Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-19T15:23:20.128Z Has data issue: false hasContentIssue false

Section 3 - The Needle EMG Examination

Published online by Cambridge University Press:  08 May 2018

Mark A. Ferrante
Affiliation:
University of Tennessee
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Comprehensive Electromyography
With Clinical Correlations and Case Studies
, pp. 159 - 210
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Adrian, ED, Bronk, DW. The discharges of impulses in motor nerve fibres. Part II. The frequency of discharge in reflex and voluntary contractions. J Physiol 1929;67:119151.CrossRefGoogle ScholarPubMed
Blight, AR, Precht, W. “Spontaneous” quantal release of transmitter absent in vivo. Abst Soc Neurol Soc 1980;6:601.Google Scholar
Bonner, FJ, DevlescHoward, AB. AAEM minimonograph #45: the early development of electromyography. Muscle Nerve 1995;18:825853.CrossRefGoogle Scholar
Brandstater, ME, Lambert, EH. Motor unit anatomy. Type and spatial arrangement of muscle fibers. In Desmedt, JE, editor, New developments in electromyography and clinical neurophysiology. Vol 1. New concepts of the motor unit, neuromuscular disorders, electromyographic kinesiology. Basel: Karger, 1973:1422.Google Scholar
Brooke, MH, Kaiser, KK. Muscle fiber types: how many and what kind? Arch Neurol 1970;23:369379.CrossRefGoogle ScholarPubMed
Brown, WF. The physiological and technical basis of electromyography. London: Butterworth, 1984:372375.Google Scholar
Buchthal, F, Guld, C, Rosenfalck, P. Multielectrode study of the territory of a motor unit. Acta Physiol Scand 1957;39:83104.CrossRefGoogle ScholarPubMed
Buchthal, F, Rosenfalck, P. Action potential parameters in different human muscles. Acta Psychiatr Neurol Scand 1955;30:125131.CrossRefGoogle ScholarPubMed
Buchthal, F. Diagnostic significance of the myopathic EMG. In: Rowland, LP, editor, Pathogenesis of human muscular dystrophies. Proceedings of the Fifth International Scientific Conference of the Muscular Dystrophy Association, Durango, Colorado. Amsterdam and Oxford: Excerpta Medica, 1977:205218.Google Scholar
Campbell, WW. Essentials of electrodiagnostic medicine. Baltimore: Williams & Wilkins, 1999.Google Scholar
Chan, RC, Hsu, TC. Quantitative comparison of motor unit potential parameters between monopolar and concentric needles. Muscle Nerve 1991;14: 10281032.CrossRefGoogle ScholarPubMed
Conwit, RA, Tracy, B, Cowl, A, McHugh, M, Staskuk, D, Brown, WF, Metter, EJ. Firing analysis using decomposition-enhanced sike triggered averaging in the quadriceps femoris. Muscle Nerve 1998;21:13381340.3.0.CO;2-Y>CrossRefGoogle Scholar
Daube, JR. AAEM minimonograph #11: needle examination in clinical electromyography. Muscle Nerve 1991;14:685700.Google Scholar
Denny-Brown, DE. Nature of postural reflexes. Proc R Soc Lond 1929;104:252301.Google Scholar
Desmedt, JE. The principles of motor neuron recruitment and the calibration of muscle force and speed in man. In Desmedt, JE, editor, Motor control mechanisms in health and disease. New York: Raven Press, 1983:227251.Google Scholar
Dorfman, LJ, Howard, JE, McGill, KC. Influence of contractile force on properties of motor unit action potentials: ADEMG analysis. J Neurol Sci 1988;86:125136.CrossRefGoogle ScholarPubMed
Ertas, M, Stalberg, E, Falck, B. Can the size principle be detected in conventional EMG recordings? Muscle Nerve 1995;18:435439.CrossRefGoogle ScholarPubMed
Ferrante, MA, Wilbourn, AJ. The electrodiagnostic examination of peripheral nerve injuries. In Mackinnon, SE, editor, Nerve surgery. New York: Thieme Medical Publishers, 2015:5974.Google Scholar
