Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-07T19:07:19.278Z Has data issue: false hasContentIssue false

23 - Genome Editing for Retinal Diseases

from Part V - Genome Editing in Disease Biology

Published online by Cambridge University Press:  30 July 2018

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc.
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Genome Editing and Engineering
From TALENs, ZFNs and CRISPRs to Molecular Surgery
, pp. 358 - 370
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azvolinsky, A. 2015. Gene therapy “cure” for blindness wanes. Nat Biotechnol 33: 678.CrossRefGoogle ScholarPubMed
Bainbridge, JW, Stephens, C, Parsley, K, et al. 2001. In vivo gene transfer to the mouse eye using an HIV-based lentiviral vector; efficient long-term transduction of corneal endothelium and retinal pigment epithelium. Gene Ther 8: 16651668.CrossRefGoogle Scholar
Bakondi, B, Lv, W, Lu, B, et al. 2016. In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa. Mol Ther 24: 556563.CrossRefGoogle ScholarPubMed
Berger, W, Kloeckener-Gruissem, B, Neidhardt, J. 2010. The molecular basis of human retinal and vitreoretinal diseases. Prog Retin Eye Res 29: 335375.CrossRefGoogle ScholarPubMed
Botta, S, Marrocco, E, De Prisco, N, et al. 2016. Rhodopsin targeted transcriptional silencing by DNA-binding. Elife 5: e12242.CrossRefGoogle ScholarPubMed
Burnight, ER, Wiley, LA, Drack, AV, et al. 2014. CEP290 gene transfer rescues Leber congenital amaurosis cellular phenotype. Gene Ther 21: 662672.CrossRefGoogle ScholarPubMed
Cajal, SRY. 1892. La Rétine des Vértebrés (La Cellule, English Trans.; S. Thorpe and M. Glickstein, trans., 1972). Springfield, IL: Charles C. Thomas.Google Scholar
Craige, B, Tsao, CC, Diener, DR, et al. 2010. CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. J Cell Biol 190: 927940.CrossRefGoogle Scholar
Da Cruz, L, Chen, FK, Ahmado, A, Greenwood, J, Coffey, P. 2007. RPE transplantation and its role in retinal disease. Prog Retin Eye Res 26: 598635.CrossRefGoogle ScholarPubMed
Dalkara, D, Byrne, LC, Klimczak, RR, et al. 2013. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med 5: 189ra76.CrossRefGoogle ScholarPubMed
Dalkara, D, Goureau, O, Marazova, K, Sahel, JA. 2016. Let there be light: gene and cell therapy for blindness. Hum Gene Ther 27: 134147.CrossRefGoogle ScholarPubMed
Dalkara, D, Sahel, JA. 2014. Gene therapy for inherited retinal degenerations. C R Biol 337: 185192.CrossRefGoogle ScholarPubMed
Day, TP, Byrne, LC, Schaffer, DV, Flannery, JG. 2014. Advances in AAV vector development for gene therapy in the retina. Adv Exp Med Biol 801: 687693.CrossRefGoogle ScholarPubMed
Den Hollander, AI, Koenekoop, RK, Yzer, S, et al. 2006. Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. Am J Hum Genet 79: 556561.CrossRefGoogle ScholarPubMed
Dinculescu, A, Glushakova, L, Min, SH, Hauswirth, WW. 2005. Adeno-associated virus-vectored gene therapy for retinal disease. Hum Gene Ther 16: 649663.CrossRefGoogle ScholarPubMed
Dong, B, Nakai, H, Xiao, W. 2010. Characterization of genome integrity for oversized recombinant AAV vector. Mol Ther 18: 8792.CrossRefGoogle ScholarPubMed
Doudna, JA, Charpentier, E. 2014. Genome editing: the new frontier of genome engineering with CRISPR-Cas9. Science 346: 1258096.CrossRefGoogle ScholarPubMed
Drivas, TG, Holzbaur, EL, Bennett, J. 2013. Disruption of CEP290 microtubule/membrane-binding domains causes retinal degeneration. J Clin Invest 123: 45254539.CrossRefGoogle ScholarPubMed
Dryja, TP, McGee, TL, Hahn, LB, et al. 1990a. Mutations within the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa. N Engl J Med 323: 13021307.CrossRefGoogle ScholarPubMed
Dryja, TP, McGee, TL, Reichel, E, et al. 1990b. A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature 343: 364366.CrossRefGoogle ScholarPubMed
Dyka, FM, Boye, SL, Chiodo, VA, Hauswirth, WW, Boye, SE. 2014. Dual adeno-associated virus vectors result in efficient in vitro and in vivo expression of an oversized gene, MYO7A. Hum Gene Ther Methods 25: 166177.CrossRefGoogle ScholarPubMed
Fine, EJ, Appleton, CM, White, DE, et al. 2015. Trans-spliced Cas9 allows cleavage of HBB and CCR5 genes in human cells using compact expression cassettes. Sci Rep 5: 10777.CrossRefGoogle ScholarPubMed
