Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-07T13:01:32.276Z Has data issue: false hasContentIssue false

5 - Interpreting the DGT Measurement

Speciation and Dynamics

Published online by Cambridge University Press:  05 September 2016

William Davison
Affiliation:
Lancaster University
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Garmo, O. A., Royset, O., Steinnes, E. and Flaten, T. P., Performance study of diffusive gradients in thin films for 55 elements, Anal. Chem. 75 (2003), 35733580.CrossRefGoogle ScholarPubMed
dos Anjos, V. E., Abate, G. and Grassi, M. T., Comparison of the speciation of trace metals in freshwater employing voltammetry, diffusive gradients in thin films (DGT) and a chemical equilibrium model, Quimica Nova 33 (2010), 13071312.Google Scholar
Bennett, W. W., Teasdale, P. R., Welsh, D. T. et al., Inorganic arsenic and iron(II) distributions in sediment porewaters investigated by a combined DGT-colourimetric DET technique, Environ. Chem. 9 (2012), 3140.CrossRefGoogle Scholar
van Leeuwen, H. P., Steady-state DGT fluxes of nanoparticulate metal complexes, Environ. Chem. 8 (2011), 525528.CrossRefGoogle Scholar
Navarro, E., Piccapietra, F., Wagner, B. et al., Toxicity of silver nanoparticles to Chlamydomonas reinhardtii, Environ. Sci. Technol. 42 (2008), 89598964.CrossRefGoogle ScholarPubMed
Panther, J. G., Teasdale, P. R., Bennett, W. W., Welsh, D. T. and Zhao, H. J., Titanium dioxide-based DGT technique for in situ measurement of dissolved reactive phosphorus in fresh and marine waters, Environ. Sci. Technol. 44 (2010), 94199424.CrossRefGoogle ScholarPubMed
Zhang, Y. L., Mason, S., McNeill, A. and McLaughlin, M. J., Optimization of the diffusive gradients in thin films (DGT) method for simultaneous assay of potassium and plant-available phosphorus in soils, Talanta 113 (2013), 123129.CrossRefGoogle ScholarPubMed
Panther, J. G., Stewart, R. R., Teasdale, P. R. et al., Titanium dioxide-based DGT for measuring dissolved As(V), V(V), Sb(V), Mo(VI) and W(VI) in water, Talanta 105 (2013), 8086.CrossRefGoogle Scholar
Chen, C. E., Zhang, H., Ying, G. G. and Jones, K. C., Evidence and recommendations to support the use of a novel passive water sampler to quantify antibiotics in wastewaters, Environ. Sci. Technol. 47 (2013), 1358713593.CrossRefGoogle ScholarPubMed
Caillat, A., Ciffroy, P., Grote, M., Rigaud, S. and Garnier, J. M., Bioavailability of copper in contaminated sediments assessed by a DGT approach and the uptake of copper by the aquatic plant Myriophyllum aquaticum, Environ. Toxicol. Chem. 33 (2014), 278285.CrossRefGoogle ScholarPubMed
Costello, D. M., Burton, G. A., Hammerschmidt, C. R. and Taulbee, W. K., Evaluating the performance of diffusive gradients in thin films for predicting Ni sediment toxicity, Environ. Sci. Technol. 46 (2012), 1023910246.CrossRefGoogle ScholarPubMed
Degryse, F. and Smolders, E., Cadmium and nickel uptake by tomato and spinach seedlings: Plant or transport control?, Environ. Chem. 9 (2012), 4854.CrossRefGoogle Scholar
Davison, W., Fones, G., Harper, M., Teasdale, P. and Zhang, H., Dialysis, DET and DGT: In situ diffusional techniques for studying water, sediments and soils, in In situ monitoring of aquatic systems: Chemical analysis and speciation, ed. Buffle, J. and Horvai, G. (Chichester: Wiley, 2000), pp. 495569.Google Scholar
Davison, W. and Zhang, H., Progress in understanding the use of diffusive gradients in thin films (DGT) – Back to basics, Environ. Chem. 9 (2012), 113.CrossRefGoogle Scholar
Harper, M. P., Davison, W. and Tych, W., Temporal, spatial, and resolution constraints for in situ sampling devices using diffusional equilibration: Dialysis and DET, Environ. Sci. Technol. 31 (1997), 31103119.CrossRefGoogle Scholar
