Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-28T06:13:51.939Z Has data issue: false hasContentIssue false

Part II - Biosocial Foundations of Violence and Aggression

Published online by Cambridge University Press:  30 July 2018

Alexander T. Vazsonyi
Affiliation:
University of Kentucky
Daniel J. Flannery
Affiliation:
Case Western Reserve University, Ohio
Matt DeLisi
Affiliation:
Iowa State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Barnes, J. C. & Boutwell, B. B. (2013). A demonstration of the generalizability of twin-based research on antisocial behavior. Behavior Genetics, 43, 120131.Google Scholar
Barnes, J. C., Boutwell, B. B., & Beaver, K. M. (2016). Contemporary biosocial criminology: A systematic review of the literature, 2000–2012. In Piquero, A. R. (Ed.), The handbook of criminological theory. New York: Wiley-Blackwell.Google Scholar
Barnes, J. C., Wright, J. P., Boutwell, B. B., Schwartz, J. A., Connolly, E. J., Nedelec, J. L., & Beaver, K. M. (2014). Demonstrating the validity of twin research in criminology. Criminology, 52, 588626.Google Scholar
Bearden, C. E. & Freimer, N. B. (2006). Endophenotypes for psychiatric disorders: ready for primetime? Trends in Genetics, 22, 306313.Google Scholar
Beaver, K. M., Wright, J. P., DeLisi, M., & Vaughn, M. G. (2008). Desistance from delinquency: The marriage effect revisited and extended. Social Science Research, 37, 736752.CrossRefGoogle ScholarPubMed
Berger, B., Gaspar, P., & Verney, C. (1991). Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends in Neuroscience, 14, 2127.Google Scholar
Bouchard, T. J., Lykken, D. T., McGue, M., Segal, N. L., & Tellegen, A. (1990). Sources of human psychological differences: The Minnesota Study of Twins Reared Apart. Science, 250, 223228.Google Scholar
Brevik, E. J., van Donkelaar, M. M., Weber, H., Sánchez-Mora, C. Jacobs, C., Rivero, O., … & Cormand, B. (2016). Genome-wide analyses of aggressiveness in attention-deficit hyperactivity disorder. American Journal of Medical Genetics Part B, 171:B, 733747.Google Scholar
Brunner, H. G., Nelen, M., Breakefield, X. O., Ropers, H. H., & van Oost, B. A. (1993). Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science, 262, 578580.Google Scholar
Buckholtz, J. W., Callicott, J. H., Kolachana, B., Hariri, A. R., Goldberg, T. E., Genderson, M., … & Meyer-Lindenberg, A. (2008). Genetic variation in MAOA modulates ventromedial prefrontal circuitry mediating individual differences in human personality. Molecular Psychiatry, 13, 313324.CrossRefGoogle ScholarPubMed
Bulik-Sullivan, B. K., Loh, P.-R., Finucane, H. K., Ripke, S., Yang, J., Patterson, N., … & Consortium, S.W.G. of the P.G. (2015). LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nature Genetics, 47, 291295.Google Scholar
Burt, S. A. (2009). Are there meaningful etiological differences within antisocial behavior? Results of a meta-analysis. Clinical Psychology Review, 29, 163178.Google Scholar
Burt, S. A. (2016). Editorial: Chickens and eggs – how should we interpret environment-behavior associations? Journal of Child Psychology and Psychiatry, 57, 113115.Google Scholar
Button, K. S., Ioannidis, J. P., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S., & Munafò, M. R. (2013). Power failure: Why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14, 365376.CrossRefGoogle ScholarPubMed
Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., … & Poulton, R. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851854.Google Scholar
Chabris, C. F., Lee, J. J., Cesarini, D., Benjamin, D. J., & Laibson, D. I. (2015). The fourth law of behavior genetics. Current Directions in Psychological Science 24, 304312.CrossRefGoogle ScholarPubMed
Charney, E. (2012). Behavior genetics and postgenomics. Behavioral and Brain Sciences, 35, 331410.Google Scholar
Charney, E. & English, W. (2012). Candidate genes and political behavior. American Political Science Review, 106, 134.Google Scholar
Chatterjee, N., Shi, J., & García-Closas, M. (2016). Developing and evaluating polygenic risk prediction models for stratified disease prevention. Nature Reviews Genetics, 17, 392406.CrossRefGoogle ScholarPubMed
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
De Leeuw, C. A., Neale, B. M., Heskes, T., & Posthuma, D. (2016). The statistical properties of gene-set analysis. Nature Reviews Genetics, 17, 353364.CrossRefGoogle ScholarPubMed
Dick, D., Agrawal, A., Keller, M. C., Adkins, A., Aliev, F., Monroe, S., … & Sher, K. J. (2015). Candidate gene-environment interaction research: Reflections and recommendations. Perspectives on Psychological Sciences, 10, 3759.Google Scholar
Dick, D. M., Krueger, R. F., Edwards, A., Agrawal, A., Lynskey, M., Lin, P., … & Almasy, L. (2011). Genome-wide association study of conduct disorder symptomatology. Molecular Psychiatry, 16, 800808.Google Scholar
Dierick, H. A. & Greenspan, R. J. (2006). Molecular analysis of flies selected for aggressive behavior. Nature Genetics, 38, 10231031.Google Scholar
Dierick, H. A. & Greenspan, R. J. (2007). Serotonin and neuropeptide F have opposite modulatory effects on fly aggression. Nature Genetics, 39, 678682.Google Scholar
Dudbridge, F. (2013). Power and predictive accuracy of polygenic risk scores. PLoS Genetics, 9, e1003348.CrossRefGoogle ScholarPubMed
Duncan, L. E. & Keller, M. C. (2011). A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry. American Journal of Psychiatry, 168, 10411049.Google Scholar
Eichler, E. E., Flint, J., Gibson, G., Kong, A., Leal, S. M., Moore, J. H., & Nadeau, J. H. (2010). Missing heritability and strategies for finding the underlying causes of complex disease. Nature Reviews Genetics, 11, 446450.Google Scholar
Euesden, J., Lewis, C. M., & O’Reilly, P. F. (2016). PRSice: Polygenic risk score software. http://PRSice.info.Google Scholar
Falconer, D. S. & Mackay, T. F. C. (1996). Introduction to quantitative genetics (4th ed.). New York: Pearson.Google Scholar
Fernàndez-Castillo, N. & Cormand, B. (2016). Aggressive behavior in humans: Genes and pathways identified through association studies. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 1–21.Google Scholar
Franke, A., McGovern, D. P., Barrett, J. C., Wang, K., Radford-Smith, G. L., Ahmad, T., … & Anderson, C. A. (2010). Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nature Genetics, 42, 11181125.Google Scholar
Gelman, A. & Loken, E. (2014). The statistical crisis in science. American Scientist, 102, 460465.CrossRefGoogle Scholar