Fonfara, I, Le Rhun, A, Chylinski, K, et al. 2014. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res 42: 25772590.CrossRefGoogle ScholarPubMed
Friedland, AE, Baral, R, Singhal, P, et al. 2015. Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biol 16: 257.CrossRefGoogle ScholarPubMed
Gaj, T, Epstein, BE, Schaffer, DV. 2016. Genome engineering using adeno-associated virus: basic and clinical research applications. Mol Ther 24: 458464.CrossRefGoogle ScholarPubMed
Gorbatyuk, MS, Pang, JJ, Thomas, J Jr., Hauswirth, WW, Lewin, AS. 2005. Knockdown of wild-type mouse rhodopsin using an AAV vectored ribozyme as part of an RNA replacement approach. Mol Vis 11: 648656.Google ScholarPubMed
Gregory-Evans, K, Bashar, AM, Tan, M. 2012. Ex vivo gene therapy and vision. Curr Gene Ther 12: 103115.CrossRefGoogle ScholarPubMed
Hou, Z, Zhang, Y, Propson, NE, et al. 2013. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci USA 110(39): 1564415649.CrossRefGoogle ScholarPubMed
Hsu, PD, Lander, ES, Zhang, F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157: 12621278.CrossRefGoogle Scholar
Jain, D, Singh, K, Chirumamilla, S, et al. 2010. Ocular MECP2 protein expression in patients with and without Rett syndrome. Pediatr Neurol 43: 3540.CrossRefGoogle ScholarPubMed
Jaskula-Ranga, V, Zack, DJ. 2016. grID: a CRISPR-Cas9 guide RNA database and resource for genome-editing. bioRxiv, 097352.Google Scholar
Kamao, H, Mandai, M, Okamoto, S, et al. 2014. Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Rep 2: 205218.CrossRefGoogle ScholarPubMed
Kiang, AS, Palfi, A, Ader, M, et al. 2005. Toward a gene therapy for dominant disease: validation of an RNA interference-based mutation-independent approach. Mol Ther 12: 555561.CrossRefGoogle Scholar
Kleinstiver, BP, Pattanayak, V, Prew, MS, et al. 2016. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529(7587): 490495.CrossRefGoogle ScholarPubMed
Komor, AC, Badran, AH, Liu, DR. 2017. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 168: 2036.CrossRefGoogle ScholarPubMed
Latella, MC, Di Salvo, MT, Cocchiarella, F, et al. 2016. In vivo editing of the human mutant rhodopsin gene by electroporation of plasmid-based CRISPR/Cas9 in the mouse retina. Mol Ther Nucleic Acids 5: e389.CrossRefGoogle ScholarPubMed
Liang, Y, Fotiadis, D, Maeda, T, et al. 2004. Rhodopsin signaling and organization in heterozygote rhodopsin knockout mice. J Biol Chem 279: 4818948196.CrossRefGoogle ScholarPubMed
Lipinski, DM, Barnard, AR, Charbel Issa, P, et al. 2014. Vesicular stomatitis virus glycoprotein- and Venezuelan equine encephalitis virus-derived glycoprotein-pseudotyped lentivirus vectors differentially transduce corneal endothelium, trabecular meshwork, and human photoreceptors. Hum Gene Ther 25: 5062.CrossRefGoogle ScholarPubMed
Maeder, ML, Gersbach, CA. 2016. Genome-editing technologies for gene and cell therapy. Mol Ther 24: 430446.CrossRefGoogle ScholarPubMed
Maguire, AM, Simonelli, F, Pierce, EA, et al. 2008. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358: 22402248.CrossRefGoogle ScholarPubMed
Millington-Ward, S, Chadderton, N, O’Reilly, M, et al. 2011. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther 19: 642649.CrossRefGoogle Scholar
Moser, RJ, Hirsch, ML. 2016. AAV vectorization of DSB-mediated gene editing technologies. Curr Gene Ther 16: 207219.CrossRefGoogle ScholarPubMed
Mussolino, C, Sanges, D, Marrocco, E, et al. 2011. Zinc-finger-based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa. EMBO Mol Med 3: 118128.CrossRefGoogle Scholar
O’Reilly, M, Palfi, A, Chadderton, N, et al. 2007. RNA interference-mediated suppression and replacement of human rhodopsin in vivo. Am J Hum Genet 81: 127135.CrossRefGoogle ScholarPubMed
Olsson, JE, Gordon, JW, Pawlyk, BS, et al. 1992. Transgenic mice with a rhodopsin mutation (Pro23His): a mouse model of autosomal dominant retinitis pigmentosa. Neuron 9: 815830.CrossRefGoogle ScholarPubMed
Perez, VL, Saeed, AM, Tan, Y, Urbieta, M, Cruz-Guilloty, F. 2013. The eye: a window to the soul of the immune system. J Autoimmun 45: 714.CrossRefGoogle Scholar
Petrs-Silva, H, Dinculescu, A, Li, Q, et al. 2011. Novel properties of tyrosine-mutant AAV2 vectors in the mouse retina. Mol Ther 19: 293301.CrossRefGoogle ScholarPubMed
