Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-29T05:03:10.623Z Has data issue: false hasContentIssue false

6 - Medication-Related Problems

Published online by Cambridge University Press:  09 July 2018

Martin Jöhr
Affiliation:
Luzerner Kantonsspital, Lucerne, Switzerland
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Balzer, F., Wickboldt, N., Spies, C., et al. (2012). Standardised drug labelling in intensive care: results of an international survey among ESICM members. Intensive Care Med, 38, 12981305.CrossRefGoogle ScholarPubMed
Davis, W.A., Jones, S., Crowell-Kuhnberg, A.M., et al. (2017). Operative team communication during simulated emergencies: too busy to respond? Surgery, 161, 13481356.CrossRefGoogle ScholarPubMed
Doherty, C. & McDonnell, C. (2012). Tenfold medication errors: 5 years’ experience at a university-affiliated pediatric hospital. Pediatrics, 129, 916924.CrossRefGoogle Scholar
Hübler, M., Gäbler, R., Ehm, B., et al. (2010). Successful resuscitation following ropivacaine-induced systemic toxicity in a neonate. Anaesthesia, 65, 11371140.CrossRefGoogle ScholarPubMed
Jani, Y.H., Barber, N., & Wong, I.C. (2010). Paediatric dosing errors before and after electronic prescribing. Qual Saf Health Care, 19, 337340.CrossRefGoogle ScholarPubMed
Lawton, R., Gardner, P., Green, B., et al. (2009). An engineered solution to the maladministration of spinal injections. Qual Saf Health Care, 18, 492495.CrossRefGoogle Scholar
Liu, H., Tariq, R., Liu, G.L., et al. (2017). Inadvertent intrathecal injections and best practice management. Acta Anaesthesiol Scand, 61, 1122.CrossRefGoogle ScholarPubMed
Martin, L.D., Grigg, E.B., Verma, S., et al. (2017). Outcomes of a failure mode and effects analysis for medication errors in pediatric anesthesia. Paediatr Anaesth, 27, 571580.CrossRefGoogle ScholarPubMed
Schultz-Machata, A.M., Becke, K., & Weiss, M. (2014). Nalbuphine in pediatric anesthesia [in German]. Anaesthesist, 63, 135143.CrossRefGoogle ScholarPubMed

References

Doherty, C. & McDonnell, C. (2012). Tenfold medication errors: 5 years’ experience at a university-affiliated pediatric hospital. Pediatrics, 129, 916924.CrossRefGoogle Scholar
Hayashi, K., Shigemi, K., & Sawa, T. (2012). Neonatal electroencephalography shows low sensitivity to anesthesia. Neurosci Lett, 517, 8791.CrossRefGoogle ScholarPubMed
Kataria, B.K., Ved, S.A., Nicodemus, H.F., et al. (1994). The pharmacokinetics of propofol in children using three different data analysis approaches. Anesthesiology, 80, 104122.CrossRefGoogle ScholarPubMed
Kaufmann, J., Wolf, A.R., Becke, K., et al. (2017). Drug safety in paediatric anaesthesia. Br J Anaesth, 118, 670679.CrossRefGoogle ScholarPubMed
Louvet, N., Rigouzzo, A., Sabourdin, N., et al. (2016). Bispectral index under propofol anesthesia in children: a comparative randomized study between TIVA and TCI. Paediatr Anaesth, 26, 899908.CrossRefGoogle ScholarPubMed
Marsh, B., White, M., Morton, N., et al. (1991). Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth, 67 , 4148.CrossRefGoogle ScholarPubMed
Pandit, J.J., Andrade, J., Bogod, D.G., et al. (2014). 5th National Audit Project (NAP5) on accidental awareness during general anaesthesia: summary of main findings and risk factors. Br J Anaesth, 113, 549559.CrossRefGoogle Scholar
Rigouzzo, A., Servin, F., & Constant, I. (2010). Pharmacokinetic-pharmacodynamic modeling of propofol in children. Anesthesiology, 113, 343352.CrossRefGoogle ScholarPubMed
Schnider, T.W., Minto, C.F., Gambus, P.L., et al. (1998). The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology, 88, 11701182.CrossRefGoogle ScholarPubMed
Schnider, T.W., Minto, C.F., Struys, M.M., et al. (2016). The safety of target-controlled infusions. Anesth Analg, 122, 7985.CrossRefGoogle ScholarPubMed