Gottesman, I. I. & Gould, T. D. (2003). The endophenotype concept in psychiatry: Etymology and strategic intentions. American Journal of Psychiatry, 160, 636645.Google Scholar
Higley, J., Mehlman, P. T., Taub, D. M., Higley, S. B., Suomi, S. J., Linnoila, M., & Vickers, J. H. (1992). Cerebrospinal fluid monoamine and adrenal correlates of aggression in free-ranging rhesus monkeys. Archives of General Psychiatry, 49, 436441.Google Scholar
Hill, W. G., Goddard, M. E., & Visscher, P. M. (2008) Data and theory point to mainly additive genetic variance for complex traits. PLoS Genetics, 4, e1000008.Google Scholar
Hindorff, L. A., MacArthur, J., Morales, J., Junkins, H. A., Hall, P. N., Klemm, A. K., & Manolio, T. A. A Catalog of Published Genome-Wide Association Studies. Available at: www.genome.gov/gwastudies. Accessed November 1, 2017.CrossRefGoogle Scholar
Ioannidis, J. P. (2003). Genetic associations: False or true? Trends in Molecular Medicine, 9, 135138.Google Scholar
Ioannidis, J. P. (2005). Why most published research findings are false. PLoS Medicine, 2, e124.Google Scholar
Jorgenson, E. & Witte, J. S. (2006). A gene-centric approach to genome-wide association studies. Nature Reviews Genetics, 7, 885891.Google Scholar
Kendler, K. S. & Neale, M. C. (2010). Endophenotype: A conceptual analysis. Molecular Psychiatry, 15, 789797.Google Scholar
Khatri, P., Sirota, M., & Butte, A. J. (2012). Ten years of pathway analysis: Current approaches and outstanding challenges. PLoS Computational Biology 8, e1002375.Google Scholar
Lee, S. H., Wray, N. R., Goddard, M. E., & Visscher, P. M. (2011). Estimating missing heritability for disease from genome-wide association studies. American Journal of Human Genetics, 88, 294305.Google Scholar
Lin, D., Boyle, M. P., Dollar, P., Lee, H., Perona, P., Lein, E. S., & Anderson, D. J. (2011). Functional identification of an aggression locus in the mouse hypothalamus. Nature, 470, 221226.CrossRefGoogle ScholarPubMed
Lips, E. S., Cornelisse, L. N., Toonen, R. F., Min, J. L., Hultman, C. M., International Schizophrenia Consortium, … & Posthuma, D. (2012). Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia. Molecular Psychiatry, 17, 9961006.Google Scholar
Liu, G., Wang, Y., & Wong, L. (2010). FastTagger: An efficient algorithm for genome-wide tag SNP selection using multi-marker linkage disequilibrium. BMC Bioinformatics, 11, 66.Google Scholar
Liu, H. & Guo, G. (2016). Opportunities and challenges of big data for the social sciences: The case of genomic data. Social Science Research, 59, 1322.Google Scholar
Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., … & Chakravarti, A. (2009). Finding the missing heritability of complex diseases. Nature, 461, 747753.Google Scholar
Marsh, A. A., Finger, E. C., Fowler, K. A., Jurkowitz, I. T. N., Schechter, J. C., Yu, H. H., … & Blair, R. J. R. (2011). Reduced amygdala-orbitofrontal connectivity during moral judgments in youths with disruptive behavior disorders and psychopathic traits. Psychiatry Research: Neuroimaging, 194, 279286.Google Scholar
Mason, D. A. & Frick, P. J. (1994). The heritability of antisocial behavior: A meta-analysis of twin and adoption studies. Journal of Psychopathology and Behavioral Assessment, 16, 301323.Google Scholar
Merton, R. K. (1957). Priorities in scientific discovery: A chapter in the sociology of science. American Sociological Review, 22, 635659.Google Scholar
Meyer-Lindenberg, A., Buckholtz, J. W., Kolachana, B., Hariri, A. R., Pezawas, L., Blasi, G., … & Egan, M., (2006). Neural mechanisms of genetic risk for impulsivity and violence in humans. Proceedings of the National Academy of Sciences, 103, 62696274.Google Scholar
Mootha, V. K., Lindgren, C. M., Eriksson, K. F., Subramanian, A., Sihag, S., Lehar, J., … & Houstis, N. (2003). PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genetics, 34, 267273.Google Scholar
Motzkin, J. C., Newman, J. P., Kiehl, K. A., & Koenigs, M. (2011). Reduced prefrontal connectivity in psychopathy. The Journal of Neuroscience, 31(48), 1734817357.Google Scholar
Munafo, M. R., Stothart, G., & Flint, J. (2009). Bias in genetic association studies and impact factor. Molecular Psychiatry, 14, 119120.Google Scholar
Nelson, R. J. & Trainor, B. C. (2007). Neural mechanisms of aggression. Nature Reviews Neuroscience, 8, 536546.Google Scholar
Okbay, A., Beauchamp, J. P., Fontana, M. A., Lee, J. J., Pers, T. H., Rietveld, C. A., … & Oskarsson, S. (2016). Genome-wide association study identifies 74 loci associated with educational attainment. Nature, 533(7604), 539542.Google Scholar
Olivier, B. & Young, L. J. (2002). Animal models of aggression. Neuropsychopharmacology: The Fifth Generation of Progress, 118, 16991708.Google Scholar
Pappa, I., St Pourcain, B., Benke, K., Cavadino, A., Hakulinen, C., Nivard, M. G., … & Evans, D. M. (2016). A genome-wide approach to children’s aggressive behavior: The EAGLE consortium. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 171, 562572.CrossRefGoogle ScholarPubMed
Pereira, T. V. & Ioannidis, J. P. (2011). Statistically significant meta-analyses of clinical trials have modest credibility and inflated effects. Journal of Clinical Epidemiology, 64, 10601069.Google Scholar
Plomin, R., DeFries, J. C., Knopik, V. S., & Neiderhiser, J. M. (2016). Top 10 replicated findings from behavioral genetics. Perspectives on Psychological Science 11, 323.Google Scholar
Plomin, R., DeFries, J. C., Knopik, V. S., & Neiderhiser, J. M. (2013). Behavioral genetics (6th ed.). New York: Worth.Google Scholar
Polderman, T. J. C., Benyamin, B., de Leeuw, C. A., Sullivan, P. F., van Bochoven, A., Visscher, P. M., & Posthuma, D. (2015). Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nature Genetics, 47, 702709.Google Scholar
Preuss, T. M. (1995). Do rats have prefrontal cortex? The Rose-Woolsey-Akert program reconsidered. Journal of Cognitive Neuroscience, 7, 124.Google Scholar
Purcell, S. (2002). Variance components models for gene-environment interaction in twin analysis. Twin Research, 5, 554571.Google Scholar
Raine, A. (1993). The psychopathology of crime: Criminal behavior as a clinical disorder. San Diego, CA: Academic Press.Google Scholar
Rafter, N., Posick, C., & Rocque, M. (2016). The criminal brain: Understanding biological theories of crime. New York: New York University Press.Google Scholar