Frascarelli, M, Rocchi. Evaluation of motor unit firing rates by standard concentric needle electromyography. Electromyogr Clin Neurophysiol 1992;32:103111.Google Scholar
Gordon, T, Thomas, CK, Munson, JB, Stein, RB. The resilience of the size principle in the organization of motor unit properties in normal and reinnervated adult skeletal muscles. Can J Physiol Pharmacol 2004;82:645661.CrossRefGoogle ScholarPubMed
Henneman, E, Somjen, G, Carpenter, DO. Functional significance of cell size in spinal motoneurons. J Neurophysiol 1965;28:560580.CrossRefGoogle ScholarPubMed
Herdmann, J, Reiners, K, Freund, HJ. Motor unit recruitment order in neuropathic disease. Electromyogr Clin Neurophysiol 1988;28:5360.Google ScholarPubMed
Jasper, H, Ballem, G. Unipolar electromyogram of normal and denervated human muscle. J Neurophysiol 1949;12:231244.CrossRefGoogle ScholarPubMed
Johnson, EW. The EMG examination. In Johnson, EW, editor, Practical electromyography, 2nd ed. Baltimore: Williams & Wilkins, 1988:1920.Google Scholar
King, JC, Dumitru, D, Nandedkar, S. Concentric and single fiber electrode spatial recording characteristics. Muscle Nerve 1997;20:15251533.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
King, JC, Dumitru, D, Stegeman, D. Monopolar needle electrode spatial recording characteristics. Muscle Nerve 1996;19:13101319.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Lambert, EH. Defects of neuromuscular transmission in syndromes other than myasthenia gravis. Ann N Y Acad Sci 1966;135:367384.CrossRefGoogle ScholarPubMed
Lindsley, DB. Electrical activity of human motor units during voluntary contraction. Am J Physiol 1935;114:9099.CrossRefGoogle Scholar
Marinacci, AA. Clinical electromyography. Los Angeles: San Lucas Press, 1955.Google Scholar
Mitchell, CW, Bertorini, TE. Diffusely increased insertional activity: “EMG disease” or asymptomatic myotonia congenita? A report of 2 cases. Arch Phys Med Rehabil 2007;88:12121213.CrossRefGoogle ScholarPubMed
Nandedkar, SD, Sander, DB, Stalberg, EV. Selectivity of electromyographic recording techniques: a simulation study. IEEE Trans Biomed Eng 1985;23:536538.Google ScholarPubMed
Nandedkar, SD, Sigl, JC, Yi, K, Stalber, E. The radial decline of the extracellular action potential. Med Biol Eng Comput 1984;22:564568.CrossRefGoogle ScholarPubMed
Petajan, JH. AAEM minimonograph #3: motor unit recruitment. Muscle Nerve 1991;14:489502.CrossRefGoogle Scholar
Petajan, JH, Phillip, BA. Frequency control of motor unit action potentials. Electroencephlogr Clin Neurophysiol 1969;27:6672.CrossRefGoogle ScholarPubMed
Rosenfalck, P. intra- and extracellular potential fields of active nerve and muscle fibres. Acta Physiol Scand 1969;75(suppl 321):1168.Google Scholar
Sherrington, CS. Some functional problems attaching to convergence. Proc Roy Soc B 1929;105:332362.Google Scholar
Sinderman, F, Conrad, B, Jacobi, HM, Prochazka, VJ. Unusual properties of repetitive fasciculations. Electroencephalogr Clin Neurophysiol 1973;35:173179.CrossRefGoogle Scholar
Stalberg, E. Macro EMG. Muscle Nerve 1983;6:619630.CrossRefGoogle ScholarPubMed
Stalberg, E. Macro electromyography, an update. Muscle Nerve 2011;44:292302.CrossRefGoogle ScholarPubMed
Stalberg, E. Use of single fiber EMG and macro EMG in study of reinnervation. Muscle Nerve 1990;13:804813.CrossRefGoogle ScholarPubMed
Stalberg, EV, Sanders, DB. Jitter recordings with concentric needle electrodes. Muscle Nerve 2009;40:331339.CrossRefGoogle ScholarPubMed
