Catalogue.Google Scholar
Ayala, F. (1970). Teleological Explanations in Evolutionary Biology. Philosophy of Science 37(1): 115.CrossRefGoogle Scholar
Baldwin, J.M. (1896). A New Factor in Evolution. American Naturalist 30: 441451, 536553.CrossRefGoogle Scholar
Barandiaran, X., Di Paolo, E. and Rohde, M. (2009). Defining Agency: Individuality, Normativity, Asymmetry and Spatio-Temporality in Action (Vol. 1.0). Journal of Adaptive Behavior. Rohde, M. and Ikegami, T. (Eds.), Special Issue on Agency, pp. 113. http://Barandiaran.Net/Textos/Defining_AgencyCrossRefGoogle Scholar
Barnes, B., and Dupré, J. (2008). Genomes and What to Make of Them. Chicago: Chicago University Press.CrossRefGoogle Scholar
Bateson, P. (1976). Specificity and the Origins of Behavior. In Rosenblatt, J., Hinde, R.A., and Beer, C. (Eds.), Advances in the Study of Behavior, Vol. 6 (pp. 120). New York: Academic Press.Google Scholar
Bateson, P. (2014). New Thinking about Biological Evolution. Biological Journal of the Linnean Society 112: 268275.CrossRefGoogle Scholar
Bateson, P., and Gluckman, P. (2011). Plasticity, Robustness, Development and Evolution. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Bateson, P., and Mameli, M. (2007). The Innate and the Acquired: Useful Clusters or a Residual Distinction from Folk Biology? Development and Psychology 49: 818831. DOI: 10.1002/DevCrossRefGoogle ScholarPubMed
Bechtel, W. (2006). Discovering Cell Mechanisms: The Creation of Modern Cell Biology. Cambridge: Cambridge University Press.Google Scholar
Bechtel, W., and Abrahamsen, A. (2006). Explanation: A Mechanistic Alternative. Studies in the History and Philosophy of the Biological and Biomedical Sciences 36: 421441.CrossRefGoogle Scholar
Bechtel, W., and Richardson, R.C. (1993). Emergent Phenomena and Complex Systems. In Beckermann, A., Flohr, H. and Kim, J. (Eds.), Emergence or Reduction? Essays on the Prospects of Nonreductive Physicalism (pp. 257288). Berlin, New York: De Gruyter.Google Scholar
Bechtel, W., and Richardson, R.C. (1998). Vitalism. In Craig, E. (Ed.), Routledge Encyclopedia of Philosophy. London: Routledge. https://mechanism.ucsd.edu/teaching/philbio/vitalism.htm Mechanism.Ucsd.Edu/Teaching/Philbio/Vitalism.HtmGoogle Scholar
Becker, Jamie (2013). A Drop in the Ocean Is Teeming with Life. Woods Hole Institute Joint Program in Oceanographic/Applied Ocean Science and Engineering. Mit.Whoi.Edu/Student-Research?tid=1423&cid=118149Google Scholar
Bedau, M. (1991). Can Biological Teleology Be Naturalized? Journal of Philosophy 88: 647655.CrossRefGoogle Scholar
Bedau, M. (1996). The Nature of Life. In Boden, M. (Ed.), The Philosophy of Artificial Life (pp. 257288). Oxford: Oxford University Press.Google Scholar
Bedau, M. (1998). Where’s the Good in Teleology? Reprinted in Allen, C., Bekoff, M., and Lauder, G. (Eds.), Nature’s Purposes: Analyses of Function and Design in Biology (pp. 261291). Cambridge, MA: MIT Press.Google Scholar
Beisson, J. (2011). Preformed Cell Structure and Cell Heredity. Prion 2 (1): 18.CrossRefGoogle Scholar
Bell, G. (2008). Natural Selection: The Mechanism of Evolution (2nd ed.). Oxford: Oxford University Press.Google Scholar
Bergman, A., and Siegal, M.. (2002). Evolutionary Capacitance as a General Feature of Complex Gene Networks. Nature 424: 549552.CrossRefGoogle Scholar
Bianconi, E., Piovesan, A., Facchin, F., Beraudi, A., Casadei, R., Frabetti, F., Vitale, L., Pelleri, M.C., Tassani, S., Piva, F., Perez-Amodio, S., Strippoli, P. and Canaider, S. (2013). An Estimation of the Number of Cells in the Human Body. Annals of Human Biology 40 (6): 463471.CrossRefGoogle ScholarPubMed
Bilko, A., Altbäcker, V., and Hudson, R. (1994). Transmission of Food Preferences in the Rabbit: The Means of Information Transfer. Physiology and Behaviour 56: 907912.CrossRefGoogle ScholarPubMed
Bird, A. (2000). Kuhn. London: Routledge.CrossRefGoogle Scholar
Bird, A. (2007). Nature’s Metaphysics: Laws and Properties. Oxford: Oxford University Press.CrossRefGoogle Scholar
Bolker, J. (2000). Modularity in Development and Why It Matters to Evo-Devo. American Zoologist 40: 770776.Google Scholar
Bonner, J.T. (1958). The Evolution of Development: Three Special Lectures Given at University College, London. Cambridge: Cambridge University Press.Google Scholar
Bonner, J.T. (1982). Evolution and Development. Berlin: Springer.CrossRefGoogle Scholar
Bonner, J.T. (2010). Brainless Behavior: A Myxomycete Chooses a Balanced Diet. Proceedings of the National Academy of Sciences 107: 52675268. DOI: 10.1073/Pnas.1000861107CrossRefGoogle ScholarPubMed
Boyle, M., and Lavin, D. (2010). Goodness and Desire. In Tenenbaum, S. (Ed.), Desire, Practical Reason, and the Good (pp. 202233). Oxford: Oxford University Press.Google Scholar
Brandon, R. (1990). Adaptation and Environment. Princeton: Princeton University Press.Google Scholar
Brandon, R. (2014). Natural Selection. In Zalta, E.N. (Ed.), The Stanford Encyclopedia of Philosophy (Spring 2014 Edition). Plato.Stanford.Edu/Archives/Spr2014/Entries/Natural-Selection/.Google Scholar
Branzei, D., and Foiani, M. (2008). Regulation of DNA Repair throughout the Cell Cycle. Nature Reviews (Molecular Cell Biology) 9: 297308.CrossRefGoogle ScholarPubMed
Brigandt, I., and Love, A. (2012). Reductionism in Biology. In Zalta, E.N. (Ed.), The Stanford Encyclopedia of Philosophy (Summer 2012 Edition). Plato.Stanford.Edu/Archives/Sum2012/Entries/Reduction-Biolog.Google Scholar
Broad, C.D. (1925). Mind and Its World. London: Routledge and Kegan Paul.Google Scholar
Brown, R. (2013). What Evolvability Really Is. British Journal for the Philosophy of Science. 10.1093/Bjps/Axt014Google Scholar
Brunnander, B. (2007). What Is Selection? Biology and Philosophy 22: 231246.CrossRefGoogle Scholar
Bulgakov, M. (1986). The Life of Monsieur De Molière: A Portrait by Mikhail Bulgakov. Trans. Ginsburg, Mirra. Toronto: Penguin Books, Canada.Google Scholar
Cain, J. (2009). Rethinking the Synthesis Period in Evolutionary Studies. Journal of the History of Biology 42: 621648.CrossRefGoogle Scholar
Calder, W.A. (1978). The Kiwi. Scientific American 239: 132142.CrossRefGoogle Scholar
Callebaut, W. (1993). Taking the Naturalist Turn, or How Real Philosophy of Science Is Done. Chicago: Chicago University Press.Google Scholar
Camazine, S., Deneubourg, J.-L., Franks, N.R., Sneyd, J., Theraulaz, G. and Bonabeau, E. (2001). Self-Organization in Biological Systems. Princeton: Princeton University Press.Google Scholar
Carroll, S.B., Grenier, J.K. and Weatherbee, S.D. (2000). From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design. London: Wiley-Blackwell.Google Scholar
Cartwright, N. (1999). The Dappled World: A Study in the Boundaries of Science. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Cartwright, N. (2004). Causation: One Word, Many Things. Philosophy of Science 71: 805819.CrossRefGoogle Scholar
Cartwright, N. (2010). Models: Parables vs. Fables. In Frigg, T. and Hunter, M. (Eds.), Beyond Mimesis and Convention: Representation in Art and Science (pp. 1931). New York: Springer.CrossRefGoogle Scholar
Chemero, A. (2003). An Outline of a Theory of Affordances. Ecological Psychology 15: 181195.CrossRefGoogle Scholar
Chen, X., Bracht, J.R., Goldman, A.D., Dolzhenko, E., Clay, D.M., Swart, E.C., Perlman, D.H., Doak, T.G., Stuart, A., Amemiya, C.T., Sebra, R.P. and Landweber, L.F. (2014). The Architecture of a Scrambled Genome Reveals Massive Levels of Genomic Rearrangement during Development. Cell 158: 11871198.CrossRefGoogle ScholarPubMed
Christner, B.C., Priscu, John C., Achberger, Amanda M., Barbante, Carlo, Carter, Sasha P., Christianson, Knut, Michaud, Alexander B., Mikucki, Jill A., Mitchell, Andrew C., Skidmore, Mark L., Vick-Majors, Trista J. and the WISSARD Science Team (2014). A Microbial Ecosystem beneath the West Antarctic Ice Sheet. Nature 512: 310313. DOI: 10.1038/Nature13667CrossRefGoogle ScholarPubMed
Churchill, F.B. (1974). William Johannsen and the Genotype Concept. Journal of the History of Biology 7: 530.CrossRefGoogle ScholarPubMed
Ciccia, A., and Elledge, S.J. (2010). The DNA Repair Response: Making It Safe to Play with Knives. Molecular Cell 40: 179204.CrossRefGoogle ScholarPubMed
Ciliberti, S., Martin, O.C. and Wagner, A. (2007a). Robustness Can Evolve Gradually in Complex Regulatory Gene Networks with Varying Topology. PLoS Comput Biol 3 (2): E15. DOI: 10.1371/Journal.Pcbi.0030015CrossRefGoogle ScholarPubMed
Ciliberti, S., Martin, O.C. and Wagner, A. (2007b). Innovation and Robustness in Complex Regulatory Gene Networks. PNAS 104 (34): 1359113596.CrossRefGoogle ScholarPubMed
Clark, A., and Chalmers, D. (1998). The Extended Mind. Analysis 58: 1023.CrossRefGoogle Scholar
Clayton, P., and Davies, P. (2006). The Re-Emergence of Emergence: The Emergentist Hypothesis from Science to Religion. Oxford: Oxford University Press.Google Scholar
Collins, F.S. (1999). Medical and Societal Consequences of the Human Genome Project. New England Journal of Medicine 341: 2837.CrossRefGoogle ScholarPubMed
Conklin, E.G. (1921). Mechanism, Vitalism, and Teleology. The Rice Institute Pamphlet. 8: 351380.Google Scholar
Corning, P. (2014). Evolution ‘On Purpose’: How Behaviour Has Shaped the Evolutionary Process. Biological Journal of the Linnean Society 112: 242260.CrossRefGoogle Scholar
Craver, C. (2007). Explaining the Brain: Mechanisms and the Mosaic Unity of Neuroscience. Oxford: Oxford University Press.CrossRefGoogle Scholar
Craver, C. (2013). Functions and Mechanism: A Perspectival View. In Huneman, P. (Ed.), Functions Selection and Mechanisms (pp. 133158). Dordrecht: Springer.CrossRefGoogle Scholar
Craver, C., and Darden, L. (2013). In Search of Mechanisms: Discoveries across the Life Sciences. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Crick, F.J. (1958). On Protein Synthesis. Symposia of the Society for Experimental Biology 12: 138167.Google ScholarPubMed
Crick, F.J. (1967). Of Molecules and Men (pp. 24, 99). Seattle: University of Washington Press.Google Scholar
Crick, F.J. (1970). The Central Dogma of Molecular Biology. Nature 227: 561563.CrossRefGoogle Scholar
Curley, E. (Ed.) (1994). Spinoza Reader. Princeton, NJ: Princeton University Press.Google Scholar
Danchin, E., and Pocheville, A.S. (2014). Inheritance Is Where Physiology Meets Evolution. Journal of Physiology 592(11): 23072317.CrossRefGoogle ScholarPubMed
Danchin, E., Charmontier, A., Champagne, F.A., Mesoudi, A., Pujol, B. and Blanchet, S. (2011). Beyond DNA: Integrating Inclusive Inheritance into an Extended Theory of Evolution. Nature Reviews Genetics 12 (July): 475486.CrossRefGoogle ScholarPubMed
Darwin, C. (1859 [1968]). The Origin of Species. London: Penguin.Google Scholar