Rautiainen, M. R., Paunio, T., Repo-Tiihonen, E., Virkkunen, M., Ollila, H. M., Sulkava, S., … & Tiihonen, J. (2016). Genome-wide association study of antisocial personality disorder. Translational Psychiatry, 6, e883.Google Scholar
Rhee, S. H. & Waldman, I. D. (2002). Genetic and environmental influences on antisocial behavior: A meta-analysis of twin and adoption studies. Psychological Bulletin, 128, 490529.Google Scholar
Risch, N. & Merikangas, K. (1996). The future of genetic studies of complex human diseases. Science, 273, 15161517.Google Scholar
Salvatore, J. E., Edwards, A. C., McClintick, J. N., Bigdeli, T. B., Adkins, A., Aliev, F., … & Nurnberger, J. I. (2015). Genome-wide association data suggest ABCB1 and immune-related gene sets may be involved in adult antisocial behavior. Translational Psychiatry, 5, e558.Google Scholar
Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014. Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511, 421427.Google Scholar
Scott, L. J., Mohlke, K. L., Bonnycastle, L. L., Willer, C. J., Li, Y., Duren, W. L., … & Prokunina-Olsson, L. (2007). A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science, 316 (5829), 13411345.Google Scholar
Sham, P. C. & Purcell, S. M. (2014). Statistical power and significance testing in large-scale genetic studies. Nature Reviews Genetics, 15(5), 335346.Google Scholar
Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychological Science, 22, 13591366.Google Scholar
Smith, G. D. (2011). Epidemiology, epigenetics and the “gloomy prospect”: Embracing randomness in population health research and practice. International Journal of Epidemiology, 40, 537562.Google Scholar
Sullivan, P. F. (2007). Spurious genetic associations. Biological Psychiatry, 61, 11211126.Google Scholar
Tielbeek, J. J., Johansson, A., Polderman, T. J. C., Rautiainen, M. R., Jansen, P., Taylor, M., … & Posthuma, D. (2017). Genome-wide association studies of a broad spectrum of antisocial behavior. JAMA Psychiatry, 74, 1242-1250.Google Scholar
TiChabelbeek, J. J., Medland, S. E., Benyamin, B., Byrne, E. M., Heath, A. C., Madden, P. A. F., … & Verweij, K. J. H. (2012). Unraveling the genetic etiology of adult antisocial behavior: A genome-wide association study. PLoS ONE, 7, e45086.Google Scholar
Tielbeek, J. J., Linnér, R. K., Beers, K., Posthuma, D., Popma, A., & Polderman, T. J. C. (2016). Meta-analysis of the serotonin transporter promoter variant (5-HTTLPR) in relation to adverse environment and antisocial behavior. American Journal of Medical Genetics Part B, 171:B, 748760.Google Scholar
Tilihonen, J., Rautiainen, M.-R., Ollila, H. M., Repo-Tilihonen, E., Virkkunen, M., Palotie, A., … & Paunio, T. (2015). Genetic background of extreme violent behavior. Molecular Psychiatry, 20, 786792.Google Scholar
Turkheimer, E. (2000). Three laws of behavior genetics and what they mean. Current Directions in Psychological Science, 9, 160164.Google Scholar
Turkheimer, E. & Harden, K. P. (2014). Behavior genetic research methods: Testing quasi-causal hypotheses using multivariate twin data. In Reis, H. T. & Jude, C. M. (Eds), Handbook of research methods in social and personality psychology (2nd ed.). New York: Cambridge University Press.Google Scholar
van Erp, A. M. M. & Miczek, K. A. (2000). Aggressive behavior, increased accumbal dopamine, and decreased cortical serotonin in rats. The Journal of Neuroscience, 20, 93209325.Google Scholar
Vassos, E., Collier, D. A., & Fazel, S. (2014). Systematic meta-analyses and field synopsis of genetic association studies of violence and aggression. Molecular Psychiatry, 19, 471477.Google Scholar
Veroude, K., Zhang-James, Y, Fernàndez-Castillo, N., Bakker, M. J., Cormand, B., & Faraone, S. V. (2016). Genetics of aggressive behavior: An overview. American Journal of Medical Genetics Part B, 171, 343.Google Scholar
Uylings, H. B., Groenewegen, H. J., & Kolb, B. (2003). Do rats have a prefrontal cortex? Behavioural Brain Research, 146, 317.Google Scholar
Waltes, R., Chiocchetti, A. G., & Freitag, C. M. (2016). The neurobiological basis of human aggression: A review on genetic and epigenetic mechanisms. American Journal of Medical Genetics Part B, 171, 650675.CrossRefGoogle ScholarPubMed
Wang, K., Li, M., & Hakonarson, H. (2010). Analysing biological pathways in genome-wide association studies. Nature Reviews Genetics, 11, 843854.Google Scholar
Wertz, J., Caspi, A., Belsky, D. W., Beckley, A. L., Arseneault, L., Barnes, J. C., Corcoran, D. L., Hogan, S., Houts, R., Morgan, N., Odgers, C., Prinz, J., Sugden, K., Williams, B., Poulton, R., & Moffitt, T. E. (2017). Genetics and crime: Integrating new genomic discoveries into psychological research about antisocial behavior. Psychological Science, forthcoming.Google Scholar
Wise, S. P. (2008). Forward frontal fields: Phylogeny and fundamental function. Trends in Neuroscience, 31, 599608.Google Scholar
Wright, J. P., Barnes, J. C., Boutwell, B. B., Schwartz, J. A., Connolly, J. A., Nedelec, J. L., & Beaver, K. M. (2015). Mathematical proof is not minutiae and irreducible complexity is not a theory: A final response to Burt and Simons and a call to criminologists. Criminology, 53, 113120.Google Scholar
Yang, J., Bakshi, A., Zhu, Z., Hemani, G., Vinkhuyzen, A. A., Lee, S. H., … & van Vliet-Ostaptchouk, J. V. (2015). Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index. Nature Genetics, 47, 1114–1120.Google Scholar
Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyholt, D. R., … & Visscher, P. M. (2010). Common SNPs explain a large proportion of the heritability for human height. Nature Genetics, 42, 565569.Google Scholar
Yang, J., Lee, S. H., Goddard, M. E., & Visscher, P. M. (2011). GCTA: A tool for genome-wide complex trait analysis. American Journal of Human Genetics, 88, 7682.Google Scholar
Yang, Y. & Raine, A. (2009). Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: A meta-analysis. Psychiatry Research: Neuroimaging, 174, 8188.Google Scholar
Yang, Y., Raine, A., Narr, K. L., Colletti, P., & Toga, A. W. (2009). Localization of deformations within the amygdala in individuals with psychopathy. Archives of General Psychiatry, 66, 986994.Google Scholar
Zhou, C., Rao, Y., & Rao, Y. (2008). A subset of octopaminergic neurons are important for Drosophila aggression. Nature Neuroscience, 11, 10591067.Google Scholar
Zuk, O, Hechter, E., Sunyaev, S. R., & Lander, E. S. (2012). The mystery of missing heritability: Genetic interactions create phantom heritability. Proceedings of the National Academy of Sciences, 109, 11931198.Google Scholar

