Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-21T08:18:36.140Z Has data issue: false hasContentIssue false

7 - Clay Minerals in Flotation and Comminution Operations

Published online by Cambridge University Press:  30 August 2017

Markus Gräfe
Affiliation:
Emirates Global Aluminium (EGA)
Craig Klauber
Affiliation:
Curtin University of Technology, Perth
Angus J. McFarlane
Affiliation:
Commonwealth Scientific and Industrial Research Organisation, Canberra
David J. Robinson
Affiliation:
Commonwealth Scientific and Industrial Research Organisation, Canberra
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aglietti, E. F., Porto Lopez, J. M. & Pereira, E. 1986. Mechanochemical effects in kaolinite grinding: II. Structural aspects. International Journal of Mineral Processing, 16 (1–2), 135146.CrossRefGoogle Scholar
Arnold, B. J. & Aplan, F. F. 1986a. The effect of clay slimes on coal flotation, Part II: The role of water quality. International Journal of Mineral Processing, 17 (3–4), 243260.CrossRefGoogle Scholar
Arnold, B. J. & Aplan, F. F. 1986b. The effect of clay slimes on coal flotation, Part I: The nature of the clay. International Journal of Mineral Processing, 17 (3–4), 225242.CrossRefGoogle Scholar
Attia, Y. A. & Deason, D. M. 1989. Control of slimes coating in mineral suspensions. Colloids and Surfaces, 39 (1), 227238.Google Scholar
Bacon, F. C. 1984. Froth flotation apparatus and process. US Patent US4472271.Google Scholar
Bakker, C. W., Meyer, C. J. & Deglon, D. A. 2009. Numerical modelling of non-Newtonian slurry in a mechanical flotation cell. Minerals Engineering, 22 (11), 944950.CrossRefGoogle Scholar
Bandini, P., Prestidge, C. A. & Ralston, J. 2001. Colloidal iron oxide slime coatings and galena particle flotation. Minerals Engineering, 14 (5), 487497.Google Scholar
Barbian, N., Hadler, K., Ventura-Medina, E. & Cilliers, J. J. 2005. The froth stability column: Linking froth stability and flotation performance. Minerals Engineering, 18 (3), 317324.Google Scholar
Barnes, H. A., Hutton, J. F. & Walters, K. 1989. Introduction to Rheology. Amsterdam: Elsevier.Google Scholar
Basilio, C., Lowe, R. A., Gorken, A., Magliocco, L., & Hagy, R. 2000. Modified hydroxamate collectors for kaolin flotation. Developments in Mineral Processing, 13, C8b-51–C8b-55.CrossRefGoogle Scholar
Baudet, G., Perrotel, V., Seron, A. & Stellatelli, M. 1999. Two dimensions comminution of kaolinite clay particles. Powder Technology, 105 (1–3), 125134.Google Scholar
Bhattacharya, I. N., Panda, D. & Bandopadhyay, P. 1998. Rheological behaviour of nickel laterite suspensions. International Journal of Mineral Processing, 53 (4), 251263.CrossRefGoogle Scholar
Boger, D. V. 2000. Rheology and the minerals industry. Mineral Processing and Extractive Metallurgy Review, 20 (1), 125.CrossRefGoogle Scholar
Bond, F. C. 1952. Third theory of comminution. Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers, 193, 484.Google Scholar
Bradshaw, D. J., Triffett, B. & Kashuba, D. 2011. The role of process mineralogy in identifying the cause of low recovery of chalcopyrite at KUCC. In: Broekmans, M. (ed.) 10th International Congress for Applied Mineralogy. Trondheim: Springer, 7380.Google Scholar
Braggs, B. R. 1993. The controlled modification and characterisation of the kaolinite surface. PhD Thesis, University of South Australia, Mawson Lakes, SA.Google Scholar
Bremmell, K. E., Fornasiero, D. & Ralston, J. 2005. Pentlandite–lizardite interactions and implications for their separation by flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 252 (2–3), 207212.CrossRefGoogle Scholar