Stalberg, EV, Sonoo, M. Assessment of variability in the shape of the motor unit action potential, the “jiggle,” at consecutive discharges. Muscle Nerve 1994;17:11351144.CrossRefGoogle ScholarPubMed
Stein, RB. Peripheral control of movement. Physiol Rev 1974;54:215243.CrossRefGoogle ScholarPubMed
Strommen, JA, Daube, JR. Determinants of pain in needle electromyography. Clin Neurophysiol 2001;112:14141418.CrossRefGoogle ScholarPubMed
Swash, M, Schwartz, MS. Neuromuscular diseases. Berlin: Springer-Verlag, 1981.Google Scholar
Thage, O. The myotomes L2 through S2 in man. Acta Neurol Scand 1965(suppl 13):241243.Google ScholarPubMed
Walker, WC, Keyser-Marcus, LA, Johns, JS, Seel, RT. Relation of electromyography-induced pain to type of recording electrodes. Muscle Nerve 2001;24:417420.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Weichers, DO, Johnson, EW. Syndrome of diffuse abnormal insertional activity. Arch Phys Med Rehabil 1982;63:538539.Google Scholar
Wilbourn, AJ. An unreported, distinctive type of increased insertional activity. Muscle Nerve 1982;5:S101S105.Google ScholarPubMed
Wilbourn, AJ, Ferrante, MA. Clinical electromyography. In Joynt, RJ, Griggs, RC, editors, Clinical neurology. Philadelphia: Lippincott-Raven, 1998:176.Google Scholar

References

Bernat, JL, Ochoa, JL. Muscle hypertrophy after partial denervation: a human case. J Neurol Neurosurg Psychiatry 1978;41:719725.CrossRefGoogle ScholarPubMed
Brown, WF. The physiological and technical basis of electromyography. London: Butterworth, 1984.Google Scholar
Buchthal, F. Fibrillations: clinical electrophysiology. In Culp, WJ, Ochoa, J, editors, Abnormal nerves and muscles as impulse generators. Oxford: Oxford University Press, 1982:632662.Google Scholar
Buchthal, F, Rosenfalck, P. Spontaneous electrical activity of human muscle. Electroencehalogr Clin Neurophysiol 1966;20:321336.CrossRefGoogle ScholarPubMed
Campbell, WW. Essentials of electrodiagnostic medicine. Baltimore: Williams and Wilkins, 1999.Google Scholar
Daube, JR, Rubin, DI. AANEM monograph: needle electromyography. Muscle Nerve 2009;39:244270.CrossRefGoogle Scholar
Dumitru, D, DeLisa, JA. Volume conduction. Muscle Nerve 1991;14:605624.CrossRefGoogle ScholarPubMed
Fellows, LK, Foster, BJ, Chalk, CH. Clinical significance of complex repetitive discharges: a case-control study. Muscle Nerve 2003;28:504507.CrossRefGoogle ScholarPubMed
Gutmann, L. AAEM minimonograph #37: facial and limb myokymia. Muscle Nerve 1991;14:10431049.CrossRefGoogle Scholar
Herdmann, J, Reiners, K, Freund, HJ. Motor unit recruitment order in neuropathic disease. Electromyogr Clin Neurophysiol 1988;28:5360.Google ScholarPubMed
Jasper, H, Ballem, G. Unipolar electromyograms of normal and denervated human muscle. J Neurophysiol 1949;12:231244.CrossRefGoogle ScholarPubMed
Kimura, J. Electrodiagnosis in disease of nerve and muscle: principles and practice. Philadelphia: FA Davis, 1983.Google Scholar
Kraft, GH. Fibrillation potential amplitude and muscle atrophy following peripheral nerve injury. Muscle Nerve 1990;13:814821.CrossRefGoogle ScholarPubMed
Langley, JN, Kato, T. The physiological action of Physostigmine and its action on denervated skeletal muscle. J Physiol (Lond) 1915;49:410431.CrossRefGoogle ScholarPubMed
Mertens, HG, Zschoche, S. Neuromyotonie. Klin Wochenschr 1965;43:917925.CrossRefGoogle Scholar
Meyer, BU, Benecke, R, Frank, B, Conrad, B. Complex repetitive discharges in the iliopsoas muscle. J Neurol 1988;235:411414.CrossRefGoogle ScholarPubMed