References

Amen, D. G., Stubblefield, M., Carmichael, B., & Thisted, R. (1996). Brain SPECT findings and aggressiveness. Annals of Clinical Psychiatry, 8(3), 129137.Google Scholar
Antonucci, A. S., Gansler, D. A., Tan, S., Bhadelia, R., Patz, S., & Fulwiler, C. (2006). Orbitofrontal correlates of aggression and impulsivity in psychiatric patients. Psychiatry Research: Neuroimaging, 147(2–3), 213220.Google Scholar
Anderson, N. E. & Kiehl, K. A. (2014). Psychopathy: Developmental perspectives and their implications for treatment. Restorative Neurology and Neuroscience, 32(1), 103117.Google Scholar
Baird, A. & Fugelsang, J. A. (2004). The emergence of consequential thought: evidence from neuroscience, Philosophical Transactions of the Royal Society of London B, 359, 17971804.Google Scholar
Barkataki, I., Kumari, V., Das, M., Taylor, P., & Sharma, T. (2006). Volumetric structural brain abnormalities in men with schizophrenia or antisocial personality disorder. Behavioural Brain Research, 169(2), 239247.Google Scholar
Bayliss, C. M., Miller, A. K., & Henderson, C. E. (2010). Psychopathy development and implications for early intervention. Journal of Cognitive Psychotherapy, 24(2), 7180.Google Scholar
Bertsch, K., Grothe, M., Prehn, K., Vohs, K., Berger, C., Hauenstein, K., Keiper, P., Domes, G., Teipel, S., & Herpertz, S. C. (2013). Brain volumes differ between diagnostic groups of violent criminal offenders. European Archives of Psychiatry and Clinical Neuroscience, 263(7), 593606.Google Scholar
Birbaumer, N., Veit, R., Lotze, M., Erb, M., Hermann, C., Grodd, W., & Flor, H. (2005). Deficient Fear Conditioning in Psychopathy: A Functional Magnetic Resonance Imaging Study. Archives of General Psychiatry, 62(7), 799805.Google Scholar
Boccardi, M., Frisoni, G. B., Hare, R. D., Cavedo, E., Najt, P., Pievani, M., Rasser, P. E., Laakso, M. P., Aronen, H. J., Repo-Tiihonen, E., Vaurio, O., Thompson, P. M., & Tiihonen, J. (2011). Cortex and amygdala morphology in psychopathy. Psychiatry Research: Neuroimaging, 193(2), 8592.Google Scholar
Boccardi, M., Ganzola, R., Rossi, R., Sabattoli, F., Laakso, M. P., Repo-Tiihonen, E., Vaurio, O., Könönen, M., Aronen, H. J., Thompson, P. M., Frisoni, G. B., & Tiihonen, J. (2010). Abnormal hippocampal shape in offenders with psychopathy. Human Brain Mapping, 31(3), 438447.Google Scholar
Bortolato, M., Chen, K., Godar, S., Chen, G., Wu, W. et al. (2011). Social deficits and perseverative behaviors, but not overt aggression, in MAOA hypomorphic mice. Neuropsychopharmacology, 36(13), 26742678.Google Scholar
Calzada-Reyes, A., Alvarez-Amador, A., Galán-García, L., Valdés-Sosa, M., Melie-García, L., Alemán-Gómez, Y., & del Carmen Iglesias-Alonso, J. (2015). MRI study in psychopath and non-psychopath offenders. In Fitzgerald, M. (ed.), Psychopathy: Risk factors, behavioral symptoms and treatment options (pp. 4159). Hauppauge, NY: Nova Science Publishers.Google Scholar
Coccaro, E. F., Lee, R., McCloskey, M., Csernansky, J. G., & Wang, L. (2015). Morphometric analysis of amygdla and hippocampus shape in impulsively aggressive and healthy control subjects. Journal of Psychiatric Research, 69, 8086.Google Scholar
Coccaro, E. (2012). Intermittent explosive disorder as a disorder of impulsive aggression for dsm-5. American Journal of Psychiatry, 169(6), 577Google Scholar
Decety, J., Michalska, K. J., Akitsuki, Y., & Lahey, B. B. (2009). Atypical empathic responses in adolescents with aggressive conduct disorder: A functional MRI investigation. Biological Psychology, 80(2), 203211.Google Scholar
Dolan, M. C., Deakin, J. W., Roberts, N., & Anderson, I. M. (2002). Quantitative frontal and temporal structural MRI studies in personality-disordered offenders and control subjects. Psychiatry Research: Neuroimaging, 116(3), 133149.Google Scholar
Dvorak-Bertsch, J. D., Sadeh, N., Glass, S. J., Thornton, D., & Newman, J. P. (2007). Stroop tasks associated with differential activation of anterior cingulate do not differentiate psychopathic and non-psychopathic offenders. Personality and Individual Differences, 42(3), 585595.Google Scholar
Ermer, E., Cope, L. M., Nyalakanti, P. K., Calhoun, V. D., & Kiehl, K. A. (2012). Aberrant paralimbic gray matter in criminal psychopathy. Journal of Abnormal Psychology, 121(3), 649658.Google Scholar
Fairchild, G., Hagan, C. C., Passamonti, L., Walsh, N. D., Goodyer, I. M., & Calder, A. J. (2014). Atypical neural responses during face processing in female adolescents with conduct disorder. Journal of the American Academy Of Child & Adolescent Psychiatry, 53(6), 677687.Google Scholar
Frankle, W. G., Lombardo, I., New, A. S., Goodman, M., Talbot, P. S., Huang, Y., Hwang, D. R., Slifstein, M., Curry, S., Abi-Dargham, A., Laruelle, M., & Siever, L. J. (2005). Brain Serotonin Transporter Distribution in Subjects With Impulsive Aggressivity: A Positron Emission Study With [¹¹C]McN 5652. American Journal of Psychiatry, 162(5), 915923.Google Scholar
Gansler, D. A., McLaughlin, N. R., Iguchi, L., Jerram, M., Moore, D. W., Bhadelia, R., & Fulwiler, C. (2009). A multivariate approach to aggression and the orbital frontal cortex in psychiatric patients. Psychiatry Research: Neuroimaging, 171(3), 145154.Google Scholar
Gordon, H. L., Baird, A. A., & End, A. (2004). Functional differences among those high and low on a trait measure of psychopathy. Biological Psychiatry, 56(7), 516521.Google Scholar
Goyer, P. F., Andreason, P. J., Semple, W. E., Clayton, A. H., King, A. C., Compton-Toth, B. A., Schulz, S. C., & Cohen, R. M. (1994). Positron-emission tomography and personality disorders. Neuropsychopharmacology, 10(1), 2128.Google Scholar
Hare, R., Mcpherson, L., Forth, A., & Kazdin, A. (1998) Male Psychopaths and Their Criminal Careers. Journal of Consulting and Clinical Psychology, 56(5), 710714.Google Scholar
Harris, G., Rice, M., & Cormier, C. (1991). Psychopathy and violent recidivism. Law and Human Behavior, 15(6), 625637.Google Scholar
Hirono, N., Mega, M. S., Dinov, I. D., Mishkin, F., & Cummings, J. L. (2000). Left frontotemporal hypoperfusion in associated with aggression in patients with dementia. Archives of Neurology, 57(6), 861866.Google Scholar
Howard, R., Schellhorn, K., & Lumsden, J. (2013). Complex case: A biofeedback intervention to control impulsiveness in a severely personality disordered forensic patient.Personality and Mental Health, 7(2), 168173. doi: 10.1002/pmh.1231.Google Scholar