Davidson, D. (1963). Actions, Reasons and Causes. Journal of Philosophy 60: 685700.CrossRefGoogle Scholar
Davidson, D. (1980). Agency. In Davidson, D. (Ed.), Essays on Actions and Events (pp. 4362). Oxford: Oxford University Press.Google Scholar
Davidson, E.H. (2006). The Regulatory Genome: Gene Regulatory Networks in Development and Evolution. London: Academic Press.Google Scholar
Davidson, E.H. (2010). Emerging Properties of Animal Gene Regulatory Networks. Nature 468: 911920.CrossRefGoogle ScholarPubMed
Davidson, E.H., and Erwen, D.H. (2006). Gene Regulatory Networks and the Evolution of Animal Body Plans. Science 311: 796800.CrossRefGoogle ScholarPubMed
Davidson, E.H., and Levine, M.S. (2006). Properties of Gene Regulatory Networks. PNAS 105: 2006320066.CrossRefGoogle Scholar
Davies, P.C.W. (2012). The Epigenome and Top-Down Causation. Interface Focus 2: 4248.CrossRefGoogle ScholarPubMed
Dawkins, R. (1976). The Selfish Gene. Oxford: Oxford University Press.Google Scholar
Dawkins, R. (1982): The Extended Phenotype. Oxford: Oxford University Press.Google Scholar
Dawkins, R. (1986). The Blind Watchmaker. Oxford: Oxford University Press.Google Scholar
Dawkins, R. (1989). The Selfish Gene (2nd ed.). Oxford: Oxford University Press.Google Scholar
Dawkins, R. (1998). Universal Darwinism. Reprinted in Hull, D. and Ruse, M. (Eds.), Oxford Readings in Philosophy of Biology (pp. 1537). Oxford: Oxford University Press.Google Scholar
Dawkins, R. (1999). The Extended Phenotype: The Long Reach of the Gene (2nd ed.). Oxford: Oxford University Press.Google Scholar
Dawkins, R. (2004). Extended Phenotype, But Not Too Extended – A Reply to Laland, Turner and Jablonka. Biology and Philosophy 19: 377396.CrossRefGoogle Scholar
Deacon, T.W. (2011). Incomplete Nature: How Mind Emerged from Matter. New York: W.W. Norton and Company.Google Scholar
De Bakker, M.A.G., Fowler, D.A., Den Oude, K., Dondorp, E.M., Navas, M.C.G., Horbanczuk, J.O., Sire, J.-Y., Szczerbinska, D. and Richardson, M.K. (2013). Digit Loss Interplay between Selection and Constraints. Nature 500: 445448.CrossRefGoogle ScholarPubMed
De Beer, G. (1938). Embryology and Evolution. In De Beer, G. (Ed.), Evolution: Essays On Aspects of Evolutionary Biology (pp. 5778). Oxford: Clarendon Press.Google Scholar
Debat, V., and David, P. (2001). Mapping Phenotypes: Canalization, Plasticity and Developmental Stability. Trends in Ecology and Evolution 16 (10): 555561.CrossRefGoogle Scholar
Dennett, D. (1995). Darwin’s Dangerous Idea: Evolution and the Meanings of Life. New York: Touchstone Books.CrossRefGoogle Scholar
Depew, D. (2011). Adaptation as a Process: The Future of Darwinism and the Legacy of Theodosius Dobzhansky. Studies in the History of Biology and the Biomedical Sciences 42: 8998.Google ScholarPubMed
Depew, D. (forthcoming). In Walsh, D. and Huneman, P. (Eds.), Challenges to Evolutionary Theory. Oxford: Oxford University Press.Google Scholar
Depew, D., and Weber, B. (1995). Darwinism Evolving: Systems Dynamics and the Geneaology of Natural Selection. Cambridge, MA: MIT Press.Google Scholar
Depew, D., and Weber, B. (2011). The Fate of Darwinism: Evolution after the Modern Synthesis. Biological Theory 6: 89102.CrossRefGoogle Scholar
Descartes, R. (1647 [1985]). Principia Philosophiae. Excerpted from Selected Works. Cottingham, J.T. Stoothoff and Murdoch, D. (Eds.). Cambridge: Cambridge University Press.Google Scholar
Di Paolo, E. (2005). Autopoiesis, Adaptivity, Teleology, Agency. Phenomenology and the Cognitive Sciences. 4: 429452.CrossRefGoogle Scholar
Dickens, T.E., and Rahman, Q. (2012). The Extended Evolutionary Synthesis and the Role of Soft inheritance in Evolution. Proceedings of the Royal Society. Series B. 279(1740): 29132921. DOI: 10.1098/Rspb.2012.0273Google Scholar
Dobzhansky, T. (1937). Genetics and the Origin of Species. New York: Columbia University Press.Google Scholar
Dowen, R.H., Pelizzolaa, M., Schmitz, R.J., , R.A., Lister, R., Dowen, J.M., Nery, J.R. andEcker, J.R. (2012). Widespread Dynamic DNA Methylation in Response to Biotic Stress. PNAS. 109(32):E218391. DOI: 10.1073/pnas.1209329109CrossRefGoogle ScholarPubMed
Dretske, F. (1986). Misrepresentation. In Bogdan, R. (Ed.). Belief: Form, Content, and Function (pp. 1736). Oxford: Oxford University Press.Google Scholar
Duboule, D., and Dollé, P. (1989). The Structural and Functional Organization of the Murine Hox Family Resembles That of Drosophila Homeotic Genes. Embo 8: 14971505.CrossRefGoogle ScholarPubMed
Dupré, J. (2012). Processes of Life: Essays in the Philosophy of Biology. Oxford: Oxford University Press.CrossRefGoogle Scholar
Dupré, J. (2013). Living Causes. Proceedings of the Aristotelian Society Supplementary Volume 87: 1938.CrossRefGoogle Scholar
Earnshaw-Whyte, E. (2012). increasingly Radical Claims about Heredity and Fitness Philosophy of Science 79: 396412.CrossRefGoogle Scholar
Echten, S., and Borovitz, J. (2013). Epigenomics: Methylation’s Mark on Inheritance. Nature 495: 181182. DOI:10.1038/Nature11960CrossRefGoogle Scholar
Ellis, B. (2007). Scientific Essentialism. Cambridge: Cambridge University Press.Google Scholar
Ellis, G.F. (2012). On the Nature of Causation in Complex Systems. Unpublished Manuscript. Retrieved from www.Mth.Uct.Ac.Za/~Ellis/Top-Down_20Ellis.Pdf (accessed 16 January 2013).Google Scholar
Encyclopedia Britannica (2013). General Sherman Tree. http://www.britannica.com/place/General-Sherman (accessed 3 September 2015).Google Scholar
Evans, E. (2013). Soil Life. North Carolina State University, College of Arts and Sciences Cooperative Extension, Horticultural Sciences. www.Ces.Ncsu.Edu/Depts/Hort/Consumer/Quickref/Soil/Soillife.HtmlGoogle Scholar
Falk, R. (1986). What Is a Gene? Studies in the History and Philosophy of Science 17: 133173.CrossRefGoogle ScholarPubMed
Ferguson-Smith, A.C. (2011). Genomic Imprinting: The Emergence of an Epigenetic Paradigm. Nature Review Genetics 12: 565575.CrossRefGoogle ScholarPubMed
Fisher, R.A. (1918). The Correlation between Relatives on the Supposition of Mendelian Inheritance. Transactions of the Royal Society of Edinburgh 52: 399433.CrossRefGoogle Scholar
Fisher, R.A. (1930). The Genetical Theory of Natural Selection. Oxford: Clarendon Press.CrossRefGoogle Scholar
Flyvbjerg, H., and Lautrup, B. (1992). Evolution in a Rugged Fitness Landscape. Physical Review 46: 67146723.CrossRefGoogle Scholar
Fodor, J. (1974). Special Sciences (Or: the Disunity of Science as a Working Hypothesis). Synthese 28: 97115.CrossRefGoogle Scholar
Fodor, J. (1987). Psychosemantics: The Problem of Meaning in Philosophy of Mind. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Forgacs, G., and Newman, S. (2005). Biological Physics of the Developing Embryo. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Fulda, F. (ms). Between Mechanisms and Intellectualism: The Case of Bacterial Cognition. Unpublished manuscript.Google Scholar
Fulda, F. (2015). An Ecological Approach to Agency. PhD Dissertation, University of Toronto.Google Scholar
Galton, D. (2009). Did Darwin Read Mendel? Quarterly Journal of Medicine 209: 587589.CrossRefGoogle Scholar
Ganeri, J. (2011). Emergentisms, Ancient and Modern. Mind 120: 671703.CrossRefGoogle Scholar
Garber, D. (1998 [2003]). Descartes, René. In Craig, E. (Ed.), Routledge Encyclopedia of Philosophy. London: Routledge. Retrieved from http://www.Rep.Routledge.Com/Article/DA026SECT3Google Scholar
Garber, D. (2013). Remarks on the Pre-History of the Mechanical Philosophy. In Garber, D. and Roux, S. (Eds.), The Mechanization of Natural Philosophy (pp. 326). Boston: Springer.CrossRefGoogle Scholar
Garfinkel, A. (1981). Forms of Explanation: Rethinking Questions in Social Theory. New Haven: Yale University Press.Google Scholar
Garrett, B. (2010). Vitalism versus Emergent Materialism. In Normandin, S. and Wolfe, C.T. (Eds.), Vitalism and the Scientific Image in Post-Enlightenment Life Science, 1800–2010, History, Philosophy and Theory of the Life Sciences 2 (pp. 127154). Dordrecht: Springer. DOI: 10.1007/978–94-007–2445-7_6Google Scholar
Garstang, W. (1922). The Theory of Recapitulation: A Critical Re-Statement of the Biogenetic Law. Linnean Journal of Zoology 35: 81101.Google Scholar
Gayon, J. (2000). From Measurement to Organization: A Philosophical Scheme for the History of the Concept of Inheritance. In Beurteon, P.J., Falk, R. and Rheinberge, H.-J. (Eds.), The Concept of the Gene in Development and Evolution: Historical and Epistemological Perspectives (pp. 6090). Cambridge: Cambridge University Press.Google Scholar
Gerhard, J.C., and Kirschner, M. (2005). The Plausibility of Life: Resolving Darwin’s Dilemma. New York: Norton.Google Scholar
Gerhard, J.M., and Kirschner, M. (2007). The Theory of Facilitated Variation. PNAS 104: 85828589.CrossRefGoogle Scholar
Ghiselin, M. (1993). Darwin’s Language May Have Been Teleological, but His Thinking Was a Different Matter. Biology and Philosophy 9: 482492.Google Scholar
Gibson, G. (2002). Getting Robust about Robustness. Current Biology 12: R347R349.CrossRefGoogle ScholarPubMed
Gibson, G., and Wagner, G. (2000). Canalisation in Evolutionary Genetics: A Stabilizing theory? Bioessays 22: 372380.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Gibson, J.J. (1979). The Ecological Approach to Visual Perception. Boston: Houghton Mifflin.Google Scholar
Gibson, K. (1994). General Introduction: Animal Minds, Human Minds. In Gibson, K. and Parker, T.I. (Eds.), Tools, Language and Cognition in Human Evolution (pp. 319). Cambridge University Press.Google Scholar
Gilbert, S. (1999). The Role of Embryonic Induction in Creating Self. In Tauber, F. (Ed.), Organisms and the Origin of Self. Boston Studies in Philosophy of Science 129: 341360. Boston: Kluwer.CrossRefGoogle Scholar
Gilbert, S. (2003a). The Morphogenesis of Evolutionary Developmental Biology. International Journal of Developmental Biology 47: 467477.Google ScholarPubMed
Gilbert, S. (2003b). The Genome in Its Ecological Setting. Annals of the New York Academy of Science 981: 202218.CrossRefGoogle Scholar
Gilbert, S., and Epel, D. (2009). Ecological Developmental Biology. Sunderland, MA: Sinauer.Google Scholar
Gillespie, J. (1977). Natural Selection for Variances in Offspring Number: A New Evolutionary Principle. American Naturalist 111: 10101014.CrossRefGoogle Scholar
Ginsborg, H. (2001). Kant on Understanding Organisms as Natural Purposes. In Watkins, E., Kant and the Sciences (pp. 231258). Oxford: Oxford University Press.CrossRefGoogle Scholar
Glennan, S. (1996). Mechanisms and the Nature of Causation. Erkenntnis 44: 4971.CrossRefGoogle Scholar
Glennan, S. (2002). Rethinking Mechanistic Explanation. Philosophy of Science 64: 605626.CrossRefGoogle Scholar