References

Wissing, H., Kuhn, I., & Dudziak, R. (1997). Heat production from reaction of inhalation anesthetics with dry soda lime [in German]. Anaesthesist, 46, 10641070.CrossRefGoogle ScholarPubMed
Wissing, H., Kuhn, I., Warnken, U., et al. (2001). Carbon monoxide production from desflurane, enflurane, halothane, isoflurane, and sevoflurane with dry soda lime. Anesthesiology, 95, 12051212.CrossRefGoogle ScholarPubMed

References

Collins, C., Koren, G., Crean, P., et al. (1985). Fentanyl pharmacokinetics and hemodynamic effects in preterm infants during ligation of patent ductus arteriosus. Anesth Analg, 64, 10781080.CrossRefGoogle ScholarPubMed
Constant, I. & Sabourdin, N. (2012). The EEG signal: a window on the cortical brain activity. Paediatr Anaesth, 22, 539552.CrossRefGoogle Scholar
Davidson, A.J., Smith, K.R., Blusse van Oud-Alblas, H.J., et al. (2011). Awareness in children: a secondary analysis of five cohort studies. Anaesthesia, 66, 446454.CrossRefGoogle ScholarPubMed
Duncan, H.P., Cloote, A., Weir, P.M., et al. (2000). Reducing stress responses in the pre-bypass phase of open heart surgery in infants and young children: a comparison of different fentanyl doses. Br J Anaesth, 84, 556564.CrossRefGoogle ScholarPubMed
Fahnenstich, H., Steffan, J., Kau, N., et al. (2000). Fentanyl-induced chest wall rigidity and laryngospasm in preterm and term infants. Crit Care Med, 28, 836839.CrossRefGoogle ScholarPubMed
Pandit, J.J., Andrade, J., Bogod, D.G., et al. (2014). 5th National Audit Project (NAP5) on accidental awareness during general anaesthesia: summary of main findings and risk factors. Br J Anaesth, 113, 549559.CrossRefGoogle Scholar
Phelan, L., Stargatt, R., & Davidson, A.J. (2009). Long-term posttraumatic effects of intraoperative awareness in children. Paediatr Anaesth, 19, 11521156.CrossRefGoogle ScholarPubMed
Weale, N.K., Rogers, C.A., Cooper, R., et al. (2004). Effect of remifentanil infusion rate on stress response to the pre-bypass phase of paediatric cardiac surgery. Br J Anaesth, 92, 187194.CrossRefGoogle Scholar
Wolf, A.R. (2012). Ductal ligation in the very low-birth weight infant: simple anesthesia or extreme art? Paediatr Anaesth, 22, 558563.CrossRefGoogle ScholarPubMed

References

Cremer, O.L., Moons, K.G., Bouman, E.A., et al. (2001). Long-term propofol infusion and cardiac failure in adult head-injured patients. Lancet, 357, 117118.CrossRefGoogle ScholarPubMed
Iyer, V.N., Hoel, R., & Rabinstein, A.A. (2009). Propofol infusion syndrome in patients with refractory status epilepticus: an 11-year clinical experience. Crit Care Med, 37, 30243030.CrossRefGoogle ScholarPubMed
Kill, C., Leonhardt, A., & Wulf, H. (2003). Lactic acidosis after short-term infusion of propofol for anaesthesia in a child with osteogenesis imperfecta. Paediatr Anaesth, 13, 823826.CrossRefGoogle Scholar
Koch, M., De Backer, D., & Vincent, J.L. (2004). Lactic acidosis: an early marker of propofol infusion syndrome? Intensive Care Med, 30, 522.CrossRefGoogle ScholarPubMed
Krajcova, A., Waldauf, P., Andel, M., et al. (2015). Propofol infusion syndrome: a structured review of experimental studies and 153 published case reports. Crit Care, 19, 398.CrossRefGoogle ScholarPubMed
Mehta, N., DeMunter, C., Habibi, P., et al. (1999). Short-term propofol infusions in children. Lancet, 354, 866867.CrossRefGoogle ScholarPubMed
Parke, T.J., Stevens, J.E., Rice, A.S., et al. (1992). Metabolic acidosis and fatal myocardial failure after propofol infusion in children: five case reports. BMJ, 305, 613616.CrossRefGoogle ScholarPubMed
Vanlander, A.V., Okun, J.G., de Jaeger, A., et al. (2015). Possible pathogenic mechanism of propofol infusion syndrome involves coenzyme Q. Anesthesiology, 122, 343352.CrossRefGoogle ScholarPubMed
Vasile, B., Rasulo, F., Candiani, A., et al. (2003). The pathophysiology of propofol infusion syndrome: a simple name for a complex syndrome. Intensive Care Med, 29, 14171425.CrossRefGoogle ScholarPubMed
Wolf, A., Weir, P., Segar, P., et al. (2001). Impaired fatty acid oxidation in propofol infusion syndrome. Lancet, 357, 606607.CrossRefGoogle ScholarPubMed