Howner, K., Eskildsen, S., Fischer, H., Dierks, T., Wahlund, L., et al. (2012). Thinner cortex in the frontal lobes in mentally disordered offenders. Psychiatry Research, 203, 126131.Google Scholar
Hyde, L. W., Byrd, A. L., Votruba-Drzal, E., Hariri, A. R., & Manuck, S. B. (2014). Amygdala reactivity and negative emotionality: Divergent correlates of antisocial personality and psychopathy traits in a community sample. Journal of Abnormal Psychology, 123(1), 214224.Google Scholar
Intrator, J., Hare, R., Stritzke, P., Brichtswein, K., Dorfman, D., Harpur, T., Bernstein, D., Handelsman, L., Schaefer, C., Keilp, J., Rosen, J., & Machac, J. (1997). A brain imaging (single photon emission computerized tomography) study of semantic and affective processing in psychopaths. Biological Psychiatry, 42(2), 96103.Google Scholar
Jiang, Y., Guo, X., Zhang, J., Gao, J., Wang, X., Situ, W., Yi, J., Zhang, X., Zhu, X., Yao, S., & Huang, B. (2015). Abnormalities of cortical structures in adolescent-onset conduct disorder. Psychological Medicine, 45(16), 34673479.Google Scholar
Joyal, C. C., Putkonen, A., Mancini-Marïe, A., Hodgins, S., Kononen, M., Boulay, L., Pihlajamaki, M., Soininen, H., Stip, E., Tiihonen, J., & Aronen, H. J. (2007). Violent persons with schizophrenia and comorbid disorders: A functional magnetic resonance imaging study. Schizophrenia Research, 91(1–3), 97102.CrossRefGoogle ScholarPubMed
Juhász, C., Behen, M. E., Muzik, O., Chugani, D. C., & Chugani, H. T. (2001). Bilateral medial prefrontal and temporal neocortical hypometabolism in children with epilepsy and aggression. Epilepsia, 42(8), 9911001.Google Scholar
Kiehl, K., Kiehl, A., & Hoffman, M. (1991). The Criminal Psychopath: History, Neuroscience, Treatment, and Economics. Jurimetrics Journal of Law, Science and Technology, 51.4, 355.Google Scholar
Kiehl, K. A., Smith, A. M., Hare, R. D., Mendrek, A., Forster, B. B., Brink, J., & Liddle, P. F. (2001). Limbic abnormalities in affective processing by criminal psychopaths as revealed by functional magnetic resonance imaging. Biological Psychiatry, 50(9), 677684.Google Scholar
Kolb, B. & Whishaw, I. Q. (2009). Fundamentals of Human Neuropsychology. New York: Worth Publishers.Google Scholar
Kolla, N., Matthews, B., Wilson, A., Houle, S., Michael Bagby, R., et al. (2015). Lower monoamine oxidase-a total distribution volume in impulsive and violent male offenders with antisocial personality disorder and high psychopathic traits: An [11c] harmine positron emission tomography study. Neuropsychopharmacology, 40(11), 25962603.Google Scholar
Kolla, N. J., Dunlop, K., Downar, J., Links, P., Bagby, R. M., Wilson, A. A., Houle, S., Rasquinha, F., Simpson, A. I., & Meyer, J. H. (2016). Association of ventral striatum monoamine oxidase-a binding and functional connectivity in antisocial personality disorder with high impulsivity: A positron emission tomography and functional magnetic resonance imaging study. European Neuropsychopharmacology, 26(4), 777786.Google Scholar
Kumari, V., Aasen, I., Taylor, P., Ffytche, D. H., Das, M., Barkataki, I., Goswami, S., O’Connell, P., Howlett, M., Williams, S. C., & Sharma, T. (2006). Neural dysfunction and violence in schizophrenia: An fMRI investigation. Schizophrenia Research, 84(1), 144164.Google Scholar
Kumari, V., Uddin, S., Premkumar, P., Young, S., Gudjonsson, G. H., Raghuvanshi, S., Barkataki, I., Sumich, A., Taylor, P., & Das, M. (2014). Lower anterior cingulate volume in seriously violent men with antisocial personality disorder or schizophrenia and a history of childhood abuse. Australian and New Zealand Journal of Psychiatry, 48(2), 153161.Google Scholar
Kunz, M., Sikora, J., Krakowski, M., Convit, A., Cooper, T., et al. (1995). Serotonin in violent patients with schizophrenia. Psychiatry Research, 59(1), 161163.Google Scholar
Liu, H., Liao, J., Jiang, W., & Wang, W. (2014). Changes in low-frequency fluctuations in patients with antisocial personality disorder revealed by resting-state functional MRI. PLoS ONE, 9(3): e89790.Google Scholar
Ly, M., Motzkin, J. C., Philippi, C. L., Kirk, G. R., Newman, J. P., Kiehl, K. A., & Koenigs, M. (2012). Cortical thinning in psychopathy. American Journal of Psychiatry, 169(7), 743749.Google Scholar
McCloskey, M. S., Phan, K. L., Angstadt, M., Fettich, K. C., Keedy, S., & Coccaro, E. F. (2016). Amygdala hyperactivation to angry faces in intermittent explosive disorder. Journal of Psychiatric Research, 79347941.Google Scholar
Moeller, S. J., Froböse, M. I., Konova, A. B., Misyrlis, M., Parvaz, M. A., Goldstein, R. Z., & Alia-Klein, N. (2014). Common and distinct neural correlates of inhibitory dysregulation: Stroop fMRI study of cocaine addiction and intermittent explosive disorder. Journal of Psychiatric Research, 58555862.Google Scholar
Müller, J. L., Sommer, M., Wagner, V., Lange, K., Taschler, H., Röder, C. H., Schuierer, G., Klein, H. E., & Hajak, G. (2003). Abnormalities in emotion processing within cortical and subcortical regions in criminal psychopaths: Evidence from a functional magnetic resonance imaging study using pictures with emotional content. Biological Psychiatry 54(2), 152162.Google Scholar
Narayan, V. M., Narr, K. L., Kumari, V., Woods, R. P., Thompson, P. M., Toga, A. W., & Sharma, T. (2007). Regional cortical thinning in subjects with violent antisocial personality disorder or schizophrenia. American Journal of Psychiatry, 164(9), 14181427.Google Scholar
New, A. S., Hazlett, E. A., Buchsbaum, M. S., Goodman, M., Reynolds, D., Mitropoulou, V., Sprung, L., Shaw, R. B., Jr., Koenigsberg, H., Platholi, J., Silverman, J., & Siever, L. J. (2002). Blunted prefrontal cortical¹⁸ fluorodeoxyglucose positron emission tomography response to meta-chlorophenylpiperazine in impulsive aggression. Archives of General Psychiatry, 59(7), 621629.Google Scholar
New, A. S., Buchsbaum, M. S., Hazlett, E. A., Goodman, M., Koenigsberg, H. W., Lo, J., Iskander, L., Newmark, R., Brand, J., O’Flynn, K., & Siever, L. J. (2004). Fluoxetine increases relative metabolic rate in prefrontal cortex in impulsive aggression. Psychopharmacology, 176(3–4), 451458.Google Scholar
New, A. S., Hazlett, E. A., Newmark, R. E., Zhang, J., Triebwasser, J., Meyerson, D., Lazarus, S., Trisdorfer, R., Goldstein, K. E., Goodman, M., Koenigsberg, H. W., Flory, J. D., Siever, L. J., & Buchsbaum, M. S. (2009). Laboratory induced aggression: A positron emission tomography study of aggressive individuals with borderline personality disorder. Biological Psychiatry, 66(12), 11071114.Google Scholar