Ernstberger, H., Davison, W., Zhang, H., Tye, A. and Young, S., Measurement and dynamic modeling of trace metal mobilization in soils using DGT and DIFS, Environ. Sci. Technol. 36 (2002), 349354.CrossRefGoogle ScholarPubMed
Tusseau-Vuillemin, M. H., Gilbin, R. and Taillefert, M., A dynamic numerical model to characterize labile metal complexes collected with diffusion gradient in thin films devices, Environ. Sci. Technol. 37 (2003), 16451652.CrossRefGoogle ScholarPubMed
Degryse, F., Smolders, E. and Merckx, R., Labile Cd complexes increase Cd availability to plants, Environ. Sci. Technol. 40 (2006), 830836.CrossRefGoogle ScholarPubMed
Lehto, N. J., Davison, W., Zhang, H. and Tych, W., An evaluation of DGT performance using a dynamic numerical model, Environ. Sci. Technol. 40 (2006), 63686376.CrossRefGoogle ScholarPubMed
Levy, J. L., Zhang, H., Davison, W., Galceran, J. and Puy, J., Kinetic signatures of metals in the presence of Suwannee river fulvic acid, Environ. Sci. Technol. 46 (2012), 33353342.CrossRefGoogle ScholarPubMed
Kreuzeder, A., Santner, J., Zhang, H., Prohaska, T. and Wenzel, W. W., Uncertainty evaluation of the diffusive gradients in thin films technique, Environ. Sci. Technol. 49 (2015), 15941602.CrossRefGoogle ScholarPubMed
Santner, J., Kreuzeder, A., Schnepf, A. and Wenzel, W. W., Numerical evaluation of lateral diffusion inside diffusive gradients in thin films samplers, Environ. Sci. Technol. 49 (2015), 61096116.CrossRefGoogle ScholarPubMed
Davison, W., Defining the electroanalytically measured species in a natural water sample, J. Electroanal. Chem. 87 (1978), 395404.CrossRefGoogle Scholar
Mongin, S., Uribe, R., Rey-Castro, C. et al., Limits of the linear accumulation regime of DGT sensors, Environ. Sci. Technol. 47 (2013), 1043810445.CrossRefGoogle ScholarPubMed
Puy, J., Uribe, R., Mongin, S. et al., Lability criteria in diffusive gradients in thin films, J. Phys. Chem. A 116 (2012), 65646573.CrossRefGoogle ScholarPubMed
Galceran, J. and Puy, J., Interpretation of diffusion gradients in thin films (DGT) measurements: A systematic approach, Environ. Chem. 12 (2015), 112122.CrossRefGoogle Scholar
Galceran, J., Puy, J., Salvador, J., Cecília, J. and van Leeuwen, H. P., Voltammetric lability of metal complexes at spherical microelectrodes with various radii, J. Electroanal. Chem. 505 (2001), 8594.CrossRefGoogle Scholar
van der Veeken, P. L. R., Pinheiro, J. P. and van Leeuwen, H. P., Metal speciation by DGT/DET in colloidal complex systems, Environ. Sci. Technol. 42 (2008), 88358840.CrossRefGoogle ScholarPubMed
Zielinska, K., Town, R. M., Yasadi, K. and van Leeuwen, H. P., Partitioning of humic acids between aqueous solution and hydrogel. 2. Impact of physicochemical conditions, Langmuir 31 (2015), 283291.CrossRefGoogle ScholarPubMed
Shafaei-Arvajeh, M. R., Lehto, N., Garmo, O. A. and Zhang, H., Kinetic studies of Ni organic complexes using diffusive gradients in thin films (DGT) with double binding layers and a dynamic numerical model, Environ. Sci. Technol. 47 (2013), 463470.CrossRefGoogle Scholar
Mongin, S., Uribe, R., Puy, J. et al., Key role of the resin layer thickness in the lability of complexes measured by DGT, Environ. Sci. Technol. 45 (2011), 48694875.CrossRefGoogle ScholarPubMed
Jimenez-Piedrahita, M., Altier, A., Cecilia, J. et al., Influence of the settling of the resin beads on diffusion gradients in thin films measurements, Anal. Chim. Acta 885 (2015), 148155.CrossRefGoogle ScholarPubMed
Uribe, R., Puy, J., Cecilia, J. and Galceran, J., Kinetic mixture effects in diffusion gradients in thin films (DGT), Phys. Chem. Chem. Phys. 15 (2013), 1134911355.CrossRefGoogle ScholarPubMed