References

Abdelhalim, A.A., Mostafa, M., Abdulmomen, A., et al. (2012). Severe hypertension and pulmonary edema associated with systemic absorption of topical phenylephrine in a child during retinal surgery. Saudi J Anaesth, 6, 285288.CrossRefGoogle Scholar
Ahmed, N., Riad, W., Altorpaq, A., et al. (2009). Ocular phenylephrine 2.5% continues to be dangerous. BMJ Case Rep, 2009, pii: bcr08.2008.0795.CrossRefGoogle ScholarPubMed
Baldwin, F.J. & Morley, A.P. (2002). Intraoperative pulmonary oedema in a child following systemic absorption of phenylephrine eyedrops. Br J Anaesth, 88, 440442.CrossRefGoogle Scholar
Christensen, L.K., Armstead, V.E., Bilyeu, D.P., et al. (2017). Hemodynamic responses and plasma phenylephrine concentrations associated with intranasal phenylephrine in children. Paediatr Anaesth, 27, 768773.CrossRefGoogle ScholarPubMed
Farkouh, A., Frigo, P., & Czejka, M. (2016). Systemic side effects of eye drops: a pharmacokinetic perspective. Clin Ophthalmol, 10, 24332441.CrossRefGoogle ScholarPubMed
Maenpaa, J. & Pelkonen, O. (2016). Cardiac safety of ophthalmic timolol. Expert Opin Drug Saf, 15, 15491561.CrossRefGoogle ScholarPubMed
Mishra, P., Calvey, T.N., Williams, N.E., et al. (1983). Intraoperative bradycardia and hypotension associated with timolol and pilocarpine eye drops. Br J Anaesth, 55, 897899.CrossRefGoogle ScholarPubMed
Passo, M.S., Palmer, E.A., & Van Buskirk, E.M. (1984). Plasma timolol in glaucoma patients. Ophthalmology, 91, 13611363.CrossRefGoogle ScholarPubMed
Sbaraglia, F., Mores, N., Garra, R., et al. (2014). Phenylephrine eye drops in pediatric patients undergoing ophthalmic surgery: incidence, presentation, and management of complications during general anesthesia. Paediatr Anaesth, 24, 400405.CrossRefGoogle ScholarPubMed
Schmidt, J., Irouschek, A., & Hemmerling, T.M. (2006). Unilateral mydriasis after anesthesia from nasal atropine administration. Paediatr Anaesth, 16, 362363.CrossRefGoogle ScholarPubMed