Godfrey-Smith, P. (1996). Complexity and the Function of Mind in Nature. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Godfrey-Smith, P. (2000). On the Theoretical Role of ‘Genetic Coding’. Philosophy of Science 67: 2644.CrossRefGoogle Scholar
Godfrey-Smith, P. (2001a). Organism, Environment and Dialectics. In Singh, R., Krimbas, C., Paul, D. and Beatty, J. (Eds.), Thinking about Evolution. Cambridge: Cambridge University Press.Google Scholar
Godfrey-Smith, P. (2001b). Three Kinds of Adaptationism. In Orzack, S.H. and Sober, E. (Eds.), Adaptationism and Optimality (pp. 335357). New York: Cambridge University Press.CrossRefGoogle Scholar
Godfrey-Smith, P. (2009). Darwinian Populations and Natural Selection. Oxford: Oxford University Press.CrossRefGoogle Scholar
Goodwin, B. (1994). How the Leopard Changed Its Spots. Princeton: Princeton University Press.Google Scholar
Gould, S.J. (1977). Ontogeny and Phylogeny. Cambridge, MA: Harvard University Press.Google Scholar
Gould, S.J. (2002). The Structure of Evolutionary Theory. Cambridge, MA: Harvard, Belknap Press.Google Scholar
Gould, S.J., and Lewontin, R.C. (1979). The Spandrels of San Marco and the Panglossian Paradigm: A Critique of the Adaptationist Programme. Proceedings of the Royal Society London, Series B, 205: 581598.Google Scholar
Greenspan, R.J. (2001). The Flexible Genome. Nature Reviews Genetics, 2: 383387.CrossRefGoogle ScholarPubMed
Grene, M. (1961), Statistics and Selection. British Journal for the Philosophy of Science 12: 2542.CrossRefGoogle Scholar
Grene, M. (1974). Aristotle and Modern Biology. Reprinted in Greene, M., Understanding Nature: Essay in the Philosophy of Biology. Boston Studies in the Philosophy of Science, Vol. XXIII, Cohen, R.D.S. and Wartofsky, M.W. (Eds.), pp. 74107.Google Scholar
Griesemer, J.R., and Wimsatt, W.C. (1989). Picturing Weismannism: A Case Study of Conceptual Evolution. In Ruse, M. (Ed.), What Philosophy of Biology Is. Essays Dedicated to David Hull (pp. 75137). Dordrecht, Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
Griffiths, P.E. (2001). Genetic information: A Metaphor in Search of a theory. Philosophy of Science 68: 394412.CrossRefGoogle Scholar
Griffiths, P.E., and Gray, R.D. (1994). Devepmental Systems and Evolutionary Explanation. The Journal of Philosophy 91: 277304.CrossRefGoogle Scholar
Griffiths, P.E., and Gray, R.D. (2001). Darwinism and Developmental Systems. In Oyama, S., Griffiths, P.E. and Gray, R.D. (Eds.), Cycles of Contingency: Developmental Systems and Evolution (pp. 195218). Cambridge, MA: MIT Press.Google Scholar
Griffiths, P.E., and Gray, R. (2005). Discussion: Three Ways to Misunderstand Developmental Systems Theory. Biology and Philosophy 20: 417–25. DOI: 10.1007/S10539-004–0758-1CrossRefGoogle Scholar
Griffiths, P.E., and Stotz, K. (2007). Gene. In Ruse, M. (Ed.) (2005), Cambridge Companion to the Philosophy of Biology (pp. 85103). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Griffiths, P.E., and Stotz, K. (2013). Genetics and Philosophy: An Introduction. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Griffiths, P.E., and Tabery, J. (2014). Developmental Systems Theory: What Does It Explain, and How Does It Explain It? Advances in Child Development and Behavior 44: 6594.CrossRefGoogle Scholar
Guerrero-Bosagna, C., Savenkova, M., Haque, M.M., Nilsson, E. and Skinner, M.K. (2013). Environmentally Induced Epigenetic Transgenerational inheritance of Altered Sertoli Cell Transcriptome and Epigenome: Molecular Etiology of Male infertility. Plos ONE 8 (3): E59922. DOI: 10.1371/Journal.Pone.0059922CrossRefGoogle ScholarPubMed
Guyer, P. (2005). Organisms and the Unity of Science. In Guyer, P. (Ed.), Kant’s System of Nature and Freedom: Selected Essays (pp. 86111). Oxford: Oxford University Press.CrossRefGoogle Scholar
Haig, D. (2011). Lamarck Ascending! A Review of Transformations of Lamarckism: From Subtle Fluids to Molecular Biology, Gissis, S.B. and Jablonka, E. (Eds.). Cambridge, MA: MIT Press, Philosophy and Theory in Biology 3: E204.Google Scholar
Haldane, J.B.S. (2008). A Defence of Beanbag Genetics. International Journal of Epidemiology 37 (3): 435442. DOI: 10.1093/Ije/Dyn056CrossRefGoogle ScholarPubMed
Hall, B.K. (1999). Evolutionary Developmental Biology. Amsterdam: Kluwer.CrossRefGoogle Scholar
Hall, B.K. (2012). Evolutionary Developmental Biology (Evo-Devo): Past, Present, and Future. Evolution: Education and Outreach 5: 184193.Google Scholar
Hallgrímsson, B., Willmore, K. and Hall, B.K. (2002). Canalization, Developmental Stability, and Morphological integration in Primate Limbs. Yearbook of Physical Anthropology 45: 131158.CrossRefGoogle Scholar
Hamburger, V. (1980). Embryology and the Modern Synthesis in Evolutionary Biology. In Mayr, E. and Provine, W. (Eds.), The Evolutionary Synthesis (pp. 97112). Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Hamburger, V., Allen, H.G.E. and Maienschein, J. (1999). Hans Spemann on Vitalism in Biology: Translation of a Portion of Spemann’s Autobiography. Journal of the History of Biology 32: 231243.CrossRefGoogle ScholarPubMed
Hamel, A., Fisch, C., Combettes, L., Dupuis-Williams, P. and Baroud, C.N. (2011). Transitions between Three Gaits in Paramecium Scape. Proceedings of the National Academy of Sciences 108 (18): 72907295.CrossRefGoogle Scholar
Hankinson, J. (1998). Cause and Explanation in Ancient Greek Thought. Oxford: Oxford University Press.Google Scholar
Harré, R. (1986). Varieties of Realism: A Rationale for the Natural Sciences. Oxford: Basil Blackwell.Google Scholar
Haugeland, J. (1998). Having Thought: Essays in the Metaphysics of Mind. Chicago: University of Chicago Press.Google Scholar
Heijmans, Bastiaan T., Tobi, Elmar W., Stein, Aryeh D., Putter, Hein, Blauw, Gerard J., Susser, Ezra S., Slagboom, P. Eline and Lumey, L.H. (2008). Persistent Epigenetic Differences Associated with Prenatal Exposure to Famine in Humans. PNAS 105:1704617049; Published Ahead of Print 27 October, 2008. DOI: 10.1073/Pnas.0806560105CrossRefGoogle ScholarPubMed
Heil, M., Greiner, S., Meimberg, H., Krüger, R., Noyer, J-L., Heubl, G., Linsenmair, K.E. and Boland, W. (2004). Evolutionary Change from Induced to Constitutive Expression of an Indirect Plant Resistance. Nature 430: 205208. DOI: 10.1038/Nature02703CrossRefGoogle ScholarPubMed
Helenterä, H., and Üller, T. (2010). The Price Equation and Extended Inheritance. Philosophy and Theory in Biology 2: E101.Google Scholar
Hendrikse, J.L., Parsons, T.E. and Hallgrímsson, B. (2007). ‘Evolvability as the Proper Focus of Evolutionary Developmental Biology. Evolution and Development 9: 393401.CrossRefGoogle ScholarPubMed
Henning, B.G., and Scarfe, A.C. (2013). Beyond Mechanism: Putting Life Back into Biology. Toronto: Lexington Books.Google Scholar
Henry, D. (2013). Optimality and Teleology in Aristotle’s Natural Science. Oxford Studies in Ancient Philosophy, Vol. 45, pp. 225264.Google Scholar
Hernández-Hernández, V., Niklas, K.J., Newman, S.A. and Benítez, M. (2012). Dynamical Patterning Modules in Plant Development and Evolution. International Journal of Developmental Biology 2012: 56(9): 661674. DOI: 10.1387/Ijdb.120027mbCrossRefGoogle ScholarPubMed
Hodge, M.J.S. (1987). Natural Selection as a Causal, Empirical, and Probabilistic theory. In Kruger, L., Gigenrenzer, G. and Morgan, M.S. (Eds.), The Probabilistic Revolution, Vol. 2 (pp. 233270). Cambridge, MA: MIT Press.Google Scholar
Hornsby, J. (1997). Simple Mindedness: A Defense of Naive Naturalism in the Philosophy of Mind. Cambridge, MA: Harvard University Press.Google Scholar
Howell, E. (2014). How Many Stars in the Milky Way? Space.Com (21 May). www.Space.Com/25959-How-Many-Stars-Are-in-the-Milky-Way.HtmlGoogle Scholar
Hull, D. (1969). What Philosophy of Biology Is Not. Journal of the History of Biology 2: 241268.CrossRefGoogle Scholar
Hull, D. (1973). Philosophy of Biological Science. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Huneman, P. (2010). Assessing the Prospects for a Return of Organisms in Evolutionary Biology. History and Philosophy of the Life Sciences 32: 341372.Google ScholarPubMed
Huneman, P. (2014). A Pluralist Framework to Address Challenges to the Modern Synthesis in Evolutionary Theory. Biological Theory (9): 163177. DOI: 10.1007/s13752-014–0174-yCrossRefGoogle Scholar
Huxley, J. (1942). Evolution: The Modern Synthesis. London: Allen Unwin.Google Scholar
Ingold, T. (1986). Culture and the Perception of the Environment. Cambridge: Cambridge University Press.Google Scholar
Ingold, T. (1989). An Anthropologist Looks at Biology. Man (N.S.) 25: 208229.CrossRefGoogle Scholar
Irschick, D.J., Albertson, R.C., Brennnan, P., et al. (2013). Evo-Devo beyond Morphology: From Genes to Resource Use. Trends in Ecology and Evolution 28: 509–16.CrossRefGoogle ScholarPubMed
Jablonka, E. (2001). The Systems of Inheritance. In Oyama, S., Griffiths, P.E. and Gray, R. (Eds.), Cycles of Contingency (pp. 99116). Cambridge, MA: MIT Press.Google Scholar
Jablonka, E., and Avital, E. (2006). Animal Innovation: The Origins and Effects of New Learned Behaviours. Biology and Philosophy 21: 135141.CrossRefGoogle Scholar
Jablonka, E., and Gissis, S. (2011). Transformation of Lamarckism. Cambridge, MA: MIT Press.Google Scholar
Jablonka, E., and Lamb, M. (1995). Epigenetic Inheritance and Evolution: The Lamarckian Dimension. Oxford: Oxford University Press.CrossRefGoogle Scholar
Jablonka, E., and Lamb, M. (2002). The Changing Concept of Epigenetics. Annals of the New York Academy of Sciences 981: 8296.CrossRefGoogle ScholarPubMed
Jablonka, E., and Lamb, M. (2004). Evolution in Four Dimensions: Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life. Cambridge, MA: Bradford Books.Google Scholar
Jablonka, E., and Lamb, M. (2008). Soft Inheritance: Challenging the Modern Synthesis Genetics. Molecular Biology 31: 289395.Google Scholar
Jablonka, E., and Lamb, M. (2010). Transgenerational Epigenetic Inheritance. In Pigliucci, M. and Müller, G. (Eds.), Evolution: The Extended Synthesis (pp. 137174). Cambridge, MA: MIT Press.Google Scholar
Jablonka, E., and Raz, G. (2009). Transgenerational Epigenetic Inheritance: Prevalence, Mechanisms, and Implications for the Study of Heredity and Evolution. The Quarterly Review of Biology 84 (2): 131176.CrossRefGoogle Scholar
Jackson, S.P., and Bartek, J.. (2009). The DNA-Damage Response in Human Biology and Disease. Nature 461: 10711078.CrossRefGoogle ScholarPubMed
Jacob, F, (1973). The Logic of Life: A History of Heredity. Trans. Spillman, B.R.. New York: Pantheon.Google Scholar
Jacob, F., and Monod, J. (1961). Genetic Regulatory Mechanisms in the Synthesis of Proteins. Journal of Molecular Biology 3: 318356.CrossRefGoogle ScholarPubMed