Osumi, T., Nakao, T., Kasuya, Y., Shinoda, J., Yamada, J., & Ohira, H. (2012). Amygdala dysfunction attenuates frustration-induced aggression in psychopathic individuals in a non-criminal population. Journal of Affective Disorders, 142(1–3), 331338.Google Scholar
Pardini, D. A., Raine, A., Erickson, K., & Loeber, R. (2014). Lower amygdala volume in men is associated with childhood aggression, early psychopathic traits, and future violence. Biological Psychiatry, 75(1), 7380.Google Scholar
Philippi, C. L., Pujara, M. S., Motzkin, J. C., Newman, J., Kiehl, K. A., & Koenigs, M. (2015). Altered resting-state functional connectivity in cortical networks in psychopathy. The Journal of Neuroscience, 35(15), 60686078.Google Scholar
Prehn, K., Schlagenhauf, F., Schulze, L., Berger, C., Vohs, K., Fleischer, M., Hauenstein, K., Keiper, P., Domes, G., & Herpertz, S. C. (2013). Neural correlates of risk taking in violent criminal offenders characterized by emotional hypo- and hyper-reactivity. Social Neuroscience, 8(2), 136147.Google Scholar
Raine, A., Buchsbaum, M., & LaCasse, L. (1997). Brain abnormalities in murderers indicated by positron emission tomography. Biological Psychiatry, 42(6), 495508.Google Scholar
Raine, A., Stoddard, J., Bihrle, S., & Buchsbaum, M. (1998). Prefrontal glucose deficits in murderers lacking psychosocial deprivation. Neuropsychiatry, Neuropsychology, & Behavioral Neurology, 11(1), 17.Google Scholar
Raine, A., Meloy, J. R., Bihrle, S., Stoddard, J., LaCasse, L., & Buchsbaum, M. S. (1998). Reduced prefrontal and increased subcortical brain functioning assessed using positron emission tomography in predatory and affective murderers. Behavioral Sciences and the Law, 16(3), 319332.Google Scholar
Raine, A., Lencz, T., Bihrle, S., LaCasse, L., & Colletti, P. (2000). Reduced prefrontal gray matter volume and reduced autonomic activity in antisocial personality disorder. Archives of General Psychiatry, 57(2), 119127.Google Scholar
Raine, A., Yang, Y., Narr, K., & Toga, A. (2009). Sex differences in orbitofrontal gray as a partial explanation for sex differences in antisocial personality. Molecular Psychiatry, 16(2), 227.Google Scholar
Seara-Cardoso, A., Viding, E., Lickley, R. A., & Sebastian, C. L. (2015). Neural responses to others’ pain vary with psychopathic traits in healthy adult males. Cognitive, Affective & Behavioral Neuroscience, 15(3), 578588.Google Scholar
Schiffer, B., Pawliczek, C., Müller, B., Forsting, , Gizewski, M., Leygraf, E., , N., & Hodgins, S. (2014). Neural mechanisms underlying cognitive control of men with lifelong antisocial behavior. Psychiatry Research: Neuroimaging, 222(1–2), 4351.Google Scholar
Schlüter, T., Winz, O., Henkel, K., Eggermann, T., Mohammadkhani-Shali, S., Dietrich, C., Heinzel, A., Decker, M., Cumming, P., Zerres, K., Piel, M., Mottaghy, F. M., & Vernaleken, I. (2016). MAOA-VNTR polymorphism modulates context-dependent dopamine release and aggressive behavior in males. Neuroimage, 125378125385.Google Scholar
Soderstrom, H., Tullberg, M., Wikkelsö, C., Ekholm, S., & Forsman, A. (2000). Reduced regional cerebral blood flow in non-psychotic violent offenders. Psychiatry Research: Neuroimaging, 98(1), 2941.Google Scholar
Spoont, M. R., Kuskowski, M., & Pardo, J. V. (2010). Autobiographical memories of anger in violent and non-violent individuals: A script-driven imagery study. Psychiatry Research: Neuroimaging, 183(3), 225229.Google Scholar
Sterzer, P., Stadler, C., Krebs, A., Kleinschmidt, A., & Poustka, F. (2005). Abnormal Neural Responses to Emotional Visual Stimuli in Adolescents with Conduct Disorder. Biological Psychiatry, 57(1), 715.Google Scholar
Tang, Y., Yang, L., Leve, L. D., & Harold, G. T. (2012). Improving executive function and its neurobiological mechanisms through a mindfulness-based intervention: Advances within the field of developmental neuroscience. Child Development Perspectives, 6(4), 361366.Google Scholar
Tiihonen, J., Rossi, R., Laakso, M. P., Hodgins, S., Testa, C., Perez, J., & Frisoni, G. B. (2008). Brain anatomy of persistent violent offenders: More rather than less. Psychiatry Research: Neuroimaging, 163(3), 201212.Google Scholar
Tiihonen, J., Rautiainen, M., Ollila, H. M., Repo-Tiihonen, E., Virkkunen, M., Palotie, A., Pietiläinen, O., Kristiansson, K., Joukamaa, M., Lauerma, H., Saarela, J., Tyni, S., Vartiainen, H., Paananen, J., Goldman, D., & Paunio, T. (2015). Genetic background of extreme violent behavior. Molecular Psychiatry, 20(6), 786792.Google Scholar
Trzepacz, P. T., Yu, P., Bhamidipati, P. K., Willis, B., Forrester, T., Tabas, L., Schwarz, A. J., Saykin, A. J.; Alzheimer's Disease Neuroimaging Initiative & Saykin, A. J. (2013). Frontolimbic atrophy is associated with agitation and aggression in mild cognitive impairment and Alzheimer’s disease. Alzheimer’s & Dementia, 9(5), S95–S104.Google Scholar
Virkkunen, M. & Linnoila, M. (1993). Brain serotonin, type II alcoholism and impulsive violence. Journal of Studies on Alcohol, 54, 163165.Google Scholar
Volkow, N. D., Tancredi, L. R., Grant, C., Gillespie, H., Valentine, A., Mullani, N., Wang, G.-J., & Hollister, L. (1995). Brain glucose metabolism in violent psychiatric patients: A preliminary study. Psychiatry Research: Neuroimaging, 61(4), 243253.Google Scholar
Völlum, B., Richarson, P., Stirling, J., Elliott, R., Dolan, M., Chaudhry, I., & Del Ben, C., McKie, S., Anderson, I., & Deakin, B. (2004). Neurobiological substrates of antisocial and borderline personality disorder: preliminary results of a functional fMRI study. Criminal Behaviour and Mental Health, 14(1), 3954.Google Scholar
Völlum, B., Richardson, P., McKie, S., Reniers, R., Elliott, R., Anderson, I. M., Williams, S., Dolan, M., & Deakin, B. (2010). Neuronal correlates and serotonergic modulation of behavioural inhibition and reward in healthy and antisocial individuals. Journal of Psychiatric Research, 44(3), 123131.Google Scholar
Yang, Y., Glenn, A. L., & Raine, A. (2008). Brain abnormalities in antisocial individuals: Implications for the law. Behavioral Sciences and the Law, 26(1), 6583.Google Scholar
Yang, Y., Raine, A., Colletti, P., Toga, A. W., & Narr, K. L. (2009). Abnormal temporal and prefrontal cortical gray matter thinning in psychopaths. Molecular Psychiatry, 14(6), 561562.Google Scholar
Yang, Y., Raine, A., Lencz, T., Bihrle, S., LaCasse, L., & Colletti, P. (2005). Volume Reduction in Prefrontal Gray Matter in Unsuccessful Criminal Psychopaths. Biological Psychiatry, 57(10), 11031108.Google Scholar