References

Arieff, A.I., Ayus, J.C., & Fraser, C.L. (1992). Hyponatraemia and death or permanent brain damage in healthy children. BMJ, 304, 12181222.CrossRefGoogle ScholarPubMed
Friedman, J.N., Beck, C.E., DeGroot, J., et al. (2015). Comparison of isotonic and hypotonic intravenous maintenance fluids: a randomized clinical trial. JAMA Pediatr, 169, 445451.CrossRefGoogle ScholarPubMed
Lucchini, B., Simonetti, G.D., Ceschi, A., et al. (2013). Severe signs of hyponatremia secondary to desmopressin treatment for enuresis: a systematic review. J Pediatr Urol, 9, 10491053.CrossRefGoogle ScholarPubMed
Moritz, M.L. & Ayus, J.C. (2003). Prevention of hospital-acquired hyponatremia: a case for using isotonic saline. Pediatrics, 111, 227230.CrossRefGoogle ScholarPubMed
Pfenninger, J. (1992). Peri-operative water intoxication: a dangerous and unnecessary complication. Paediatr Anaesth, 2, 8587CrossRefGoogle Scholar
Sicot, C. & Laxenaire, M.C. (2007). Death of a child due to posttonsillectomy hyponatraemic encephalopathy [in French]. Ann Fr Anesth Reanim, 26, 893896.CrossRefGoogle ScholarPubMed
Steurer, M.A. & Berger, T.M. (2011). Infusion therapy for neonates, infants and children [in German]. Anaesthesist, 60, 1022.CrossRefGoogle ScholarPubMed
Sümpelmann, R., Becke, K., Brenner, S., et al. (2017). Perioperative intravenous fluid therapy in children: guidelines from the Association of the Scientific Medical Societies in Germany. Paediatr Anaesth, 27, 1018.CrossRefGoogle ScholarPubMed
Wang, J., Xu, E., & Xiao, Y. (2014). Isotonic versus hypotonic maintenance IV fluids in hospitalized children: a meta-analysis. Pediatrics, 133, 105113.CrossRefGoogle ScholarPubMed

References

Albi, A., Baudin, F., Matmar, M., et al. (2002). Severe hypernatremia after hypertonic saline irrigation of hydatid cysts. Anesth Analg, 95, 18061808.CrossRefGoogle ScholarPubMed
Dave, N., Halbe, A.R., Kadam, P.P., et al. (2004). Bilateral pulmonary hydatid cysts in a child: anesthetic management. Paediatr Anaesth, 14, 889890.CrossRefGoogle Scholar
Hammer, G.B. (2004). Single-lung ventilation in infants and children. Paediatr Anaesth, 14, 98102.CrossRefGoogle ScholarPubMed
Jöhr, M., Berger, T.M., & Winiker, H. (2006). Unexpected hypernatremia during pulmonary resection in a 7-year-old child with hydatid disease. Paediatr Anaesth, 16, 697698.CrossRefGoogle Scholar
Letal, M. & Theam, M. (2017). Paediatric lung isolation. BJA Education, 17, 5762.CrossRefGoogle Scholar
Marashi, S., Hosseini, V.S., Saliminia, A., et al. (2014). Anaphylactic shock during pulmonary hydatid cyst surgery. Anesth Pain Med, 4, e16725.CrossRefGoogle ScholarPubMed
Panda, N.B., Batra, Y., Mishra, A., et al. (2014). A giant intracranial hydatid cyst in a child: intraoperative anaesthetic concerns. Indian J Anaesth, 58, 477479.CrossRefGoogle Scholar
Rakic, M., Vegan, B., Sprung, J., et al. (1994). Acute hyperosmolar coma complicating anesthesia for hydatid disease surgery. Anesthesiology, 80, 11751178.CrossRefGoogle ScholarPubMed
Rehm, M., Conzen, P.F., Peter, K., et al. (2004). The Stewart model. ‘Modern’ approach to the interpretation of the acid-base metabolism [in German]. Anaesthesist, 53, 347357.CrossRefGoogle Scholar
Sümpelmann, R., Becke, K., Brenner, S., et al. (2017). Perioperative intravenous fluid therapy in children: guidelines from the Association of the Scientific Medical Societies in Germany. Paediatr Anaesth, 27, 1018.CrossRefGoogle ScholarPubMed