Jenkin, F. (1867). The Origin of Species. North British Review. June. www.Victorianweb.Org/Science/Science_Texts/Jenkins.HtmlGoogle Scholar
Johannsen, W. (1911). The Genotype Conception of Heredity. American Naturalist 45: 129159.CrossRefGoogle Scholar
Johansen, T. (2004). Plato’s Naturalism. Oxford: Oxford University Press.Google Scholar
Johnson, M.R. (2005). Aristotle on Teleology. Oxford: Oxford University Press.CrossRefGoogle Scholar
Jonas, H. (1966). The Phenomenon of Life: Toward a Philosophical Biology. Evanston: Northwestern University Press.Google Scholar
Juarrero, A. (2012). Complex Dynamical Systems Theory. Http://Cognitive-Edge.Com/Uploads/Articles/100608%20Complex_Dynamical_Systems_theory.Pdf (accessed 16 January 2013).Google Scholar
Kant, I. (2000). Critique of the Power of Judgment. Trans. Guyer, P. and Matthew, E.. Cambridge: Cambridge University Press. (First published 1790)CrossRefGoogle Scholar
Kaplan, J. (2013). Relevant Similarity and the Causes of Biological Evolution: Selection, Fitness and the Causes of Biological Evolution. Biology and Philosophy 28: 405421.CrossRefGoogle Scholar
Kauffman, S. (1993). The Origins of Order: Self-Organization and Selection in Evolution. Oxford: Oxford University Press.CrossRefGoogle Scholar
Kauffman, S. (1995). At Home in the Universe. Oxford: Oxford University Press.Google Scholar
Kauffman, S. (2010). What Is Life? Was Schrödinger Right? In Bedau, M. and Cleland, C. (Eds.), The Nature of Life: Classical and Contemporary Perspectives from Philosophy (pp. 374391). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kay, L. (2000). Who Wrote the Book of Life? Stanford: Stanford University Press.CrossRefGoogle Scholar
Kazmierczak, J., and Kempe, S. (2004). Calcium Build-Up in the Precambrian Sea: A Major Promoter in the Evolution of Eukaryotic Life. In Seckbach, J. (Ed.), Origins: Genesis, Evolution and Diversity of Life (pp. 329345). Dordrecht: Kluwer.Google Scholar
Keller, E.F. (2000). The Century of the Gene. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Keller, E.F. (2011a). Genes, Genomes, Genomics Biological Theory 6: 132140.CrossRefGoogle Scholar
Keller, E.F. (2011b). The Mirage of a Space between Nature and Nurture. Raleigh: Duke University Press.Google Scholar
Keller, E.F. (2013). Genes as Difference Makers. In Krimsky, S. and Gruber, J. (Eds.), Genetic Explanations: Sense and Nonsense (pp. 329345). Cambridge, MA: Harvard University Press.Google Scholar
Keller, E.F. (forthcoming). The Genome. Forthcoming in Richardson, S. and Stevens, H., The Age. Raleigh: Duke University Press.Google Scholar
Kerr, B., and Godfrey-Smith, P.. (2009). Generalization of the Price Equation for Evolutionary Change. Evolution 63: 531536.CrossRefGoogle ScholarPubMed
Kim, J. (1989). Mechanism, Purpose and Explanatory Exclusion. In Tomberlin, J. (Ed.), Philosophical Perspectives 3: Philosophy of Mind and Action Theory (pp. 77108). Atascadero, CA: Ridgeview.Google Scholar
Kim, J. (1999). Making Sense of Emergence. Philosophical Studies 95: 336.CrossRefGoogle Scholar
Kim, J. (2006). Emergence: Core Ideas and Issues. Synthese 151: 547559.CrossRefGoogle Scholar
Kimura, M. (1983). The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
King, N. (2004). The Unicellular Ancestry of Animal Development. Developmental Cell 7: 313325.CrossRefGoogle ScholarPubMed
King, N., Westbrook, M.J., Young, S.L., et al. (2008). The Genome of the Choanoflagellate Monosiga Brevicollis and the Origin of Metazoans. Nature 451: 783788.CrossRefGoogle ScholarPubMed
Kirschner, M., and Gerhard, J. (2005). The Plausibility of Life: Resolving Darwin’s Dilemma. New Haven: Yale University Press.Google Scholar
Kirschner, M., and Gerhard, J.C. (1998). Evolvability. Proceedings of the National Academy of Sciences USA 95: 84208427.CrossRefGoogle ScholarPubMed
Kirschner, M., and Gerhard, J.C. (2010). Facilitated Variation. In Pigliucci, M. and Muller, G.B. (Eds.), The Extended Synthesis (pp. 253280). Cambridge, MA: MIT Press.Google Scholar
Kitano, H. (2004). Biological Robustness. Nature Reviews Genetics 5: 826837.CrossRefGoogle ScholarPubMed
Kripke, S. (1972). Naming and Necessity. Oxford: Oxford University Press.CrossRefGoogle Scholar
Kuhn, T. (1970). The Structure of Scientific Revolutions (2nd ed.). Chicago: University of Chicago Press.Google Scholar
Laland, K., Uller, T., Feldman, M., Sterelny, L., Müller, G.B., Moczek, A., Jablonka, E. and Odling-Smee, J. (2014). Does Evolutionary Theory Need a Rethink? Yes: Urgently. Nature 514: 161164.CrossRefGoogle Scholar
Laland, K., Odling-Smee, F.J. and Feldman, M.W. (2001). Niche Construction, Ecological Inheritance, and Cycles of Contingency in Evolution. In Oyama, S., Griffiths, P. and Gray, R. (Eds.), Cycles of Contingency: Developmental System and Evolution (pp. 117126). Cambridge, MA: MIT Press.Google Scholar
Lamm, E. (2011). The Metastable Genome. In Jablonka, E. & Gissis, S. (Eds.), Transformations of Lamarckism: From Subtle Fluids to Molecular Biology (pp. 345355). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Lamm, E. (2014). Inheritance Systems. In Zalta, E.N. (Ed.), The Stanford Encyclopedia of Philosophy (Spring 2012 Edition). Plato.Stanford.Edu/Archives/Spr2012/Entries/inheritance-SystemsGoogle Scholar
Lande, R. (1976). Natural Selection and Random Genetic Drift in Phenotypic Evolution. Evolution 30: 315334.CrossRefGoogle ScholarPubMed
Lange, M. (2013). Really Statistical Explanations and Genetic Drift. Philosophy of Science. 80: 169188.CrossRefGoogle Scholar
Laubichler, M. (2009). Evo-Devo: Historical and Conceptual Reflections. In Laublichler, M. and Maienschein, J. (Eds.), Form and Function in Developmental Evolution (pp. 1046). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Laubichler, M. (2010). Evolutionary Developmental Biology Offers a Significant Challenge to the Neo-Darwinian Paradigm. In Ayala, F. and Arp, R. (Eds.), Contemporary Debates in Philosophy of Biology (pp. 199212). Malden, MA: John Wiley & Sons.Google Scholar
Lennox, J. (2001). Material and Formal Natures in Aristotle’s de Partibus Animalium. In Aristotle’s Philosophy of Biology (pp. 182204). Cambridge: Cambridge University Press.Google Scholar
Lennox, J. (2009). Form, Essence and Explanation in Aristotle’s Biology. In Anagnostopoulos, G. (Ed.), A Companion to Aristotle (pp. 348367). London: Blackwell.CrossRefGoogle Scholar
Lennox, J. (2010). Βιος, Πραχισ, and The Unity of Life. In Follinger, S. (Ed.), Was ist ‘Leben’? (pp. 239256). Stuttgart: Steiner Verlag.Google Scholar
Leunissen, M. (2010). Explanation and Teleology in Aristotle’s Science of Nature. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Levins, R. (1966). The Strategy of Model Building in Population Biology. Reprinted in Sober, E. (Ed.) (1984), Conceptual Issues in Revolutionary Biology (pp. 1827). Cambridge, MA: MIT Press.Google Scholar
Levins, R., and Lewontin, R.C. (1985). The Dialectical Biologist. Cambridge, MA: Harvard University Press.Google Scholar
Lewens, T. (2004). Organisms and Artifacts: Design in Nature and Elsewhere. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Lewens, T. (2009a). What’s Wrong with Typological Thinking? Philosophy of Science 76: 355371.CrossRefGoogle Scholar
Lewens, T. (2009b). Seven Kinds of Adaptationism. Biology and Philosophy 24: 161182.CrossRefGoogle Scholar
Lewens, T. (2010). The Natures of Selection. British Journal for the Philosophy of Science. 61: 303333.CrossRefGoogle Scholar
Lewis, D.K. (1969). Convention: A Philosophical Study. Cambridge, MA: Harvard University Press.Google Scholar
Lewontin, R.C. (1974). The Genetic Basis of Evolutionary Change. New York: Columbia University Press.Google Scholar
Lewontin, R.C. (1978). Adaptation. Scientific American 239: 212230.CrossRefGoogle ScholarPubMed
Lewontin, R.C. (1983). Gene, Organism, and Environment. In Bendall, D.S. (Ed.), Evolution: from Molecules to Men (pp. 273285). Cambridge: Cambridge University Press.Google Scholar
Lewontin, R.C. (1985). The Organism as Subject and Object of Evolution. Reprinted in: Levins, R. and Lewontin, R. (1985), The Dialectical Biologist. Cambridge, MA: Harvard University Press Scientia 118: 85106.Google Scholar
Lewontin, R.C. (2001a). The Triple Helix: Genes, Organisms and Environments. Oxford: Oxford University Press.Google Scholar
Lewontin, R.C. (2001b). The Problems of Population Genetics. In Singh, R., Krimbas, C., Paul, D.S. and Beatty, J. (Eds.), Thinking about Evolution, Vol. 1 (pp. 422). Cambridge: Cambridge University Press.Google Scholar
Lewontin, R.C. (2001c). Genes, Organisms and Environments. In Oyama, S., Griffiths, E.P. and Gray, R., Cycles of Contingency: Developmental Systems and Evolution (pp. 5966). Cambridge, MA: MIT Press.Google Scholar
Lipton, P. (2004). Inference to the Best Explanation (2nd ed.). London: Routledge.Google Scholar
López-Beltrán, C. (1994). Forging Heredity: From Metaphor to Cause, a Reification Story. Studies in the History and Philosophy of Science 25: 211235.CrossRefGoogle Scholar
Love, A. (2003). Evolutionary Morphology, Innovation, and the Synthesis of Evolutionary and Developmental Biology. Biology and Philosophy 18: 309345.CrossRefGoogle Scholar
Love, A. (2015). Conceptual Change and Evolutionary Developmental Biology. In Love, A. (Ed.), Conceptual Change in Biology: Scientific and Philosophical Perspectives on Evolution and Development (pp. 154). Dordrecht: Springer.CrossRefGoogle Scholar
Lumey, L.H. (1992). Decreased Birthweights in Infants after Maternal in Utero Exposure to the Dutch Famine of 1944–1945. Pediatric and Perinatal Epidemiology. 6: 240253.CrossRefGoogle Scholar
Lyon, P. (2005). The Biogenic Approach to Cognition. Cognitive Processes. DOI: 10.1007/S10339-005–0016-8.CrossRefGoogle Scholar
Machamer, P., Darden, L. and Craver, C. (2000). Thinking about Mechanisms. Philosophy of Science. 57: 125.CrossRefGoogle Scholar
Maienschein, J., and Laubichler, M. (2014). Explaining Development and Evolution on the Tangled Bank. In Thompson, R.P. and Walsh, D.M. (Eds.), Evolutionary Biology: Conceptual, Ethical, and Religious Issues (pp. 151171). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Malthus, T. (1798). An Essay on the Principle of Populations. London: J. Johnson (W.W. Norton Edition, 1976, edited by Appleman, Peter).Google Scholar
Mameli, M. (2004). Non-Genetic Selection and Non-Genetic Inheritance. British Journal For the Philosophy of Science 55: 3571.CrossRefGoogle Scholar
Mameli, M. (2005). The Inheritance of Features. Biology and Philosophy 20: 365399.CrossRefGoogle Scholar
Marzke, M. (1997). Precision Grip, Hand Morphology, and Tools. American Journal of Physical Anthropology 102: 91110.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Matthen, M. (2009). Drift and ‘Statistically Abstractive Explanation’. Philosophy of Science 76: 464487.CrossRefGoogle Scholar