Bulatovic, S. M., Wyslouzil, D. M. & Kant, C. 1998. Operating practices in the beneficiation of major porphyry copper/molybdenum plants from Chile: Innovation technology and opportunities, a review. Minerals Engineering, 11 (4), 313331.CrossRefGoogle Scholar
Burdukova, E., Bradshaw, D. J. & Laskowski, J. S. 2007. Effect of CMC and pH on the rheology of suspensions of isotropic and anisotropic minerals. Canadian Metallurgical Quarterly, 46 (3), 273278.CrossRefGoogle Scholar
Burdukova, E., Becker, M., Ndlovu, B., Mokgethi, B. & Deglon, D. A. 2008. Relationship between slurry rheology and its mineralogical content. In: Wang, D. D., Xao, S. C., Wang, F. L., Cheng, Z. U. & Long, H. (eds) 24th International Minerals Processing Congress. Beijing: China Scientific Book Service Co. Ltd, 21692178.Google Scholar
Cundy, E. G. 1969. Processing of Clay. US Patent US3450257.Google Scholar
Deer, W. A., Howie, R. A. & Zussman, J. 1978. Rock Forming Minerals, Volume 3. Sheet Silicates.London: Longmans.Google Scholar
Del Guidice, G. R. M. 1934. A study of slime coatings in flotation. Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers, 112, 398409.Google Scholar
Dellisanti, F. & Valdré, G. 2005. Study of structural properties of ion treated and mechanically deformed commercial bentonite. Applied Clay Science, 28 (1–4), 233244.Google Scholar
Derjaguin, B. V. & Landau, L. 1941. Theory of stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solution of electrolytes. Acta Physiochimica, 14, 633662.Google Scholar
Dippenaar, A. 1978. The Effects of Particles on the Stability of Flotation Froths. Randburg, RSA: National Institute of Metallurgy.Google Scholar
Dippenaar, A. 1982. The destabilization of froth by solids: I. The mechanism of film rupture. International Journal of Mineral Processing, 9 (1), 114.CrossRefGoogle Scholar
Edwards, C. R., Kipkie, W. B. & Agar, G. E. 1980. The effect of slime coatings of the serpentine minerals, chrysotile and lizardite, on pentlandite flotation. International Journal of Mineral Processing, 7 (1), 3342.Google Scholar
Farris, R. J. 1968. Prediction of the viscosity of multimodal suspensions from unimodal viscosity data. Transactions of the Society of Rheology, 12 (2), 281302.Google Scholar
Farrokhpay, S. 2012. The importance of rheology in mineral flotation: A review. Minerals Engineering, 36–38, 272278.CrossRefGoogle Scholar
Filippov, L. O., Duverger, A., Filippova, I. V., Kasaini, H. & Thiry, J. 2012. Selective flotation of silicates and Ca-bearing minerals: The role of non-ionic reagent on cationic flotation. Minerals Engineering, 36–38, 314323.Google Scholar
Forbes, E., Davey, K. J. & Smith, L. 2014. Decoupling rheology and slime coatings effect on the natural flotability of chalcopyrite in a clay-rich flotation pulp. Minerals Engineering, 56, 136144.Google Scholar
Fornasiero, D. & Ralston, J. 2006. Effect of MgO minerals on pentlandite flotation. In: Onal, G., Acarkan, N., Celik, M. S., et al. (eds) 23rd International Mineral Processing Congress, 2006. Istanbul: Promed, 750755.Google Scholar
Fuerstenau, D. W., Gaudin, A. M. & Miaw, H. L. 1958. Iron oxide slime coatings in flotation. Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers, 211, 792793.Google Scholar
Fuerstenau, D. W., Kapur, P. C. & Velamakanni, B. 1990. A multi-torque model for the effects of dispersants and slurry viscosity on ball milling. International Journal of Mineral Processing, 28 (1–2), 8198.Google Scholar
Gantt, G. E., Adkisson, T. J., Gladin, P. B. & Ussery, R. E. 1994. Selective separation of finely-divided minerals by addition of selective collector reagent and centrifugation. US Patent US5358120.Google Scholar
Gao, M. & Forssberg, E. 1993. The influence of slurry rheology on ultra-fine grinding in a stirred ball mill. In: Ausimm, T. (ed.) 18th International Mineral Processing Congress, 23–28 May 1993. Sydney: Australasian Institute of Mining and Metallurgy, 237244.Google Scholar