References

Bhananker, S.M., Ramamoorthy, C., Geiduschek, J.M., et al. (2007). Anesthesia-related cardiac arrest in children: update from the Pediatric Perioperative Cardiac Arrest Registry. Anesth Analg, 105, 344350.CrossRefGoogle ScholarPubMed
Gruber, M., Breu, A., Frauendorf, M., et al. (2013). Washing of banked blood by three different blood salvage devices. Transfusion, 53, 10011009.CrossRefGoogle ScholarPubMed
Lee, A.C., Reduque, L.L., Luban, N.L., et al. (2014). Transfusion-associated hyperkalemic cardiac arrest in pediatric patients receiving massive transfusion. Transfusion, 54, 244254.CrossRefGoogle ScholarPubMed
Masilamani, K. & van der Voort, J. (2012). The management of acute hyperkalaemia in neonates and children. Arch Dis Child, 97, 376380.CrossRefGoogle ScholarPubMed
Miller, M.A. & Schlueter, A.J. (2004). Transfusions via hand-held syringes and small-gauge needles as risk factors for hyperkalemia. Transfusion, 44, 373381.CrossRefGoogle ScholarPubMed
Osthaus, W.A., Linderkamp, C., Bunte, C., et al. (2008). Tumor lysis associated with dexamethasone use in a child with leukemia. Paediatr Anaesth, 18, 268270.CrossRefGoogle Scholar
Ruppen, W., Hagenbuch, N., Jöhr, M., et al. (2003). Cardiac arrest in an infant with congenital adrenal hyperplasia. Acta Anaesthesiol Scand, 47, 104105.CrossRefGoogle Scholar
Smith, H.M., Farrow, S.J., Ackerman, J.D., et al. (2008). Cardiac arrests associated with hyperkalemia during red blood cell transfusion: a case series. Anesth Analg, 106, 10621069.CrossRefGoogle ScholarPubMed

References

Bretlau, C., Sorensen, M.K., Vedersoe, A.L., et al. (2013). Response to succinylcholine in patients carrying the K-variant of the butyrylcholinesterase gene. Anesth Analg, 116, 596601.CrossRefGoogle ScholarPubMed
Cassel, J., Staehr-Rye, A.K., Nielsen, C.V., et al. (2014). Use of neuromuscular monitoring to detect prolonged effect of succinylcholine or mivacurium: three case reports. Acta Anaesthesiol Scand, 58, 10401043.CrossRefGoogle ScholarPubMed
Cerf, C., Mesguish, M., Gabriel, I., et al. (2002). Screening patients with prolonged neuromuscular blockade after succinylcholine and mivacurium. Anesth Analg, 94, 461466.CrossRefGoogle ScholarPubMed
Jurkolow, G., Fuchs-Buder, T., Lemoine, A., et al. (2014). Prolonged phase II neuromuscular blockade following succinylcholine administration [in French]. Ann Fr Anesth Reanim, 33, 176177.CrossRefGoogle ScholarPubMed
Lejus, C., Blanloeil, Y., Le, R.N., et al. (1998). Prolonged mivacurium neuromuscular block in children. Paediatr Anaesth, 8, 433435.CrossRefGoogle ScholarPubMed
Ostergaard, D., Viby-Mogensen, J., Rasmussen, S.N., et al. (2005). Pharmacokinetics and pharmacodynamics of mivacurium in patients phenotypically homozygous for the atypical plasma cholinesterase variant: effect of injection of human cholinesterase. Anesthesiology, 102, 11241132.CrossRefGoogle ScholarPubMed
Veneziano, G. & Tobias, J.D. (2017). Chloroprocaine for epidural anesthesia in infants and children. Paediatr Anaesth, 27, 581590.CrossRefGoogle ScholarPubMed
Wichmann, S., Faerk, G., Bundgaard, J.R., et al. (2016). Patients with prolonged effect of succinylcholine or mivacurium had novel mutations in the butyrylcholinesterase gene. Pharmacogenet Genomics, 26, 351356.CrossRefGoogle ScholarPubMed