Norris, FH, Gasteiger, EL, Chatfield, PO. An electromyographic study of induced and spontaneous muscle cramps. Electroencephalogr Clin Neurophysiol 1957;9:139147.CrossRefGoogle ScholarPubMed
Roth, G. Fasciculations and their F-response. J Neurol Sci 1983;63:299306.CrossRefGoogle Scholar
Sinderman, F, Conrad, B, Jacobi, HM, Prochazka, VJ. Unusual properties of repetitive fasciculations. Electroencephalogr Clin Neurophysiol 1973;35:173179.CrossRefGoogle Scholar
Stalberg, E, Trontelj, JV. Abnormal discharges generated within the motor unit as observed with single-fiber electromyography. In Culp, WJ, Ochoa, J, editors, Abnormal nerves and muscles as impulse generators. Oxford: Oxford University Press, 1982:443474.Google Scholar
Swash, M, Schwartz, MS. Neuromuscular diseases. Berlin: Springer-Verlag, 1981.Google Scholar
Thesleff, S. Physiological effects of denervation of muscles. Ann NY Acad Sci 1974;228:89103.CrossRefGoogle Scholar
Thesleff, S. Fibrillation in denervated mammalian muscle. In Culp, WJ, Ochoa, J, editors, Abnormal nerves and muscles as impulse generators. New York: Oxford University Press, 1982:678694.Google Scholar
Trontelj, J, Stålberg, E. Bizarre repetitive discharges recorded with single fibre EMG. Journal of Neurology, Neurosurgery & Psychiatry 1983;46:310316.CrossRefGoogle ScholarPubMed
Wilbourn, AJ, Ferrante, MA. Clinical electromyography. In Joynt, RJ, Griggs, RC, editors, Clinical neurology. Philadelphia: Lippincott-Raven, 1998:176.Google Scholar

References

Adrian, ED, Bronk, DW. The discharges of impulses in motor nerve fibres. Part II. The frequency of discharge in reflex and voluntary contractions. J Physiol 1929;67:119151.CrossRefGoogle ScholarPubMed
Blight, AR, Precht, W. “Spontaneous” quantal release of transmitter absent in vivo. Abst Soc Neurol Soc 1980;6:601.Google Scholar
Brandstater, ME, Lambert, EH. Motor unit anatomy. Type and spatial arrangement of muscle fibers. In Desmedt, JE, editor, New developments in electromyography and clinical neurophysiology. Vol 1, new concepts of the motor unit, neuromuscular disorders, electromyographic kinesiology. Basel: Karger, 1973:1422.Google Scholar
Brooke, MH, Kaiser, KK. Muscle fiber types: how many and what kind? Arch Neurol 1970;23:369379.CrossRefGoogle ScholarPubMed
Brown, WF. The physiological and technical basis of electromyography. Boston: Butterworth Publishers, 1984.Google Scholar
Buchthal, F. Diagnostic significance of the myopathic EMG. In Rowland, LP, editor, Pathogenesis of human muscular dystrophies. Proceedings of the Fifth International Scientific Conference of the Muscular Dystrophy Association, Durango, Colorado. Amsterdam and Oxford: Excerpta Medica, 1977:205218.Google Scholar
Buchthal, F, Guld, C, Rosenfalck, P. Multielectrode study of the territory of a motor unit. Acta Physiol Scand 1957;39:83104.CrossRefGoogle ScholarPubMed
Ekstedt, J, Stalberg, E. Single fiber EMG (methods and normal results). Electroencephalogr Clin Neurophysiol 1971;30:258259.Google ScholarPubMed
Ertas, M, Baslo, MB, Yildiz, N, Yazici, J, Oge, AE. Concentric needle electrode for neuromuscular jitter analysis. Muscle Nerve 2000;23:715719.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Ertas, M, Stalberg, E, Falck, B. Can the size principle be detected in conventional EMG recordings? Muscle Nerve 1995;18:435439.CrossRefGoogle ScholarPubMed
Gilchrist, JM. Single fiber EMG reference values: a collaborative effort. Muscle Nerve 1992;15:151161.Google Scholar