Gardner, R. P., Aissa, M. & Verghese, K. 1982. Determination of ball mill residence time distributions from tracer data taken in closed-circuit operation. Powder Technology, 32 (2), 253266.Google Scholar
Gaudin, A. M. 1957. Flotation. New York: McGraw-Hill.Google Scholar
Genç, Ö. & Benzer, A. H. 2009. Single particle impact breakage characteristics of clinkers related to mineral composition and grindability. Minerals Engineering, 22 (13), 11601165.Google Scholar
He, M., Wang, Y. & Forssberg, E. 2004. Slurry rheology in wet ultrafine grinding of industrial minerals: A review. Powder Technology, 147 (1–3), 94112.Google Scholar
Iwasaki, I., Cooke, S. R. B., Haraway, D. H. & Choi, H. S. 1962. Iron wash slimes: Some mineralogical characteristics. Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers, 223, 97108.Google Scholar
Johansson, G. & Pugh, R. J. 1992. The influence of particle size and hydrophobicity on the stability of mineralized froths. International Journal of Mineral Processing, 34 (1–2), 121.CrossRefGoogle Scholar
Johnson, S. B., Franks, G. V., Scales, P. J., Boger, D. V. & Healy, T. W. 1999. Surface chemistry: Rheology relationships in concentrated mineral suspensions. International Journal of Minerals Processing, 58 (1–4), 267304.CrossRefGoogle Scholar
Kawatra, S. K. & Eisele, T. C. 1988. Rheological effects in grinding circuits. International Journal of Mineral Processing, 22 (1–4), 251259.Google Scholar
Klassen, V. I. & Makrousov, V. A. 1963. Introduction to the Theory of Flotation.London: Butterworth.Google Scholar
Klimpel, R. R. 1982. Slurry rheology influence on the performance of mineral/coal grinding circuits. Mining Engineering, 34 (12), 16651668.Google Scholar
Klimpel, R. R. & Hansen, R. D. 1989. Chemistry of mineral slurry rheology control grinding aids. Minerals and Metallurgical Processing, 6 (1), 3543.Google Scholar
Kumar, C. R., Tripathy, S. K., Mohanan, S., Venugopalan, T., Suresh, N. 2010. Evaluation of Floatex density separator performance using silica sand. In: Singh, R., Das, A., Banerjee, P. K., Bhattachryya, K. K. & Goswami, N. G. (eds) XI International Seminar on Mineral Processing Technology, 15–17 December, 2010. Jamshedpur: Allied Publishers Pvt. Ltd, 701706.Google Scholar
Liu, W., Sun, W. & Hu, Y. 2012. Effects of water hardness on selective flocculation of diasporic bauxite. Transactions of Nonferrous Metals Society of China, 22 (9), 2248−2254.Google Scholar
Livshits, A. K. & Dudenkov, S. V. 1965. Some factors in flotation froth stability. In: Arbiter, N. (ed.) 7th International Minerals Processing Congress. New York: Gordon and Beam.Google Scholar
Lovell, V. M. 1976. Froth Characteristics in Phosphate Flotation. Baltimore, MD: Port City Press.Google Scholar
Luz, P. A. B., Yildirim, I., Yoon, R. H. 2000. Purification of Brazilian kaolin clay by flotation. Developments in Mineral Processing, 13, C8b-79–C8b-83.CrossRefGoogle Scholar
Ma, M. 2011a. Enhancement of hematite flocculation in the hematite–starch–(low-molecular-weight) poly(acrylic acid) system. Industrial & Engineering Chemistry Research, 50 (21), 1195011953.Google Scholar
Ma, M. 2011b. The dispersive effect of sodium silicate on kaolinite particles in process water: Implications for iron-ore processing. Clays and Clay Minerals, 59 (3), 233239.CrossRefGoogle Scholar
Ma, M. 2012a. The dispersive effect of sodium hexametaphosphate on kaolinite in saline water. Clays and Clay Minerals, 60 (4), 405410.CrossRefGoogle Scholar
Ma, M. 2012b. Froth flotation of iron ores. International Journal of Mining Engineering and Mineral Processing, 1 (2), 5661.Google Scholar