References

Beauchaine, T. (2001). Vagal tone, development, and Gray’s motivational theory: Toward an integrated model of autonomic nervous system functioning in psychopathology. Development and Psychopathology, 13, 183214.Google Scholar
Beauchaine, T. P., Hong, J., & Marsh, P. (2008). Sex differences in autonomic correlates of conduct problems and aggression. Journal of the American Academy of Child and Adolescent Psychiatry, 47, 788796.Google Scholar
Belsky, J. (2005). Differential susceptibility to rearing influence: An evolutionary hypothesis and some evidence. In Ellis, B. & Bjorklund, D. (Eds), Origins of the social mind: Evolutionary psychology and child development (pp. 139163). New York: Guilford.Google Scholar
Belsky, J., Bakermans-Kranenburg, M. J., & van Ijzendoorn, M. H. (2007). For better and for worse: Differential susceptibility to environmental influences. Association for Psychological Science, 16, 300304.Google Scholar
Choy, O., Raine, A., Portnoy, J., Rudo-Hutt, A., Gao, Y., & Soyfer, L. (2015). The mediating role of heart rate on the social adversity-antisocial behavior relationship: A social neurocriminology perspective. Journal of Research in Crime and Delinquency, 52, 303341.Google Scholar
Choy, O., Farrington, D. P., & Raine, A. (2015). The need to incorporate autonomic arousal in developmental and life-course research and theories. Journal of Developmental and Life-Course Criminology, 1, 189207.Google Scholar
Cicchetti, D. (2010). Resilience under conditions of extreme stress: A multilevel perspective. World Psychiatry, 9, 145154.Google Scholar
Cornet, L. J., de Kogel, C. H., Nijman, H. L., Raine, A., & van der Laan, P. H. (2014). Neurobiological factors as predictors of cognitive-behavioral therapy outcome in individuals with antisocial behavior: A review of the literature. International Journal of Offender Therapy and Comparative Health, 58, 12791296.Google Scholar
Cornet, L. J. M., van der Laan, P. H., Nijman, H. L. I., Tollenaar, N., & de Kogel, C. H. (2015). Neurobiological factors as predictors of prisoners’ response to a cognitive skills training. Journal of Criminal Justice, 43, 122132.Google Scholar
Cummings, E. M., El-Sheikh, M., Kouros, C. D., & Keller, P. S. (2007). Children’s skin conductance reactivity as a mechanism of risk in the context of parental depressive symptoms. Journal of Child Psychology and Psychiatry, 48, 436445.Google Scholar
De Vries-Bouw, M., Popma, A., Vermeiren, R., Doreleijers, T. A., Van De Ven, P. M., & Jansen, L. M. (2011). The predictive value of low heart rate and heart rate variability during stress for reoffending in delinquent male adolescents. Psychophysiology, 48, 15971604.Google Scholar
de Wied, M., Boxtel, A. V., Posthumus, J. A., Goudena, P. P., & Matthys, W. (2009). Facial EMG and heart rate responses to emotion-inducing film clips in boys with disruptive behavior disorders. Psychophysiology, 46, 9961004.Google Scholar
Dietrich, A., Riese, H., Sondeijker, F. E., Greaves-Lord, K., van Roon, A. M., Ormel, J., … & Rosmalen, J. G. (2007). Externalizing and internalizing problems in relation to autonomic function: a population-based study in preadolescents. Journal of the American Academy of Child and Adolescent Psychiatry, 46, 378386.Google Scholar
El-Sheikh, M. (2005a). Does poor vagal tone exacerbate child maladjustment in the context of parental problem drinking? A longitudinal examination. Journal of Abnormal Psychology, 114, 735741.Google Scholar
El-Sheikh, M. (2005b). The role of emotional responses and physiological reactivity in the marital conflict-child functioning link. Journal of Child Psychology and Psychiatry, 46, 11911199.Google Scholar
El-Sheikh, M., Harger, J., & Whitson, S. M. (2001). Exposure to interpersonal conflict and children’s adjustment and physical health: The moderating role of vagal tone. Child Development, 72, 16171636.Google Scholar
Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & van Ijzendoorn, M. H. (2011). Differential susceptibility to the environment: an evolutionary--neurodevelopmental theory. Development and Psychopathology, 23, 728.Google Scholar
Eysenck, H. J. (1977). Crime and personality. London: Routledge & Kegan Paul Ltd.Google Scholar
Fairchild, G., Van Goozen, S. H., Stollery, S. J., & Goodyer, I. M. (2008). Fear conditioning and affective modulation of the startle reflex in male adolescents with early-onset or adolescence-onset conduct disorder and healthy control subjects. Biological Psychiatry, 63, 279285.Google Scholar
Farrington, D. P. (1997). The relationship between low resting heart rate and violence. In Raine, A., Brennan, P. A., Farrington, D. P. & Mednick, S. A. (Eds), Biosocial bases of violence (pp. 89105). New York: Plenum Press.Google Scholar
Gao, Y., Glenn, A. L., Peskin, M., Rudo-Hutt, A., Schug, R. A., Yang, Y., & Raine, A. (2012). Neurocriminological approaches. In Gadd, D., Karstedt, S., & Messner, S. F. (Eds), Handbook of criminological research methods (pp. 6375). Los Angeles: SAGE.Google Scholar
Gao, Y., Raine, A., Venables, P. H., Dawson, M. E., & Mednick, S. A. (2010a). Reduced electrodermal fear conditioning from ages 3 to 8 years is associated with aggressive behavior at age 8 years. Journal of Child Psychology and Psychiatry, 51, 550558.Google Scholar
Gao, Y., Raine, A., Venables, P. H., Dawson, M. E., & Mednick, S. A. (2010b). Association of poor childhood fear conditioning and adult crime. American Journal of Psychiatry, 167, 5660.Google Scholar
Gao, Y., Huang, Y., & Li, X. (2016). Interaction between prenatal maternal stress and autonomic arousal in predicting conduct problems and psychopathic traits in children. Journal of Psychopathology and Behavioral Assessment. doi: 10.1007/s10862-016-9556-8.Google Scholar
Gordis, E. B., Feres, N., Olezeski, C. L., Rabkin, A. N., & Trickett, P. K. (2010). Skin conductance reactivity and respiratory sinus arrhythmia among maltreated and comparison youth: relations with aggressive behavior. Journal of Pediatric Psychology, 35, 547558.Google Scholar
Hugdahl, K. (2001). Psychophysiology. Cambridge, MA: Harvard University Press.Google Scholar
Jennings, W. G., Piquero, A. R., & Farrington, D. P. (2013). Does resting heart rate at age 18 distinguish general and violent offending up to age 50? Findings from the Cambridge Study in Delinquent Development. Journal of Criminal Justice, 41, 213219.Google Scholar