Matthen, M., and Ariew, A.. (2002). Two Ways of Thinking about Fitness and Selection. Journal of Philosophy 99: 5883.CrossRefGoogle Scholar
Matthen, M., and Ariew, A. (2009). Selection and Causation. Philosophy of Science 76: 201223.CrossRefGoogle Scholar
Matthews, G. (2002). The Philosophy of Merleau-Ponty. London: Routledge.Google Scholar
Maynard Smith, J. (1969). The Status of Neo-Darwinism. In Waddington, C.H. (Ed.), Toward a Theoretical Biology, pp. 8289. Edinburgh: Edinburgh University Press.Google Scholar
Maynard Smith, J. (1982). Evolution and the Theory of Games. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Maynard Smith, J. (1989). Evolutionary Genetics. Oxford: Oxford University Press.Google Scholar
Maynard Smith, J. (1998). Evolutionary Genetics, 2nd ed. Oxford: Oxford University Press.Google Scholar
Maynard Smith, J. (2000). The Concept of Information in Biology. Philosophy of Science 67: 177194.CrossRefGoogle Scholar
Maynard Smith, J., Burian, R., Kauffman, S., Alberch, P., Campbell, J., Goodwin, B., Lande, R., Raup, Da. and Wolpert, L. (1985). Developmental Constraints and Evolution. Quarterly Review of Biology 60: 265287.CrossRefGoogle Scholar
Mayr, E. (1963). Animal Species and Evolution. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Mayr, E. (1975). Evolution and the Diversity of Life. Cambridge, MA: Harvard University PressGoogle Scholar
Mayr, E. (1976). Towards a New Philosophy of Biology. Cambridge, MA: Harvard University Press.Google Scholar
Mayr, E. (1982). The Growth of Biological Thought. Cambridge, MA: Harvard University Press.Google Scholar
Mayr, E. (1988). The Multiple Meanings of Teleological. In Towards a New Philosophy of Biology: Observations of an Evolutionist (pp. 3866). Cambridge, MA: Harvard University Press.Google Scholar
Mayr, R. (1997). The Objects of Selection. Proceedings of the National Academy of the Sciences 91: 20912094.CrossRefGoogle Scholar
Mayr, E., and Provine, W.B. (Eds.) (1980). The Evolutionary Synthesis: Perspectives on the Unification of Biology. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
McClintlock, B. (1984). The Significance of Responses of the Genome to Challenge. Science 226: 792801.CrossRefGoogle Scholar
McCosh, R.B., Chen, H., Schork, N.J. and Ecker, J.R. (2013). Patterns of Population Epigenomic Diversity. Nature 495: 193200. DOI: 10.1038/Nature11968.Google Scholar
McGinnis, N., Kuziora, M.A. and Mcginnis, W. (1990). Human Hox and Drosophila Deformed Encode Similar Regulatory Specificities in Drosophila Embryos and Larvae. Cell 63: 969976.CrossRefGoogle ScholarPubMed
McLaughlin, P. (2000). What Function Explains. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
McLaughlin, P. (2014). The Impact of Newton on Biology on the Continent in the Eighteenth Century. In Mandelbrote, S. and Pulte, H. (Eds.), The Reception of Isaac Newton in Europe (pp. 123). London: Bloomsbury Academic. www.Philosophie.Uni-Hd.De/Md/Philsem/Personal/Mclaughlin_Newton_Biology.PdfGoogle Scholar
Meir, E.G., Von Dassow, G., Munro, E. and Odell, G. (2002). Robustness, Flexibility, and the Role of Lateral inhibition in the Neurogenic Network. Current Biology 12: 778786.CrossRefGoogle ScholarPubMed
Mendel, G. (1866). Versuche Über Plflanzenhybriden. Verhand- Lungen Des Naturforschenden Vereines in Brünn, Bd. IV Für Das Jahr 1865, Abhandlungen, 347 (Bateson Translation (1901)).Google Scholar
Merlin, F. (2010). Evolutionary Chance Mutation: A Defense of the Modern Synthesis Consensus View. Philosophy and Theory in Biology 2. dx.doi.org/10.3998/ptb.6959004.0002.003CrossRefGoogle Scholar
Mesoudi, A., Blanchet, S., Charmentier, A., et al. (2013). Is Non-Genetic Inheritance Just a Proximate Mechanism? A Corroboration of the Extended Evolutionary Synthesis. Biological Theory 7:189195.CrossRefGoogle Scholar
Mill, J.S. (1843). A System of Logic Ratiocinative and Inductive. London: Harper and Brothers. www.Gutenberg.Org/Files/27942/27942-Pdf.PdfGoogle Scholar
Millikan, R.G. (1984). Language, Thought and Other Biological Processes. Cambridge, MA: MIT Press.Google Scholar
Millikan, R.G. (1989a). Biosemantics. In White Queen Psychology and Other Essays for Alice. Cambridge, MA: MIT Press.Google Scholar
Millikan, R.G. (1989b). In Defence of Proper Functions. Philosophy of Science 56: 288302.CrossRefGoogle Scholar
Millstein, R. (2006). Natural Selection as a Population-Level Causal Process. British Journal for the Philosophy of Science 57: 627653.CrossRefGoogle Scholar
Mitchell, S. (2008). Exporting Causal Knowledge in Evolutionary and Developmental Biology. Philosophy of Science 75: 697706.CrossRefGoogle Scholar
Mitchell, S. (2012). Emergence: Logical, Functional and Dynamical. Synthese 185: 171186.Google Scholar
Moczek, A.P. (2012). The Nature of Nurture and the Future of Evo-Devo: Toward a Theory of Developmental Evolution. Integrative and Comparative Biology 52: 108119.CrossRefGoogle Scholar
Moczek, A.P., Sultan, S., Foster, S., Ledón-Rettig, C., Dworkin, I., Nijhout, H.F., Abouheif, E. and Pfennig, D.W. (2011). The Role of Developmental Plasticity in Evolutionary Innovation. Proceedings of the Royal Society B. DOI:10.1098/Rspb.2011.0971CrossRefGoogle Scholar
Monod, J. (1971). Chance and Necessity: An Essay on the Metaphysics of Life (Trans. Wainhouse, A.). New York: Schopf and Sons.Google Scholar
Morange, M. (1998). A History of Molecular Biology. Cambridge, MA: Harvard University Press.Google Scholar
Morange, M. (2009). Life Explained. New Haven: Yale University Press.Google Scholar
Morange, M. (2011). Evolutionary Developmental Biology: Its Roots and Characteristics. Developmental Biology 357: 1316.CrossRefGoogle ScholarPubMed
Morgan, T.H. (1925). Evolution and Genetics. New York: Columbia University Press.CrossRefGoogle Scholar
Morgan, T.H. (1910). Chromosomes and Heredity. The American Naturalist 44: 449496.CrossRefGoogle Scholar
Morgan, T.H. (1926). The Theory of the Gene. New Haven: Yale University Press.CrossRefGoogle Scholar
Morgan, T.H. (1934). The Relation of Genetics to Physiology and Medicine. Nobel Lecture 4 June 1934, pp. 313–328. www.Nobelprize.Org/Nobel_Prizes/Medicine/Laureates/1933/Morgan-Lecture.PdfGoogle Scholar
Morrison, M. (2002). Modeling Populations: Pearson and Fisher on Mendelism and Biometry. British Journal For the Philosophy of Science 53: 339368.CrossRefGoogle Scholar
Moss, L. (2003). What Genes Can’t Do. Cambridge, MA: MIT Press.Google Scholar
Müller, G.B. (2007). Evo-Devo: Extending the Evolutionary Synthesis. Nature Reviews Genetics 8: 943949. DOI: 10.1038/Nrg2219CrossRefGoogle ScholarPubMed
Müller, G.B. (2008). EvoDevo as a Discipline. In Minelli, A. and Fusco, G. (Eds.), Evolving Pathways: Key Themes in Evolutionary Developmental Biology (pp. 329). Cambridge: Cambridge University Press.Google Scholar
Müller, G.B. (2010). Epigenetic Innovation. In Pigliucci, M. and Muller, G.B. (Eds.), The Extended Synthesis (pp. 307331). Cambridge, MA: MIT Press.Google Scholar
Müller, G.B., and Newman, S. (2005). The Innovation Triad: An Evodevo Agenda. J. Exp. Zool. (Mol. Dev. Evol.) 304B: 487503.CrossRefGoogle Scholar
Müller-Wille, S., and Rheinberger, H.-J. (2012). A Cultural History of Heredity. Chicago: Chicago University Press.CrossRefGoogle Scholar
Natural History Museum, London (2014). Welwitschia Mirabilis. Eol.Org/Pages/1156352/DetailsGoogle Scholar
Neander, K. (1991). The Teleological Notion of ‘Function’. Australasian Journal of Philosophy 69: 454468.CrossRefGoogle Scholar
Needham, J. (1934) A History of Embryology. Cambridge: Cambridge University Press.Google Scholar
Newman, S. (2003). From Physics to Development: The Evolution of Morphogenetic Mechanisms. In Muller, G. and Newman, S. (Eds.), Origination of Organismal Form (pp. 221390). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Newman, S. (2011). Complexity in Organismal Evolution. In Hooker, C. (Ed.), Philosophy of Complex Systems (pp. 335354). London: Elsevier.CrossRefGoogle Scholar
Newman, S. (2014). Form and Function Remixed: Developmental Physiology and the Evolution of Vertebrate Body Plans. Journal of Physiology 592.11: 24032412.CrossRefGoogle ScholarPubMed
Newman, S. (2015). Development and Evolution: The Physics Connection. In Love, A. (Ed.), Conceptual Change in Biology: Scientific and Philosophical Perspectives on Evolution and Development (pp. 421440). Dordrecht: Springer.CrossRefGoogle Scholar
Newman, S., and Bhat, R. (2008). Dynamical Patterning Modules: Physico-Genetic Determinants of Morphological Development and Evolution. Physical Biology 5 015008 (14pp). DOI: 10.1088/1478–3975/5/1/015008CrossRefGoogle ScholarPubMed
Newman, S., and Bhat, R. (2009). Dynamical Patterning Modules: A ‘Pattern Language’ for Development and Evolution of Multicellular Form. International Journal For Developmental Biology 53: 693705.CrossRefGoogle ScholarPubMed
Newman, S., and Muller, G.B. (2000). Epigenetic Mechanisms of Character Origination. Journal of Experimental Zoology B288: 304317.3.0.CO;2-G>CrossRefGoogle Scholar
Newman, S., and Muller, G.B. (2007). ‘Genes and Form’. In Neuman-Held, E. and Rehman-Suter, C. (Eds.), Genes in Development: Re-Reading the Molecular Paradigm. Durham, NC: Duke University Press.Google Scholar
Newman, S.A., Forgacs, G. and Muller, G.B. (2006). Before Programs: The Physical Origination of Multi-Cellular Forms. International Journal of Developmental Biology 50: 289299.CrossRefGoogle Scholar
Newton, I. (1686). The Mathematical Principles of Natural Philosophy. New York: Daniel Adler. http://archive.org/stream/newtonspmathema00newtrich#page/n7/mode/2upGoogle Scholar
Nicholson, D. (2013). Organisms ≠ Machines. Studies in the History and Philosophy of Biological and Biomedical Sciences 44: 669678.CrossRefGoogle ScholarPubMed
Nicholson, D. (2014). The Machine Conception of the Organism in Development and Evolution: A Critical Analysis. Studies in History and Philosophy of Biological and Biomedical Sciences 48: 162–74.CrossRefGoogle ScholarPubMed
NOAA Fisheries (2013). Marine Mammal Education Web. www.Afsc.Noaa.Gov/Nmml/Education/Cetaceans/Blue.Php (accessed 3 September 2015).Google Scholar
Noble, D. (2006). The Music of Life. Oxford: Oxford University Press.CrossRefGoogle Scholar
Noble, D. (2008). Genes and Causation. Philosophical Transactions of the Royal Society A 366: 30013015.CrossRefGoogle ScholarPubMed
Noble, D. (2012). A Theory of Biological Relativity: No Privileged Level of Causation. interface Focus 2: 5564. DOI: 10.1098/Rsfs.2011.0067.CrossRefGoogle ScholarPubMed
Noble, D. (2013). Evolution beyond Neo-Darwinism. Journal of Experiment Biology (Draft Feb 27).Google Scholar