Ma, M. 2012c. The significance of dosing sequence in the flocculation of hematite. Chemical Engineering Science, 73, 5154.Google Scholar
Ma, X., Bruckard, W. J. & Holmes, R. 2009. Effect of collector, pH and ionic strength on the cationic flotation of kaolinite. International Journal of Mineral Processing, 93 (1), 5458.Google Scholar
Ma, M., Bruckard, W. J. & McCall, D. W. 2012. Role of water structure-making/breaking ions in the cationic flotation of kaolinite: Implications for iron ore processing. International Journal of Mining Engineering and Mineral Processing, 1 (1), 1720.Google Scholar
Makó, É., Frost, R. L., Kristóf, J. & Horváth, E. 2001. The effect of quartz content on the mechanochemical activation of kaolinite. Journal of Colloid and Interface Science, 244 (2), 359364.Google Scholar
Makokha, A. B., Moys, M. H. & Bwalya, M. M. 2011. Modeling the RTD of an industrial overflow ball mill as a function of load volume and slurry concentration. Minerals Engineering, 24 (3–4), 335340.Google Scholar
Mark, M. 2011. The dispersion of kaolinite. In: Ausimm, T. (ed.) Iron Ore 2011, 11–13 July, 2011. Perth: Australasian Institute of Mining and Metallurgy, 471474.Google Scholar
Martin, C., Ohrling, T., Olsen, T. & Taggart, P. 2002. From tribulation to triumph: Flotation improvements at the new Lac des Iles concentrator. SGS Mineral Services – Technical Bulletin 2002-10.Google Scholar
Mathur, S., Singh, P. & Moudgil, B. M. 2000. Advances in selective flocculation technology for solid–solid separations. International Journal of Mineral Processing, 58 (1–4), 201222.CrossRefGoogle Scholar
Mathur, S. 2002. Kaolin flotation. Journal of Colloid and Interface Science, 256 (1), 153158.Google Scholar
Matis, K. A., Gallios, G. P. & Kydros, K. A. 1993. Separation of fines by flotation techniques. Separations Technology, 3 (2), 7690.CrossRefGoogle Scholar
Mekhamer, W. K. 2011. Stability changes of Saudi bentonite suspension due to mechanical grinding. Journal of Saudi Chemical Society, 15 (4), 361366.Google Scholar
Mindat. 2012. Mineral and Locality Database [Online]. Available: www.mindat.org (accessed 22 June 2012).Google Scholar
Mohanty, S. & Das, B. 2010. Optimization studies of hydrocyclone for beneficiation of iron ore slimes. Mineral Processing and Extractive Metallurgy Review, 31 (2), 8696.Google Scholar
Moolman, D. W., Eksteen, J. J., Aldrich, C. & van Deventer, J. S. J. 1996. The significance of flotation froth appearance for machine vision control. International Journal of Mineral Processing, 48 (3–4), 135158.Google Scholar
Napier-Munn, T. J., Morrell, S., Morrison, R. D. & Kojovic, T. 1996. Mineral Comminution Circuits, Their Operation and Optimization.Indooroopilly, QLD: Julius Kruttschnitt Mineral Research Centre, University of Queensland.Google Scholar
Ndlovu, B., Burdukova, E., Becker, M., et al. 2010. An investigation on the effect of chrysotile mineralogy and surface chemistry on slurry rheology. In: Ausimm, T. (ed.) 25th International Minerals Processing Congress. Brisbane, QLD: Australasian Institute of Mining and Metallurgy, 367376.Google Scholar
Ndlovu, B. N., Forbes, E., Becker, M., et al. 2011. The effects of chrysotile mineralogical properties on the rheology of chrysotile suspensions. Minerals Engineering, 24 (9), 10041009.Google Scholar
Neethling, S. J. & Cilliers, J. J. 2002. The entrainment of gangue into a flotation froth. International Journal of Mineral Processing, 64 (2–3), 123134.Google Scholar
Nguyen, D. Q. & Boger, D. V. 1983. Yield stress measurement for concentrated suspensions. Journal of Rheology, 27 (4), 321349Google Scholar
Nguyen, D. Q. & Boger, D. V. 1985. Direct yield stress measurement with the vane rheometer. Journal of Rheology, 29 (3), 335347.Google Scholar