van Leeuwen, H. P. and Town, R. M., Outer-sphere and inner-sphere ligand protonation in metal complexation kinetics: The lability of EDTA complexes, Environ. Sci. Technol. 43 (2009), 8893.CrossRefGoogle ScholarPubMed
van Leeuwen, H. P. and Town, R. M., Protonation effects on dynamic flux properties of aqueous metal complexes, Collect. Czech. Chem. Commun. 74 (2009), 15431557.CrossRefGoogle Scholar
Uribe, R., Mongin, S., Puy, J. et al., Contribution of partially labile complexes to the DGT metal flux, Environ. Sci. Technol. 45 (2011), 53175322.CrossRefGoogle Scholar
Alemani, D., Buffle, J., Zhang, Z., Galceran, J. and Chopard, B., Metal flux and dynamic speciation at (bio)interfaces. Part III: MHEDYN, a general code for metal flux computation; application to simple and fulvic complexants, Environ. Sci. Technol. 42 (2008), 20212027.CrossRefGoogle ScholarPubMed
Galceran, J., Puy, J., Salvador, J. et al., Lability and mobility effects on mixtures of ligands under steady-state conditions, Phys. Chem. Chem. Phys. 5 (2003), 50915100.CrossRefGoogle Scholar
Zhang, H. and Davison, W., Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution, Anal. Chem. 67 (1995), 33913400.CrossRefGoogle Scholar
Warnken, K. W., Davison, W., Zhang, H., Galceran, J. and Puy, J., In situ measurements of metal complex exchange kinetics in freshwater, Environ. Sci. Technol. 41 (2007), 31793185.CrossRefGoogle ScholarPubMed
van der Veeken, P. L. R. and van Leeuwen, H. P., Gel-water partitioning of soil humics in diffusive gradient in thin film (DGT) analysis of their metal complexes, Environ. Chem. 9 (2012), 2430.CrossRefGoogle Scholar
Six, L., Smolders, E. and Merckx, R., The performance of DGT versus conventional soil phosphorus tests in tropical soils-maize and rice responses to P application, Plant Soil 366 (2013), 4966.CrossRefGoogle Scholar
Apte, S. C., Batley, G. E., Bowles, K. C. et al., A comparison of copper speciation measurements with the toxic responses of three sensitive freshwater organisms, Environ. Chem. 2 (2005), 320330.CrossRefGoogle Scholar
Zhang, Z. S., Buffle, J., Town, R. M., Puy, J. and van Leeuwen, H. P., Metal flux in ligand mixtures. 2. Flux enhancement due to kinetic interplay: Comparison of the reaction layer approximation with a rigorous approach, J. Phys. Chem. A 113 (2009), 65726580.CrossRefGoogle ScholarPubMed
Pinheiro, J. P., Salvador, J., Companys, E., Galceran, J. and Puy, J., Experimental verification of the metal flux enhancement in a mixture of two metal complexes: The Cd/NTA/glycine and Cd/NTA/citric acid systems, Phys. Chem. Chem. Phys. 12 (2010), 11311138.CrossRefGoogle Scholar
Salvador, J., Garcés, J. L., Companys, E. et al., Ligand mixture effects in metal complex lability, J. Phys. Chem. A 111 (2007), 43044311.CrossRefGoogle ScholarPubMed
Levy, J. L., Zhang, H., Davison, W., Puy, J. and Galceran, J., Assessment of trace metal binding kinetics in the resin phase of diffusive gradients in thin films, Anal. Chim. Acta 717 (2012), 143150.CrossRefGoogle ScholarPubMed
Puy, J., Galceran, J., Cruz-Gonzalez, S. et al., Metal accumulation in DGT: Impact of ionic strength and kinetics of dissociation of complexes in the resin domain, Anal. Chem. 86 (2014), 77407748.CrossRefGoogle ScholarPubMed
Town, R. M., Chakraborty, P. and van Leeuwen, H. P., Dynamic DGT speciation analysis and applicability to natural heterogeneous complexes, Environ. Chem. 6 (2009), 170177.CrossRefGoogle Scholar
Tankere-Muller, S., Davison, W. and Zhang, H., Effect of competitive cation binding on the measurement of Mn in marine waters and sediments by diffusive gradients in thin films, Anal. Chim. Acta 716 (2012), 138144.CrossRefGoogle ScholarPubMed