Puppo, A, Cesi, G, Marrocco, E, et al. 2014. Retinal transduction profiles by high-capacity viral vectors. Gene Ther 21: 855865.CrossRefGoogle ScholarPubMed
Ran, FA, Cong, L, Yan, WX, et al. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520(7546): 186191.CrossRefGoogle ScholarPubMed
Reichel, MB, Ali, RR, Thrasher, AJ, et al. 1998. Immune responses limit adenovirally mediated gene expression in the adult mouse eye. Gene Ther 5: 10381046.CrossRefGoogle ScholarPubMed
Rothe, M, Schambach, A, Biasco, L. 2014. Safety of gene therapy: new insights to a puzzling case. Curr Gene Ther 14: 429436.CrossRefGoogle ScholarPubMed
Samulski, RJ, Muzyczka, N. 2014. AAV-mediated gene therapy for research and therapeutic purposes. Annu Rev Virol 1: 427451.CrossRefGoogle ScholarPubMed
Schimmer, J, Breazzano, S. 2015. Investor outlook: significance of the positive LCA2 gene therapy phase III results. Hum Gene Ther Clin Dev 26: 208210.CrossRefGoogle ScholarPubMed
Scholl, HP, Strauss, RW, Singh, MS, et al. 2016. Emerging therapies for inherited retinal degeneration. Sci Transl Med 8: 368rv6.CrossRefGoogle ScholarPubMed
Schwartz, SD, Hubschman, JP, Heilwell, G, et al. 2012. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379: 713720.CrossRefGoogle ScholarPubMed
Schwartz, SD, Regillo, CD, Lam, BL, et al. 2015. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385: 509516.CrossRefGoogle ScholarPubMed
Seo, S, Mullins, RF, Dumitrescu, AV, et al. 2013. Subretinal gene therapy of mice with Bardet-Biedl syndrome type 1. Invest Ophthalmol Vis Sci 54: 61186132.CrossRefGoogle ScholarPubMed
Slaymaker, IM, Gao, L, Zetsche, B, et al. 2016. Rationally engineered Cas9 nucleases with improved specificity. Science 351: 8488.CrossRefGoogle ScholarPubMed
Song, C, Feodorova, Y, Guy, J, et al. 2014. DNA methylation reader MECP2: cell type- and differentiation stage-specific protein distribution. Epigenetics Chromatin 7: 17.CrossRefGoogle ScholarPubMed
Staahl, BT, Benekareddy, M, Coulon-Bainier, C., et al. 2017. Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Nat Biotechnol 35(5): 431434.CrossRefGoogle ScholarPubMed
Stilwell, JL, Samulski, RJ. 2004. Role of viral vectors and virion shells in cellular gene expression. Mol Ther 9: 337346.CrossRefGoogle ScholarPubMed
Streilein, JW. 2003. Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat Rev Immunol 3: 879889.CrossRefGoogle ScholarPubMed
Swiech, L, Heidenreich, M, Banerjee, A, et al. 2015. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 33: 102106.CrossRefGoogle ScholarPubMed
Tan, E, Wang, Q, Quiambao, AB, et al. 2001. The relationship between opsin overexpression and photoreceptor degeneration. Invest Ophthalmol Vis Sci 42: 589600.Google ScholarPubMed
Thompson, DA, Ali, RR, Banin, E, et al. 2015. Advancing therapeutic strategies for inherited retinal degeneration: recommendations from the Monaciano Symposium. Invest Ophthalmol Vis Sci 56: 918931.CrossRefGoogle ScholarPubMed
Truong, DJ, Kuhner, K, Kuhn, R, et al. 2015. Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res 43: 64506458.CrossRefGoogle ScholarPubMed
Tsang, WY, Bossard, C, Khanna, H, et al. 2008. CP110 suppresses primary cilia formation through its interaction with CEP290, a protein deficient in human ciliary disease. Dev Cell 15: 187197.CrossRefGoogle ScholarPubMed
Wang, L, Li, F, Dang, L, et al. 2016. In vivo delivery systems for therapeutic genome editing. Int J Mol Sci 17(5): E626.CrossRefGoogle ScholarPubMed
Watanabe, S, Sanuki, R, Ueno, S, et al. 2013. Tropisms of AAV for subretinal delivery to the neonatal mouse retina and its application for in vivo rescue of developmental photoreceptor disorders. PLoS One 8: e54146.CrossRefGoogle Scholar
Willett, K, Bennett, J. 2013. Immunology of AAV-mediated gene transfer in the eye. Front Immunol 4: 261.CrossRefGoogle ScholarPubMed
Williams, DR. 2011. Imaging single cells in the living retina. Vision Res 51: 13791396.CrossRefGoogle ScholarPubMed
Wu, Z, Yang, H, Colosi, P. 2010. Effect of genome size on AAV vector packaging. Mol Ther 18: 8086.CrossRefGoogle ScholarPubMed
Yanez-Munoz, RJ, Balaggan, KS, MacNeil, A, et al. 2006. Effective gene therapy with nonintegrating lentiviral vectors. Nat Med 12: 348353.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×