Notebaart, C. W. & Meer, F. P. 1992. High selectivity in HGMS by capture on the downstream side of matrix elements. Minerals Engineering, 5 (10–12), 11351145.Google Scholar
Ohara, T. 2014. Progress in magnetic separation technology for processing large quantities of dilute suspensions. Journal of the Japan Society of Powder and Powder Metallurgy, 61 (S1), S139S144.CrossRefGoogle Scholar
Peng, Y. & Bradshaw, D. 2012. Mechanisms for the improved flotation of ultrafine pentlandite and its separation from lizardite in saline water. Minerals Engineering, 36–38, 284290.Google Scholar
Peng, Y. & Seaman, D. 2011. The flotation of slime–fine fractions of Mt. Keith pentlandite ore in de-ionised and saline water. Minerals Engineering, 24 (5), 479481.Google Scholar
Pindred, A. & Meech, J. A., 1984. Interparticular phenomena in the flotation of hematite fines. International Journal of Mineral Processing, 12 (1–3), 193212.Google Scholar
Pourghahramani, P. 2012. Effects of ore characteristics on product shape properties and breakage mechanisms in industrial SAG mills. Minerals Engineering, 32, 3037.Google Scholar
Prasad, M. S., Reid, K. J. & Murray, H. H. 1991. Kaolin: Processing, properties and applications. Applied Clay Science, 6 (2), 87119.Google Scholar
Raghukumar, C., Tripathy, S. K. & Monahan, S. 2012. Beneficiation of Indian high alumina iron ore fines: A case study. International Journal of Mining Engineering and Mineral Processing, 1 (2), 94100.Google Scholar
Rogers, R. S. C., Bell, D. G. & Hukki, A. M. 1982. A short-lived radioactive tracer method for the measurement of closed circuit ball mill residence time distributions. Powder Technology, 32 (2), 245252.Google Scholar
Rosario, P., Hall, R., Grundy, M. & Klein, B. 2011. A preliminary investigation into the feasibility of a novel HPGR-based circuit for hard, weathered ores containing clayish material. Minerals Engineering, 24 (3–4), 290302.Google Scholar
Rubenstein, J. B. & Melik-Gaikazyan, V. I. 1998. Characterisation of flotation froths. In: Laskowski, J. S. & Woodburn, E. T. (eds) Frothing in Flotation II. Amsterdam: Gordon & Breach.Google Scholar
Savassi, O. N., Alexander, D. J., Franzidis, J. P. & Manlapig, E. V. 1998. An empirical model for entrainment in industrial flotation plants. Minerals Engineering, 11 (3), 243256.Google Scholar
Scales, P. J., Johnson, S. B. & Kapur, P. C. 2000. The influence of surface chemistry on the rheology and flow of flocculated particulate suspensions. Mineral Processing and Extractive Metallurgy Review, 20 (1), 2740.Google Scholar
Schubert, H. 2008. On the optimization of hydrodynamics in fine particle flotation. Minerals Engineering, 21 (12–14), 930936.Google Scholar
Senior, G. D. & Thomas, S. A. 2005. Development and implementation of a new flowsheet for the flotation of a low grade nickel ore. International Journal of Mineral Processing, 78 (1), 4961.Google Scholar
Shabalala, N. Z. P., Harris, M., Leal Filho, L. S. & Deglon, D. A. 2011. Effect of slurry rheology on gas dispersion in a pilot-scale mechanical flotation cell. Minerals Engineering, 24 (13), 14481453.Google Scholar
Shi, F. N. & Napier-Munn, T. J. 1996. A model for slurry rheology. International Journal of Mineral Processing, 47 (1–2), 103123.Google Scholar
Shi, F. N. & Napier-Munn, T. J. 2002. Effects of slurry rheology on industrial grinding performance. International Journal of Mineral Processing, 65 (3–4), 125140.Google Scholar
Shi, F. N. & Zheng, X. F. 2003. The rheology of flotation froths. International Journal of Minerals Processing, 69 (1–4), 115128.Google Scholar
Srivastava, M. P., Pan, S. K., Prasad, N., & Mishra, B. K., 2001. Characterization and processing of iron ore fines of Kiriburu deposit of India. International Journal of Mineral Processing, 61 (2), 93107.Google Scholar