Noble, D., Jablonka, E., Joyner, M., Müller, G. and Ohmolt, S. (2014). Evolution Evolves: Physiology Returns to Centre Stage. Journal of Physiology 592: 22372244.CrossRefGoogle ScholarPubMed
Northcott, R. (2009). Is Actual Difference Making Actual? Journal of Philosophy 106: 629633.CrossRefGoogle Scholar
O’Connor, T. (1994). Emergent Properties. American Philosophical Quarterly 31: 91104.Google Scholar
Odling-Smee, F.J. (2010). Niche Inheritance. In Pigliucci, M. and Muller, G.B. (Eds.) The Extended Synthesis (pp. 175207). Cambridge, MA: MIT Press.Google Scholar
Odling-Smee, F.J., Laland, K. and Feldman, M. (2003). Niche Construction: The Neglected Process in Evolution. Princeton: Princeton University Press.Google Scholar
Okasha, S. (2006). Evolution and the Levels of Selection. Oxford: Oxford University Press.CrossRefGoogle Scholar
Okasha, S. (2008). Fisher’s Fundamental Theorem of Natural Selection – A Philosophical Analysis. British Journal For the Philosophy of Science 59: 319351.CrossRefGoogle Scholar
Oppenheim, P., and Putnam, H. (1958). The Unity of Science as a Working Hypothesis. In Feigl, H. et al. (Eds.), Minnesota Studies in the Philosophy of Science, Vol. 2. Minneapolis: Minnesota University Press.Google Scholar
Oppenheimer, M.J. (1967). Two Puzzles for the Origin of Species. In Oppenheimer, M.J., Essays in the History of Embryology and Biology. Cambridge, MA: MIT Press.Google Scholar
Orr, H.A. (2005). The Genetic Theory of Adaptation: A Brief History. Nature Reviews Genetics 6: 119127.CrossRefGoogle ScholarPubMed
Orr, H.A. (2007a). Theories of Adaptation: What They Do and Don’t Say. Genetica 123: 313.CrossRefGoogle Scholar
Orr, H.A. (2007b). Absolute Fitness, Relative Fitness, and Utility. Evolution 61: 29973000.CrossRefGoogle ScholarPubMed
Orr, H.A., and Coyne, J.A. (1992). The Genetics of Adaptation Revisited. American Naturalist. 140: 725742.CrossRefGoogle Scholar
Orzack, S., and Sober, E. (1994). How to Formulate and Test Adaptationism. American Naturalist 148: 202210.CrossRefGoogle Scholar
Otsuka, J., Turner, T.Y., Allen, C. and Lloyd, E. (2011). Why the Causal View of Fitness Survives. Philosophy of Science. 78: 209224.CrossRefGoogle Scholar
Ou, X., Zhang, Y, Xu, C., Lin, X., Zang, Q., et al. (2012). Transgenerational Inheritance of Modified DNA Methylation Patterns and Enhanced Tolerance Induced by Heavy Metal Stress in Rice (Oryza Sativa L.). Plos ONE 7 (9): E41143. DOI: 10.1371/Journal.Pone.0041143.CrossRefGoogle ScholarPubMed
Oyama, S. (1985). The Ontogeny of Information. Durham, NC: Duke University Press.Google Scholar
Oyama, S. (2000). Evolution’s Eye. Durham, NC: Duke University Press.CrossRefGoogle Scholar
Oyama, S., Griffiths, P.E. and Gray, R. (Eds.) (2001). Cycles of Contingency. Cambridge, MA: MIT Press.Google Scholar
Paley, W. (1809 [2006]). Natural Theology. Oxford: Oxford University Press.Google Scholar
Pearce, T. (2009). ‘A Great Complication of Circumstances’ – Darwin and the Economy of Nature. Journal of the History of Biology 43: 493528. DOI: 10.1007/S10739-009–9205-0CrossRefGoogle Scholar
Pearce, T. (2010). From ‘Circumstances’ to ‘Environment’: Herbert Spencer and the Origins of the Idea of Organism-Environment Interaction. Studies in History and Philosophy of Biological and Biomedical Sciences 41: 241252.CrossRefGoogle Scholar
Pearce, T. (2011). Evolution and Constraints on Variation: Variant Specification and Range of Assessment. Philosophy of Science 78: 739751.CrossRefGoogle Scholar
Pfennig, D.W., Wund, M.A., Snell-Rood, E.C., Cruickshank, T., Ciliberti, S., Martin, O.C. and Wagner, A. (2007). Innovation and Robustness in Complex Regulatory Gene Networks. PNAS 104(34): 1359113596.Google Scholar
Pfennig, D.W., Wund, M.A., Schlichting, C., Snell-Rood, E.C., Cruikshank, T., Schichting, C. and Moczek, A. (2010). Phenotypic Plasticity’s Impacts on Diversification and Speciation. Trends in Ecology and Evolution 25: 459467.CrossRefGoogle ScholarPubMed
Pigliucci, M. (2009a). An Extended Synthesis for Evolutionary Biology. The Year in Evolutionary Biology 2009: Ann. N.Y. Acad. Sci. 1168: 218228. DOI: 10.1111/J.1749–6632.2009.04578.X.CrossRefGoogle Scholar
Pigliucci, M. (2009b). An Extended Synthesis for Evolutionary Biology. Annals of the New York Academy of Sciences 1168 (pp. 218228). The Year in Evolutionary Biology.CrossRefGoogle ScholarPubMed
Pigliucci, M. (2010). Genotype-Phenotype Mapping and the End of the ‘Genes As Blueprint’ Metaphor. Philosophical Transactions Royal Society B 365: 557566.CrossRefGoogle ScholarPubMed
Pigliucci, M., and Muller, G. (Eds.) (2010). Evolution: The Extended Synthesis. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Prigogine, I., and Stengers, I. (1984). Order Out of Chaos. London: Bantam.Google Scholar
Provine, W.B. (1971). The Origins of Theoretical Population Genetics. Chicago: University of Chicago Press.Google Scholar
Purcell, E.M. (1977). Life at Low Reynolds Number. American Journal of Physics 45: 101111.CrossRefGoogle Scholar
Putnam, H. (1970). Is Semantics Possible? Metaphilosophy 1: 187201.CrossRefGoogle Scholar
Quarfoord, M. (2006). Kant on Biological Teleology: Towards a Two-Level Interpretation. Studies in History and Philosophy of Biological and Biomedical Sciences 37: 735747.CrossRefGoogle Scholar
Radick, G. (2012). Should ‘Heredity’ and ‘Inheritance’ Be Scientific Terms? William Bateson’s Change of Mind as a Historical and Scientific Problem. Philosophy of Science 79: 714724.CrossRefGoogle Scholar
Raff, R. (1996). The Shape of Life: Genes, Development and the Evolution of Animal Form. Chicago: Chicago University Press.CrossRefGoogle Scholar
Richards, E.J. (2006). Inherited Epigenetic Variation – Revisiting Soft Inheritance. Nature Reviews Genetics, pp. 395400.CrossRefGoogle ScholarPubMed
Rohner, N., et al. (2013). Cryptic Variation in Morphological Evolution: HSP90 As a Capacitor for Loss of Eyes in Cavefish. Science 342: 13721375. DOI:10.1126/Science.1240276CrossRefGoogle ScholarPubMed
Rolian, C., and Hallgrìmsson, B. (2009). Integration and Evolvability in Primate Hands and Feet. Evolutionary Biology. 36: 100117.CrossRefGoogle Scholar
Rolian, C., Lieberman, D.E. and Hallgrìmsson, B. (2010). The Co-Evolution of Hands and Feet. Evolution 64: 15581568.CrossRefGoogle Scholar
Roll-Hansen, N. (2009). Sources of Wilhelm Johannsen’s Genotype Theory. Journal of the History of Biology 42: 457493.CrossRefGoogle ScholarPubMed
Rosenberg, A. (2006). Darwinian Reductionism: Or, How to Stop Worrying and Love Molecular Biology. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Rosenbleuth, A., Wiener, N. and Bigelow, J. (1943). Behavior, Purpose and Teleology. Philosophy of Science 10: 1824.CrossRefGoogle Scholar
Roux, S. (2005). Empedocles to Darwin. In Close, E., Tsianikas, M. and Frazis, G. (Eds.). Greek Research in Australia: Proceedings of the Biennial international Conference of Greek Studies, Flinders University April 2003 (pp. 116). Flinders University Department of Languages – Modern Greek: Adelaide.Google Scholar
Ruiz-Mirazoa, K.J., and Moreno, A. (2004). A Universal Definition of Life. Origins of Life and Evolution of the Biosphere 34: 323346.CrossRefGoogle Scholar
Ruiz-Mirazo, K.J., and Moreno, A. (2012). Autonomy in Evolution: From Minimal to Complex Life. Synthese 185: 2152.CrossRefGoogle Scholar
Ruiz-Mirazo, K., et al. (2000). Organisms and Their Place in Biology. Theory in Biosciences 119: 209233.CrossRefGoogle Scholar
Ruse, M. (1971). Functional Statements in Biology. Philosophy of Science 38: 8795.CrossRefGoogle Scholar
Ruse, M. (1989). Do Organisms Exist? American Zoologist 29: 10611066.CrossRefGoogle Scholar
Ruse, M. (2003). Darwin and Design: Does Evolution Have a Purpose? Cambridge, MA: Harvard University Press.Google Scholar
Russell, E.S. (1945). The Directiveness of Organic Activities. Cambridge: Cambridge University Press.Google Scholar
Russert-Kraemer, L., and Bock, W.J. (1989). Prologue: The Necessity of Organisms. American Zoologist 29: 10561060.CrossRefGoogle Scholar
Rutherford, S.L., and Lindquist, S. (1998). Hsp90 as a Capacitor for Morphological Evolution. Nature 396: 336342. DOI:10.1038/24550CrossRefGoogle ScholarPubMed
Salmon, W. (1984). Scientific Explanation and the Causal Structure of the World. Princeton: Princeton University Press.Google Scholar
Sanders, J.T. (1993). Merleau-Ponty, Gibson, and the Materiality of Meaning. Man and World 26: 287302.CrossRefGoogle Scholar
Sansom, R. (2009). Evolvability. In Ruse, M. (Ed.), The Oxford Handbook of Philosophy of Biology (pp. 138160). Oxford: Oxford University Press.CrossRefGoogle Scholar
Sansom, R. (2011). Ingenious Genes: How Gene Regulation Networks Evolve to Control Development. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Sarkar, S. (1996). Biological Information: A Sceptical Look at Some Central Dogmas of Molecular Biology. In Sarkar, S. (Ed.), The Philosophy and History of Molecular Biology: New Perspectives (pp. 187232). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Schaffner, K. (1969). The Watson-Crick Model and Reductionism. British Journal for the Philosophy of Science 20: 325348.CrossRefGoogle Scholar
Schlichting, C.D. (2003). The Origins of Differentiation via Phenotypic Plasticity. Evolution and Development 5: 98105.CrossRefGoogle ScholarPubMed
Schlichting, C.D., and Moczek, A.P. (2010). Phenotypic Plasticity’s Impact on Diversification and Speciation. Trends in Ecology and Evolution 25: 459467.Google Scholar
Schlick, M. (1953). Philosophy of Organic Life. In Feigl, H. and Brodbeck, M. (Eds.), Readings in the Philosophy of Science (pp. 523536). New York: Appleton-Century Crofts.Google Scholar
Schlosser, G. (2002). Modularity and the Units of Evolution. Theory Biosciences 121: 180.CrossRefGoogle Scholar
Schmalhausen, I.I. (1948 [1986]). Factors of Evolution: The Theory of Stabilizing Selection. Chicago: Chicago University Press.Google Scholar
Schmitz, R.J., et al. (2013). Patterns of Population Epigenomic Diversity. Nature 495: 193198. DOI: 10.1038/Nature11968CrossRefGoogle ScholarPubMed
Schneider, E.D., and Sagan, D. (2007). Into the Cool. Chicago: Chicago University Press.Google Scholar
Schneider, E.D., and Kay, J.J. (1995). Order from Disorder: The Thermodynamics of Complexity in Biology. In Murphy, M.P. and O’Neill, L.A.J. (Eds.), What Is Life? The Next Fifty Years (pp. 161174).Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Schrödinger, E. (1944). What Is Life? New York: Dover.Google Scholar
Schwenk, K., and Wagner, G. (2001). Function and the Evolution of Phenotypic Stability: Connecting Pattern to Process. American Zoologist 41: 522563.Google Scholar
Schwenk, K., and Wagner, G. (2004), The Relativism of Constraints on Phenotypic Evolution. In Pigliucci, M. and Preston, K. (Eds.), The Evolution of Complex Phenotypes (pp. 390408). Oxford: Oxford University Press.Google Scholar