Gordon, T, Thomas, CK, Munson, JB, Stein, RB. The resilience of the size principle in the organization of motor unit properties in normal and reinnervated adult skeletal muscles. Can J Physiol Pharmacol 2004;82:645661.CrossRefGoogle ScholarPubMed
Henneman, E, Somjen, G, Carpenter, DO. Functional significance of cell size in spinal motoneurons. J Neurophysiol 1965;28:560580.CrossRefGoogle ScholarPubMed
Jasper, H, Ballem, G. Unipolar electromyogram of normal and denervated human muscle. J Neurophysiol 1949;12:231244.CrossRefGoogle ScholarPubMed
Johnson, EW. The EMG examination. In Johnson, EW, editor, Practical electromyography, 2nd ed. Baltimore: Williams & Wilkins, 1988:1920.Google Scholar
King, JC, Dumitru, D, Nandedkar, S. Concentric and single fiber electrode spatial recording characteristics. Muscle Nerve 1997;20:15251533.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
King, JC, Dumitru, D, Stegeman, D. Monopolar needle electrode spatial recording characteristics. Muscle Nerve 1996;19:13101319.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Lambert, EH. Defects of neuromuscular transmission in syndromes other than myasthenia gravis. Ann N Y Acad Sci 1966;135:367384.CrossRefGoogle ScholarPubMed
Lindsley, DB. Electrical activity of human motor units during voluntary contraction. Am J Physiol 1935;114:9099.CrossRefGoogle Scholar
Machado, FCN, Kouyoumdjian, JA, Marchiori, PE. Diagnostic accuracy of concentric needle jitter in myasthenia: prospective study. Muscle Nerve 2017;55:190194.CrossRefGoogle Scholar
Marinacci, AA. Clinical electromyography. Los Angeles: San Lucas Press, 1955.Google Scholar
Nandedkar, SD, Sander, DB, Stalberg, EV. Selectivity of electromyographic recording techniques: a simulation study. IEEE Trans Biomed Eng 1985;23:536538.Google ScholarPubMed
Nandedkar, SD, Sigl, JC, Yi, K, Stalber, E. The radial decline of the extracellular action potential. Med Biol Eng Comput 1984;22:564568.CrossRefGoogle ScholarPubMed
Patel, A, Gosk, M, Pitt, M. The effect of different low-frequency filters on concentric needle jitter in stimulated orbicularis oculi. Muscle Nerve 2016;54:317319.CrossRefGoogle ScholarPubMed
Rosenfalck, P. Intra- and extracellular potential fields of active nerve and muscle fibres. Acta Physiol Scand 1969;75(suppl 321):1168.Google Scholar
Sherrington, CS. Some functional problems attaching to convergence. Proc Roy Soc B 1929;105:332362.Google Scholar
Sinderman, F, Conrad, B, Jacobi, HM, Prochazka, VJ. Unusual properties of repetitive fasciculations. Electroencephalogr Clin Neurophysiol 1973;35:173179.CrossRefGoogle Scholar
Stalberg, E. Macro EMG, a new recording technique. J Neurol Neurosurg, Psychiatry 1980;43:475482.CrossRefGoogle ScholarPubMed
Stalberg, E. Macro EMG. Muscle Nerve 1983;6:619630.CrossRefGoogle ScholarPubMed
Stalberg, E. Use of single fiber EMG and macro EMG in study of reinnervation. Muscle Nerve 1990;13:804813.CrossRefGoogle ScholarPubMed
Stalberg, E. Macro electromyography, an update. Muscle Nerve 2011;44:292302.Google Scholar
Stalberg, EV, Sanders, DB. Jitter recordings with concentric needle electrodes. Muscle Nerve 2009;40:331339.CrossRefGoogle ScholarPubMed
Stein, RB. Peripheral control of movement. Physiol Rev 1974;54:215243.CrossRefGoogle ScholarPubMed
Swash, M, Schwartz, MS. Neuromuscular diseases. Berlin: Springer-Verlag, 1981.Google Scholar
Thage, O. The myotomes L2 through S2 in man. Acta Neurol Scand 1965(suppl 13):241243.Google ScholarPubMed
Wilbourn, AJ, Ferrante, MA. Clinical electromyography. In Joynt, RJ, Griggs, RC, editors, Clinical neurology. Philadelphia: Lippincott-Raven, 1998:176.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×