Gustafsson, J. P, Visual MINTEQ version 3.0. www.lwr.kth.se/English/ Oursoftware/vminteq/index.htm. 2010Google Scholar
Pesavento, M., Biesuz, R., Gallorini, M. and Profumo, A., Sorption mechanism of trace amounts of divalent metal-ions on a chelating resin containing iminodiacetate groups, Anal. Chem. 65 (1993), 25222527.CrossRefGoogle Scholar
Pesavento, M., Biesuz, R. and Alberti, G., Characterization of the sorption equilibria of nickel(II) on two complexing resins by the Gibbs-Donnan model, ANN. CHIM. ROME. 89 (1999), 137146.Google Scholar
Pesavento, M., Biesuz, R., Baffi, F. and Gnecco, C., Determination of metal ions concentration and speciation in seawater by titration with an iminodiacetic resin, Anal. Chim. Acta 401 (1999), 265276.CrossRefGoogle Scholar
Davison, W. and Zhang, H., In-situ speciation measurements of trace components in natural waters using thin-film gels, Nature 367 (1994), 546548.CrossRefGoogle Scholar
van Leeuwen, H. P. and Galceran, J., Biointerfaces and mass transfer, In Physicochemical kinetics and transport at chemical-biological surfaces, ed. van Leeuwen, H. P. and Koester, W. (Chichester: Wiley, 2004), pp. 113146.Google Scholar
Warnken, K. W., Davison, W. and Zhang, H., Interpretation of in situ speciation measurements of inorganic and organically complexed trace metals in freshwater by DGT, Environ. Sci. Technol. 42 (2008), 69036909.CrossRefGoogle ScholarPubMed
Levy, J., Zhang, H., Davison, W. and Groben, R., Using diffusive gradients in thin films to probe the kinetics of metal interaction with algal exudates, Environ. Chem. 8 (2011), 517524.CrossRefGoogle Scholar
Uher, E., Tusseau-Vuillemin, M. H. and Gourlay-France, C., DGT measurement in low flow conditions: Diffusive boundary layer and lability considerations, Environ. Sci.: Processes Impacts 15 (2013), 13511358.Google ScholarPubMed
Fatin-Rouge, N., Milon, A., Buffle, J., Goulet, R. R. and Tessier, A., Diffusion and partitioning of solutes in agarose hydrogels: The relative influence of electrostatic and specific interactions, J. Phys. Chem. B 107 (2003), 1212612137.CrossRefGoogle Scholar
Ohshima, H., Electrical double layer, In Electrical phenomena at interfaces. Fundamentals, measurements and applications, eds. Ohshima, H. and Furusawa, K. (New York: Marcel Dekker, 1998), pp. 118.Google Scholar
van Leeuwen, H. P., Town, R. M. and Buffle, J., Chemodynamics of soft nanoparticulate metal complexes in aqueous media: Basic theory for spherical particles with homogeneous spatial distributions of sites and charges, Langmuir 27 (2011), 45144519.CrossRefGoogle ScholarPubMed
Yezek, L. P., van der Veeken, P. L. R. and van Leeuwen, H. P., Donnan effects in metal speciation analysis by DET/DGT, Environ. Sci. Technol. 42 (2008), 92509254.CrossRefGoogle ScholarPubMed
Duval, J. F. L., Pinheiro, J. P. and van Leeuwen, H. P., Metal speciation dynamics in monodisperse soft colloidal ligand suspensions, J. Phys. Chem. A 112 (2008), 71377151.CrossRefGoogle ScholarPubMed
Yasadi, K., Pinheiro, J. P., Zielinska, K., Town, R. M. and van Leeuwen, H. P., Partitioning of humic acids between aqueous solution and hydrogel. 3. Microelectrodic dynamic speciation analysis of free and bound humic metal complexes in the gel phase, Langmuir 31 (2015), 17371745.CrossRefGoogle ScholarPubMed
Davison, W., Lin, C., Gao, Y. and Zhang, H., Effect of gel interactions with dissolved organic matter on DGT measurements of trace metals, Aquatic Geochemistry 21 (2015), 281293.CrossRefGoogle Scholar
Morel, F. M. M. and Hering, J. G., Complexation, In Principles and applications of aquatic chemistry (New York: Wiley, 1993), pp. 319420.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×