Shapin, S. (1996). The Scientific Revolution. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Shapiro, J.A. (2007). Bacteria Are Small But Not Stupid. Cognition, Natural Genetic Engineering and Socio-Bacteriology. Studies in History and Philosophy of Biological and Biomedical Sciences 38: 807819. DOI: 10.1016/J.Shpsc.2007.09.010.CrossRefGoogle ScholarPubMed
Shapiro, J.A. (2011). Evolution: A View from the 21st Century Perspective. Upper Saddle River, NJ: FT Press Science.Google Scholar
Shapiro, J.A. (2013). How Life Changes Itself: The Read-Write (RW) Genome. Physics of Life Reviews 10: 287323.CrossRefGoogle ScholarPubMed
Shapiro, J.A. (2014). Physiology of the Read-Write Genome. Journal of Physiology 592.11: 23192341.CrossRefGoogle ScholarPubMed
Shapiro, L. (2014). Mastophora Bolas Spiders. Encyclopedia of Life. Eol.Org/Pages/112760/DetailsGoogle Scholar
Shea, N. (2007). Representation in the Genome and in Other Inheritance Systems. Biology and Philosophy 22: 313331.CrossRefGoogle Scholar
Shea, N. (2011). Developmental Systems Theory Formulated as a Claim about Inherited Information. Philosophy of Science 78: 6082.CrossRefGoogle Scholar
Shields, C. (2014). Aristotle (2nd ed.). London: Routledge.CrossRefGoogle Scholar
Shubin, M., Tabin, C. and Carroll, S. (2009). Deep Homology and the Origins of Evolutionary Novelty. Nature 457:818823. DOI: 10.1038/Nature07891CrossRefGoogle ScholarPubMed
Simpson, G.G. (1944). Tempo and Mode in Evolution. New York: Columbia University Press.Google Scholar
Simpson, G.G. (1953). The Baldwin Effect. Evolution 7: 110117.CrossRefGoogle Scholar
Singer, M.C., and Thomas, C.D. (1996). Evolutionary Responses of a Butterfly Metapopulation to Human and Climate-Caused Environmental Variation. American Naturalist 148: S9S39.CrossRefGoogle Scholar
Sloan, P. (1977). Descartes, the Sceptics, and the Rejection of Vitalism in Seventeenth-Century. Physiology Studies in the History and Philosophy of Science 8: 227.Google ScholarPubMed
Smith, M.L., Bruhn, J.N. and Anderson, J.B.. (1992). The Fungus Armillaria Bulbosa Is Among the Largest and Oldest Living Organisms. Nature 356: 428431. DOI: 10.1038/356428a0CrossRefGoogle Scholar
Smolin, L. (2013). Time Reborn: From the Crisis in Physics to the Future of the Universe. New York: Houghton Mifflin Harcourt.Google Scholar
Sober, E. (1980). Evolution, Population Thinking and Essentialism. Philosophy of Science 47: 350383.CrossRefGoogle Scholar
Sober, E. (1984). The Nature of Selection. Cambridge, MA: MIT Press.Google Scholar
Sober, E. (1987). A Plea for Pseudoprocesses. Pacific Philosophical Quarterly 66: 303309.CrossRefGoogle Scholar
Sober, E. (2006). Evolution, Population Thinking and Essentialism. In Sober, E. (Ed.), Conceptual Issues in Evolutionary Biology (pp. 329359). Cambridge, MA: MIT Press (Originally Published in 1980).Google Scholar
Sober, E. (2013). Trait Fitness Is Not a Propensity, But Fitness Variation Is. Studies in the History and Philosophy of Biological and the Biomedical Sciences 44: 336341.CrossRefGoogle Scholar
Sommerhoff, G. (1950). Systems Biology. Cambridge: Cambridge University Press.Google Scholar
Sorabji, R. (1990). Necessity, Cause, and Blame. London: Duckworth.Google Scholar
Stanley, S. (1998). Macroevolution: Pattern and Process. Baltimore: Johns Hopkins University Press.Google Scholar
Stegenga, J. (2014). Population Pluralism and Natural Selection. British Journal for the Philosophy of Science. DOI: 10.1093/Bjps/Axu003CrossRefGoogle Scholar
Stegmann, U. (2005). Genetic information as Instructional Content. Philosophy of Science 72: 425443.CrossRefGoogle Scholar
Stegmann, U. (2012). Varieties of Parity. Biology and Philosophy 27: 903918.CrossRefGoogle Scholar
Stephens, C. (2004). Selection, Drift, and the ‘Forces’ of Evolution. Philosophy of Science 71: 550570.CrossRefGoogle Scholar
Sterelny, K. (2000a). The ‘Genetic Program’ Program: A Commentary on Maynard Smith on Information in Biology. Philosophy of Science 67 (2): 195201.CrossRefGoogle Scholar
Sterelny, K. (2000b). Development, Evolution, and Adaptation. Philosophy of Science 67(Supplement): S369S387.CrossRefGoogle Scholar
Sterelny, K. (2001). Niche Construction, Developmental Systems, and the extended Replicator. In Oyama, S., Griffiths, P.E. and Gray, R.D. (Eds.), Cycles of Contingency: Developmental Systems and Evolution (pp. 331349). Cambridge, MA: MIT Press.Google Scholar
Sterelny, K. (2005). Made by Each Other: Organisms and Their Environment. Biology and Philosophy 20: 2136.CrossRefGoogle Scholar
Sterelny, K. (2007). What Is Evolvability? In Matthen, M. and Stephens, C. (Eds.), Handbook of the Philosophy of Science Philosophy of Biology (pp. 163178).Amsterdam: Elsevier.Google Scholar
Sterelny, K. (2009). Novelty, Plasticity and Niche Construction: The Influence of Phenotypic Variation on Evolution. In Barberousse, A., Morange, M. and Pradeu, T. (Eds.), Mapping the Future of Biology: Evolving Concepts and Theories (pp. 93110). Dordrecht: Springer.CrossRefGoogle Scholar
Sterelny, K., and Griffiths, P.E. (1999). Sex and Death: An Introduction to Philosophy of Biology. Chicago: Chicago University Press.CrossRefGoogle Scholar
Stern, D.L. (2000). Evolutionary Developmental Biology and the Problem of Variation. Evolution 54: 10791091.Google ScholarPubMed
Stoffregen, T. (2003). Affordances as Properties of the Animal-Environment System. Ecological Psychology, 15: 115134.CrossRefGoogle Scholar
Stossel, T. (1999). Crawling Neutrophil Chasing a Bacterium. https://embryology.med.unsw.edu.au/embryology/index.php/Movie_-_Neutrophil_chasing_bacteria (accessed 3 September 2015).Google Scholar
Stotz, K. (2006a). ‘With Genes Like That, Who Needs an Environment? Postgenomics’s Argument for the ‘Ontogeny of information’. Philosophy of Science 73: 905917.CrossRefGoogle Scholar
Stotz, K. (2006b). Molecular Epigenesis: Distributed Specificity as a Break in the Central Dogma. History and Philosophy of the Life Sciences 26: 527544.Google Scholar
Stout, R. (1996). Things That Happen Because They Should. Oxford: Oxford University Press.CrossRefGoogle Scholar
Strevens, M. (2005). How Are the Sciences of Complex Systems Possible? Philosophy of Science 72: 531556.CrossRefGoogle Scholar
Szathmáry, E. (2000). The Evolution of Replicators. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 355: 16691676.CrossRefGoogle ScholarPubMed
Talbot, S.D. (2013). The Myth of the Machine-Organism. In Krimsky, S. and Gruber, J. (Eds.), Genetic Explanations: Sense and Nonsense (pp. 5268). Cambridge, MA: Harvard University Press.Google Scholar
Taylor, C. (1963). The Explanation of Behaviour. London: Routledge.Google Scholar
Taylor, C. (2005). Merleau-Ponty and the Epistemological Picture. In Carman, T. and Hansen, M.B. (Eds.), The Cambridge Companion to Merleau-Ponty (pp. 2649). Cambridge: Cambridge University Press.Google Scholar
Tennant, N. (2014). The Logical Structure of Evolutionary Explanation and Prediction: Darwinism’s Fundamental Schema. Biology and Philosophy. April 2014. DOI: 10.1007/S10539-014–9444-0CrossRefGoogle Scholar
Tero, A., Nakagaki, T. and Kuramoto, Y. (2008). Amoebae Anticipate Periodic Events. Physical Review Letters 100: 018101-1018101-4.Google Scholar
Teru, A., Takagi, S., Saigusa, T., et al. (2010). Rules for Biologically Inspired Adaptive Network Design. Science 327: 439442.CrossRefGoogle Scholar
Thom, R. (1972a). Structuralism and Biology. In Waddington, C.H., Towards A theoretical Biology. Vol. 4. Chicago: Aldine Publishing, pp. 8289.Google Scholar
Thom, R. (1972b). Structural Stability and Morphogenesis: An Outline of a General Theory of Models (Trans. Fowler, D.H.). Don Mills, Ontario: Addison-Wesley.Google Scholar
Thompson, D.W. (1961). On Growth and Form (abridged edition). Bonner, J.T. (Ed.). Cambridge: Cambridge University Press.Google Scholar
Thompson, E. (2007). Mind in Life: Biology, Phenomenology and the Sciences of Mind. Cambridge, MA: Harvard University Press.Google Scholar
Trinkaus, J.P. (1984). Cells into Organs (2nd ed.). Edgewood Cliffs, NJ: Prentice Hall.Google Scholar
True, R., and Carroll, S. (2002). Gene Co-Option in Physiological and Morphological Evolution. Annual Reviews of Cell and Developmental Biology 18: 5380.CrossRefGoogle ScholarPubMed
Turner, J.S. (2000). The Extended Organism: The Physiology of Animal-Built Structures Cambridge, MA: Harvard University Press.Google Scholar
Turvey, M.T. (1992). Affordances and Prospective Control: An Outline of the Ontology. Ecological Psychology 4: 173187.CrossRefGoogle Scholar
Van Duin, M., Keijzer, F. and Franken, D. (2006). Principles of Minima Cognition: Casting Cognition as Sensorimotor Co-ordination. Animats, Software Agents, Robots, Adaptive Systems 14: 157170.Google Scholar
Vane-Wright, D. (2011). Whatever Happened to the Organic Selectionists? Antenna, Chiswell Green 35(2): 5760.Google Scholar
Vane-Wright, D. (2014). What Is Life? and What Might Be Said of the Role of Behaviour in Its Evolution? Biological Journal of the Linnean Society 112: 219241.CrossRefGoogle Scholar
Varela, F.H., Maturana, H. and Uribe, R. (1974). Autopoiesis: The Organization of Living Systems, Its Characterization and a Model. Biosystems 5: 187196.CrossRefGoogle ScholarPubMed
Varela, F., Thompson, E. and Rosch, E. (1991). The Embodied Mind: Cognitive Science and Human Experience. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Velleman, D.L. (1992). What Happens When Someone Acts? Mind 101 (403): 461481.CrossRefGoogle Scholar
von Bertalanffy, L. (1950). The Theory of Open Systems in Physics and Biology. Science 111: 23–9.CrossRefGoogle ScholarPubMed
von Bertalanffy, L. (1969). General Systems Theory. New York: George Braziller.Google Scholar
Von Dassow, G., and Munro, E.M. (1999). Modularity in Animal Development and Evolution: Elements of a Framework for Evo-Devo. Journal of Experimental Zoology (Mol. Dev. Evol.) 285: 307325.3.0.CO;2-V>CrossRefGoogle Scholar
Von Dassow, G., Meir, E., Munro, E.M. and Odell, G.M. (2000). The Segment Polarity Network Is a Robust Developmental Module. Nature 406: 188192.CrossRefGoogle ScholarPubMed
von Helmholtz, H. (1971). The Aim and Progress of Physical Science. Reprinted in Kahl, R. (Ed.). Selected Writings of Hermann Von Helmholtz (pp. 223245). Middletown, CT: Wesleyan University Press.Google Scholar
Von Uexküll, J. (1938). Die Neue Umweltlehre: Ein Bindeglied Zwischen Natur-Und Kulturwissenschaften. Die Ehrziehung 13: 185199.Google Scholar
Waddington, C.H. (1956). Genetic Assimilation of the Bithorax Phenotype. Evolution 10: 113.CrossRefGoogle Scholar
Waddington, C.H. (1957). The Strategy of the Genes. London: Allen and Unwin.Google Scholar