References

Absalom, A. & Kenny, G. (2005). ‘Paedfusor’ pharmacokinetic data set. Br J Anaesth, 95, 110.CrossRefGoogle ScholarPubMed
Doherty, C. & McDonnell, C. (2012). Tenfold medication errors: 5 years’ experience at a university-affiliated pediatric hospital. Pediatrics, 129, 916924.CrossRefGoogle Scholar
Jöhr, M. (1999). Is it time to question the routine use of anticholinergic agents in paediatric anaesthesia? Paediatr Anaesth, 9, 99101.CrossRefGoogle ScholarPubMed
Kopp Lugli, A., Yost, C.S., & Kindler, C.H. (2009). Anaesthetic mechanisms: update on the challenge of unravelling the mystery of anaesthesia. Eur J Anaesthesiol, 26, 807820.CrossRefGoogle ScholarPubMed
Kulka, P.J., Toker, H., Heim, J., et al. (2004). Suspected central anticholinergic syndrome in a 6-week-old infant. Anesth Analg, 99, 13761378.CrossRefGoogle Scholar
Marsh, B., White, M., Morton, N., et al. (1991). Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth, 67, 4148.CrossRefGoogle ScholarPubMed
McFarlan, C.S., Anderson, B.J., & Short, T.G. (1999). The use of propofol infusions in paediatric anaesthesia: a practical guide. Paediatr Anaesth, 9, 209216.CrossRefGoogle ScholarPubMed
Meuret, P., Backman, S.B., Bonhomme, V., et al. (2000). Physostigmine reverses propofol-induced unconsciousness and attenuation of the auditory steady state response and bispectral index in human volunteers. Anesthesiology, 93, 708717.CrossRefGoogle ScholarPubMed
Rigouzzo, A., Servin, F., & Constant, I. (2010). Pharmacokinetic-pharmacodynamic modeling of propofol in children. Anesthesiology, 113, 343352.CrossRefGoogle ScholarPubMed
Schultz, U., Idelberger, R., Rossaint, R., et al. (2002). Central anticholinergic syndrome in a child undergoing circumcision. Acta Anaesthesiol Scand, 46, 224226.CrossRefGoogle Scholar

References

Aono, J., Mamiya, K., & Manabe, M. (1999). Preoperative anxiety is associated with a high incidence of problematic behavior on emergence after halothane anesthesia in boys. Acta Anaesthesiol Scand, 43, 542544.CrossRefGoogle ScholarPubMed
Aono, J., Ueda, W., Mamiya, K., et al. (1997). Greater incidence of delirium during recovery from sevoflurane anesthesia in preschool boys. Anesthesiology, 87, 12981300.CrossRefGoogle ScholarPubMed
Card, E., Pandharipande, P., Tomes, C., et al. (2015). Emergence from general anaesthesia and evolution of delirium signs in the post-anaesthesia care unit. Br J Anaesth, 115, 411417.CrossRefGoogle ScholarPubMed
Costi, D., Cyna, A.M., Ahmed, S., et al. (2014). Effects of sevoflurane versus other general anaesthesia on emergence agitation in children. Cochrane Database Syst Rev, (9), CD007084.CrossRefGoogle Scholar
Costi, D., Ellwood, J., Wallace, A., et al. (2015). Transition to propofol after sevoflurane anesthesia to prevent emergence agitation: a randomized controlled trial. Paediatr Anaesth, 25, 517523.CrossRefGoogle ScholarPubMed
Cravero, J., Surgenor, S., & Whalen, K. (2000). Emergence agitation in paediatric patients after sevoflurane anaesthesia and no surgery: a comparison with halothane. Paediatr Anaesth, 10, 419424.CrossRefGoogle ScholarPubMed
Jöhr, M. (2002). Postanaesthesia excitation. Paediatr Anaesth, 12, 293295.CrossRefGoogle ScholarPubMed
Lauder, G.R. (2015). Total intravenous anesthesia will supercede inhalational anesthesia in pediatric anesthetic practice. Paediatr Anaesth, 25, 5264.CrossRefGoogle ScholarPubMed
Sikich, N. & Lerman, J. (2004). Development and psychometric evaluation of the pediatric anesthesia emergence delirium scale. Anesthesiology, 100, 11381145.CrossRefGoogle ScholarPubMed
Somaini, M., Sahillioglu, E., Marzorati, C., et al. (2015). Emergence delirium, pain or both? A challenge for clinicians. Paediatr Anaesth, 25, 524529.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×