Subbanna, M., Pradip, & Malghan, S. G. 1998. Shear yield stress of flocculated alumina–zirconia mixed suspensions: Effect of solid loading, composition and particle size distribution. Chemical Engineering Science, 53 (17), 30733079.Google Scholar
Subrahmanyam, T. V. & Forssberg, E. 1988. Froth stability, particle entrainment and drainage in flotation: A review. International Journal of Mineral Processing, 23 (1–2), 3353.Google Scholar
Sutherland, K. L. & Wark, I. W. 1955. Principles of Flotation. Melbourne, VIC: Australian Institute of Mining and Metallurgy.Google Scholar
Svoboda, J. & Fujita, T. 2003. Recent developments in magnetic methods of material separation. Minerals Engineering, 16 (9), 785792.Google Scholar
Tao, D., Luttrell, G. H. & Yoon, R. H. 2000. A parametric study of froth stability and its effect on column flotation of fine particles. International Journal of Mineral Processing, 59 (1), 2543.Google Scholar
Trahar, W. J. 1981. A rational interpretation of the role of particle size in flotation. International Journal of Mineral Processing, 8 (4), 289327.Google Scholar
Van Olphen, H. 1951. Rheological phenomena of clay sols in connection with the charge distribution on the micelles. Discussions of the Faraday Society, 11, 8396.Google Scholar
Vdović, N., Jurina, I., Škapin, S. D. & Sondi, I. 2010. The surface properties of clay minerals modified by intensive dry milling: Revisited. Applied Clay Science, 48 (4), 575580.Google Scholar
Verwey, E. J. W. & Overbeek, J. T. G. 1948. Theory of Stability of Lyophobic Solids.Amsterdam: Elsevier.Google Scholar
Visser, P. R., Coetzee, M. L. & Kendall, S. G. 1994. Flotation of autogenously milled material. Minerals Engineering, 7 (2–3), 357369.Google Scholar
Wang, J., Somasundaran, P. & Nagaraj, D. R. 2005. Adsorption mechanism of guar gum at solid–liquid interfaces. Minerals Engineering, 18 (1), 7781.Google Scholar
Wang, Y. & Forssberg, E. 1997. Ultra-fine grinding and classification of minerals. In: Kowatra, S. (ed.) Comminution Practice. Littleton, CO: Society for Mining, Metallurgy and Exploration, 203214.Google Scholar
Wasmuth, H. D. & Unkelbach, K. H., 1991. Recent developments in magnetic separation of feebly magnetic minerals. Minerals Engineering, 4 (7–11), 825837.Google Scholar
Wills, B. A. & Finch, J. A. 2016. Gravity concentration. In: Wills’ Mineral Processing Technology, 8th edition. Boston, MA: Butterworth-Heinemann.Google Scholar
Wilson, H. & Middleton, G. J. 1937. Purification of kaolin: Some data on the classification of quartz and muscovite. Journal of American Ceramic Society, 20 (1–12), 126136.Google Scholar
Xu, D., Ametov, I. & Grano, S. R. 2011. Detachment of coarse particles from oscillating bubbles: The effect of particle contact angle, shape and medium viscosity. International Journal of Mineral Processing, 101 (1–4), 5057.Google Scholar
Xu, Z., Liu, J., Choung, J. W. & Zhou, Z. 2003. Electrokinetic study of clay interactions with coal in flotation. International Journal of Mineral Processing, 68 (1–4), 183196.Google Scholar
Yianatos, J. & Contreras, F. 2010. Particle entrainment model for industrial flotation cells. Powder Technology, 197 (3), 260267.Google Scholar
Yoon, R. H., Nagaraj, D. R., Wang, S. S. & Hildebrand, T. M. 1992. Beneficiation of kaolin clay by froth flotation using hydroxamate collectors. Minerals Engineering, 5 (3–5), 457467.Google Scholar
Young, R. H., Morris, H. H., Brooks, R. L. 1985. Method of Treating Clay to Improve its Whiteness. US Patent US4492628.Google Scholar
Yue, J. & Klein, B. 2004. Influence of rheology on the performance of horizontal stirred mills. Minerals Engineering, 17 (11–12), 11691177.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×