Waddington, C.H. (1960). Evolutionary Adaptation. In Tax, S. (Ed.), Evolution after Darwin. Chicago: University of Chicago Press, 381402.Google Scholar
Waddington, C.H. (1966). Principles of Development and Differentiation. London: Macmillan.Google Scholar
Wagner, A. (1996). Can Nonlinear Epigenetic Interactions Obscure Causal Relations between Genotype and Phenotype? Nonlinearity 9: 607629.CrossRefGoogle Scholar
Wagner, A. (1999). Causality in Complex Systems. Biology and Philosophy 14: 83101.CrossRefGoogle Scholar
Wagner, A. (2005). Robustness and Evolvability in Living Systems. Princeton, NJ: Princeton University Press.Google Scholar
Wagner, A. (2007). Distributional Robustness versus Redundancy as Causes of Mutational Robustness. Bioessays 27: 176188.CrossRefGoogle Scholar
Wagner, A. (2011). The Origin of Evolutionary Innovations: A Theory of Transformative Change in Living Systems. Oxford: Oxford University Press.CrossRefGoogle Scholar
Wagner, A. (2012). The Role of Robustness in Phenotypic Adaptation and Innovation Proceedings of the Royal Society B 279: 12491258.CrossRefGoogle ScholarPubMed
Wagner, A. (2014). The Arrival of the Fittest: Solving Evolution’s Greatest Puzzle. New York: Current Books.Google Scholar
Wagner, G. (2000). What Is the Promise of Developmental Evolution? Part I: Why Is Developmental Biology Necessary to Explain Evolutionary Innovations. Journal of Experimental Zoology (Mol Dev Evol) 288: 9598.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Wagner, G., and Altenberg, L. (1996). Complex Adaptations and the Evolution of Evolvability. Evolution 50: 967976.CrossRefGoogle ScholarPubMed
Wallace, B. (1986). Can Embryologists Contribute to an Understanding of Evolutionary Mechanisms?. In Bechtel, W. (Ed.), Integrating Scientific Disciplines (pp. 149163). Dordrecht: M. Nijhoff.CrossRefGoogle Scholar
Walsh, D.M. (1999). Alternative Individualism. Philosophy of Science. 66: 628–48.CrossRefGoogle Scholar
Walsh, D.M. (2000). Chasing Shadows. Studies in History and Philosophy of Biological and Biomedical Sciences 31: 135153.CrossRefGoogle Scholar
Walsh, D.M. (2003). Fit and Diversity: Explaining Adaptive Evolution. Philosophy of Science 70: 280301.CrossRefGoogle Scholar
Walsh, D.M. (2004). Bookkeeping or Metaphysics? The Units of Selection Debate. Synthese 138: 337361.CrossRefGoogle Scholar
Walsh, D.M. (2006). Evolutionary Essentialism. British Journal for the Philosophy of Science 57: 425448.CrossRefGoogle Scholar
Walsh, D.M. (2007a). The Pomp of Superfluous Causes. British Journal for the Philosophy of Science 74: 281303.CrossRefGoogle Scholar
Walsh, D.M. (2007b). Development: Three Grades of Ontogenetic Involvement. In Matthen, M. and Stephens, C. (Eds.), Handbook of the Philosophy of Science (pp. 179199). Amsterdam: North-Holland.Google Scholar
Walsh, D.M. (2007c). Organisms As Natural Purpose: The Contemporary Evolutionary Perspective. Studies in the History and Philosophy of Biological and Biomedical Sciences 37: 771791.CrossRefGoogle Scholar
Walsh, D.M. (2008). Teleology. In Ruse, M. (Ed.), Oxford Handbook of the Philosophy of Biology (pp. 113137). Oxford: Oxford University Press.Google Scholar
Walsh, D.M. (2010a). Not A Sure Thing. Philosophy of Science 77: 147–71.CrossRefGoogle Scholar
Walsh, D.M. (2010b). Two Neo-Darwinisms. History and Philosophy of the Llife Sciences 32: 317339.Google ScholarPubMed
Walsh, D.M. (2012a). Situated Adaptationism. In Kabesenche, W., O’Rourke, M. and Slater, M. (Eds.), The Environment: Philosophy, Science, Ethics (pp. 89116). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Walsh, D.M. (2012b). Mechanism and Purpose: A Case for Natural Teleology. Studies in the History and Philosophy of Biology and the Biomedical Sciences 43:173181.CrossRefGoogle ScholarPubMed
Walsh, D.M. (2013a). Adaptation and the Affordance Landscape: The Spatial Metaphors of Evolution. In Barker, G., Desjardins, E. and Pearce, T. (Eds.), Entangled Life (pp. 213–36). Dordrecht: Springer.Google Scholar
Walsh, D.M. (2013b). Mechanism, Emergence, and Miscibility: The Autonomy of Evo-Devo. In Huneman, P. (Ed.), Functions: Selection and Mechanisms. Synthese Library 363: 4365.CrossRefGoogle Scholar
Walsh, D.M. (2014a). Variance, Invariance, and Statistical Explanation. Erkkenntnis. DOI: 10.1007/S10670-014–9680-3CrossRefGoogle Scholar
Walsh, D.M. (2014b). The Negotiated Organism: Inheritance, Development and the Method of Difference. Biological Journal of the Linnean Society 112: 295–30.CrossRefGoogle Scholar
Walsh, D.M. (2014c). Function and Teleology. In Thompson, R.P. and Walsh, D.M. (Eds.), Evolutionary Biology: Conceptual, Ethical, and Religious Issues. Cambridge: Cambridge University Press.Google Scholar
Walsh, D.M. (2014d). Descriptions and Models: Some Replies to Abrams. Studies in the History and Philosophy of Biological and the Biomedical Sciences 44: 302308.CrossRefGoogle Scholar
Walsh, D.M. (Forthcoming). Chance Caught on the Wing: Metaphysical Commitment or Methodological Artifact?. In Huneman, P. and Walsh, D.M. (Eds.), Challenges to Evolutionary Theory. Oxford: Oxford University Press.Google Scholar
Walsh, D.M., Lewens, T., and Ariew, A. (2002). The Trials of Life. Philosophy of Science. 69: 452473.CrossRefGoogle Scholar
Waters, C.K. (1994). Genes Made Molecular. Philosophy of Science. 61: 163185.CrossRefGoogle Scholar
Waters, K. (2007). Causes That Make a Difference. Journal of Philosophy 104: 551579.CrossRefGoogle Scholar
Watson, J. (1965). The Molecular Biology of the Gene. New York: W.A. Benjamin.Google Scholar
Watson, J., and Crick, F. (1953). Molecular Structure of Nucleic Acids. Nature (25April): 737.Google Scholar
Weaver, I.C.T., Cervoni, N., Champagne, F.F., D’Alesssio, A.C.V., Sharma, S., Seckl, J.R., Dymov, S., Szyf, M. and Meamey, M.J. (2004). Epigenetic Programming by Maternal Behavior. Nature Neuroscience 7:847854.CrossRefGoogle ScholarPubMed
Weaver, W. (1948). Evolution and Complexity. Scientific American. 36: 536544.Google Scholar
Weber, B., and Depew, D. (2003). Evolution and Learning: The Baldwin Effect Reconsidered. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Weber, M. (Forthcoming). Causal Selection vs. Causal Parity in Biology: Relevant Counterfactuals and Biologically Normal Interventions. In Waters, C.K., Travisano, M., and Woodward, J. (Eds.), Philosophical Perspectives on Causal Reasoning in Biology. Minnesota Studies in the Philosophy of Science.Google Scholar
Webster, G., and Goodwin, B. (1986). Form Ant Transformation: Generative and Relational Principles in Biology. Cambridge: Cambridge University Press.Google Scholar
Weisberg, M. (2006). Forty Years of ‘The Strategy’: Levins on Model Building and Idealization. Philosophy and Biology 21:526645.Google Scholar
West-Eberhard, M.J. (2003). Developmental Plasticity and Evolution. Oxford: Oxford University Press.CrossRefGoogle Scholar
West-Eberhard, M.J. (2005a). Developmental Plasticity and the Origin of Species Differences. Proceedings of the National Academy of Sciences 102: 6543–6349.CrossRefGoogle ScholarPubMed
West-Eberhard, M.J. (2005b). Phenotypic Accommodation: Adaptive Innovation Due to Developmental Plasticity. Journal Experimental Zoology (Mole Dev Evo) 304B: 610618.CrossRefGoogle Scholar
Wilkins, A. (2011). Why Did the Modern Synthesis Give Short Shrift to ‘Soft inheritance’. In Snait, B. and Jablonka, E. (Eds.), Transformations of Lamarckism: From Subtle Fluids to Molecular Biology (pp. 127132). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Williams, G.C. (1966). Adaptation and Natural Selection: A Critique of Some Current Evolutionary Thought. Princeton: Princeton University Press.Google Scholar
Willmer, P., Stone, G. and Johnstone, I. (2005). Environmental Physiology of Animals, 2nd ed. Oxford: Blackwell Publishing.Google Scholar
Wilson, E.O. (1980). Sociobiology: The New Synthesis (abridged edition). Cambridge, MA: Harvard, Belknap Press.Google Scholar
Wimsatt, W. (1974). Reductive Explanation: A Functional Account. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1974: 671710.Google Scholar
Wimsatt, W. (2000). Emergence as Non-Aggregativity and the Biases of Reductionism. Foundations of Science 5: 269297. Reprinted in W. Wimsatt (2007), Re-Engineering Philosophy of Limited Beings (pp. 274–312). Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Winther, G.G. (2001). August Weismann on Germ-Plasm Variation. Journal of the History of Biology 34: 517555.CrossRefGoogle ScholarPubMed
Winther, R. (2011). Part-Whole Science. Synthese 178: 397427.CrossRefGoogle Scholar
Winther, R., Giordano, R., Edge, M. and Nielsen, R. (2015). The Mind, the Lab, and the Field, Three Kinds of Populations in Scientific Practice. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences.Google Scholar
Wolfe, C. (2010). Do Organisms Have an Ontological Status?’ History and Philosophy of the Life Sciences 32: 195232.Google ScholarPubMed
Wolfe, C. (2011). From Substantival to Functional Vitalism and Beyond. Eidos 14: 212235.Google Scholar
Woodward, J. (2000). Explanation and Invariance in the Special Sciences. British Journal for the Philosophy of Science 51: 107254.CrossRefGoogle Scholar
Woodward, J. (2003). Making Things Happen. Oxford: Oxford University Press.Google Scholar
Wray, G.A., Hoekster, H.E., Futuyma, D.J., Lenski, R.E., Mackay, T.F.C., Schluter, D. and Strassman, J.E., , J.E. (2014). Does Evolutionary Theory Need a Rethink? Yes: Urgently. Nature 514: 161164.Google Scholar
Wright, S. (1932). The Roles of Mutation, Inbreeding, Crossbreeding and Selection in Evolution. Proceedings of the Sixth International Congress of Genetics, pp. 356366.Google Scholar
Zammito, J. (1991). The Genesis of Kant’s ‘Critique of Judgment’. Chicago: University of Chicago Press.Google Scholar
Zinkernagel, R.F. (2001). Maternal Antibodies, Childhood Infections, and Autoimmune Diseases. New England Journal of Medicine 345: 13311335.CrossRefGoogle ScholarPubMed
Zollman, K. (2011). Separating Directives and Assertions in Signaling Games. Journal of Philosophy 108: 158169.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • D. M. Walsh, University of Toronto
  • Book: Organisms, Agency, and Evolution
  • Online publication: 05 November 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316402719.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • D. M. Walsh, University of Toronto
  • Book: Organisms, Agency, and Evolution
  • Online publication: 05 November 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316402719.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • D. M. Walsh, University of Toronto
  • Book: Organisms, Agency, and Evolution
  • Online publication: 05 November 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316402719.017
Available formats
×