Leary, A. & Katz, L. F. (2004). Coparenting, family-level processes, and peer outcomes: The moderating role of vagal tone. Development and Psychopathology, 16, 593608.Google Scholar
Lösel, F. & Farrington, D. P. (2012). Direct protective and buffering protective factors in the development of youth violence. American Journal of Preventive Medicine, 43(2 Suppl. 1), S8–S23.Google Scholar
Mezzacappa, E., Tremblay, R. E., Kindlon, D., Saul, J. P., Arseneault, L., Seguin, J., … & Earls, F. (1997). Anxiety, antisocial behavior, and heart rate regulation in adolescent males. Journal of Child Psychology and Psychiatry, 38, 457469.Google Scholar
Ortiz, J. & Raine, A. (2004). Heart rate level and antisocial behavior in children and adolescents: A meta-analysis. Journal of the American Academy of Child and Adolescent Psychiatry, 43, 154162.Google Scholar
Pang, K. C. & Beauchaine, T. P. (2013). Longitudinal patterns of autonomic nervous system responding to emotion evocation among children with conduct problems and/or depression. Developmental Psychobiology, 55, 698706.Google Scholar
Portnoy, J., Chen, F. R., & Raine, A. (2013). Biological protective factors for antisocial and criminal behavior. Journal of Criminal Justice, 41, 292299.Google Scholar
Portnoy, J. & Farrington, D. P. (2015). Resting heart rate and antisocial behavior: An updated systematic review and meta-analysis. Aggression and Violent Behavior, 22, 3345.Google Scholar
Portnoy, J., Raine, A., Chen, F. R., Pardini, D., Loeber, R., & Jennings, J. R. (2014). Heart rate and antisocial behavior: The mediating role of impulsive sensation seeking. Criminology, 52, 292311.Google Scholar
Quay, H. C. (1965). Psychopathic personality as pathological stimulation-seeking. American Journal of Psychiatry, 122, 180183.Google Scholar
Raine, A. (2002a). Annotation: The role of prefrontal deficits, low autonomic arousal, and early health factors in the development of antisocial and aggressive behavior in children. Journal of Child Psychology and Psychiatry, 43, 417434.Google Scholar
Raine, A. (2002b). Biosocial studies of antisocial and violent behavior in children and adults: A review. Journal of Abnormal Child Psychology, 30, 311326.Google Scholar
Raine, A., Venables, P. H., & Williams, M. (1996). Better autonomic conditioning and faster electrodermal half-recovery time at age 15 years as possible protective factors against crime at age 29 years. Developmental Psychology, 32, 624630.Google Scholar
Raine, A., Venables, P. H., & Williams, M. (1995). High autonomic arousal and electrodermal orienting at age 15 years as protective factors against criminal behavior at age 29 years. American Journal of Psychiatry, 152, 15951600.Google Scholar
Raine, A. (2013). The anatomy of violence. New York: Pantheon Books.Google Scholar
Raine, A. & Venables, P. H. (1984). Tonic heart rate level, social class and antisocial behaviour in adolescents. Biological Psychology, 18, 123132.Google Scholar
Rocque, M., Welsh, B. C., & Raine, A. (2012). Biosocial criminology and modern crime prevention. Journal of Criminal Justice, 40, 306312.Google Scholar
Rutter, M. (2012). Resilience as a dynamic concept. Development and Psychopathology, 24, 335344.Google Scholar
Scarpa, A., Fikretoglu, D., & Luscher, K. (2000). Community violence exposure in a young adult sample: II. Psychophysiology and aggressive behavior. Journal of Community Psychology, 28, 417425.Google Scholar
Scarpa, A., Haden, S. C., & Tanaka, A. (2010). Being hot-tempered: Autonomic, emotional, and behavioral distinctions between childhood reactive and proactive aggression. Biological Psychology, 84, 488496.Google Scholar
Sijtsema, J. J., Veenstra, R., Lindenberg, S., van Roon, A. M., Verhulst, F. C., Ormel, J., & Riese, H. (2010). Mediation of sensation seeking and behavioral inhibition on the relationship between heart rate and antisocial behavior: The TRAILS study. Journal of the American Academy of Child and Adolescent Psychiatry, 49, 493502.Google Scholar
Slobodskaya, H. R., Roifman, M. D., & Krivoschekov, S. G. (1999). Psychological health, physical development and autonomic nervous system (ANS) activity in Siberian adolescents. International Journal of Circumpolar Health, 58, 176187.Google Scholar
Susman, E. J. (2006). Psychobiology of persistent antisocial behavior: stress, early vulnerabilities and the attenuation hypothesis. Neuroscience and Biobehavioral Reviews, 30, 376389.Google Scholar
Vaske, J., Galyean, K., & Cullen, F. T. (2011). Toward a biosocial theory of offender rehabilitation: Why does cognitive-behavioral therapy work? Journal of Criminal Justice, 39, 90102.Google Scholar

References

Achenbach, T. M., Edelbrock, C. S., & Howell, C. T. (1987). Empirically based assessment of the behavioral/emotional problems of 2- and 3- year-old children. Journal of Abnormal Child Psychology, 15, 629650.Google Scholar
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders – Fifth Edition. Arlington, VA: American Psychiatric Press.Google Scholar
Barker, E. D., Séguin, J. R., White, H. R., Bates, M. E., Lacourse, É., Carbonneau, R., et al. (2007). Developmental trajectories of physical violence and theft: Relation to neuro-cognitive performance. Archives of General Psychiatry, 64, 592599.Google Scholar
Barker, E. D., Tremblay, R. E., van Lier, P. A. C., Vitaro, F., Nagin, D. S., Assaad, J. M., et al. (2011). The neurocognition of conduct disorder behaviors: Specificity to physical aggression and theft after controlling for ADHD symptoms. Aggressive Behavior, 37, 6372.Google Scholar
Best, M., Williams, J. M., & Coccaro, E. F. (2002). Evidence for a dysfunctional prefrontal circuit in patients with an impulsive aggressive disorder. Proceedings of the National Academy of Sciences, 99, 84488453.Google Scholar
Blair, R. J. R., Leibenluft, E., & Pine, D. S. (2014). Conduct disorder and callous-unemotional traits in youth. New England Journal of Medicine, 371(23), 22072216.Google Scholar
Blake, P. Y., Pincus, J. H., & Buckner, C. (1995). Neurologic abnormalities in murderers. Neurology, 45, 16411647.Google Scholar
Booij, L., Tremblay, R. E., Leyton, M., Séguin, J. R., Vitaro, F., Gravel, P., et al. (2010). Brain serotonin synthesis in adult males characterized by physical aggression during childhood: A 21-year longitudinal study. PLoS ONE, 5, e11255.Google Scholar
Burt, S. A. (2009). Are there meaningful etiological differences within antisocial behavior? Results of a meta-analysis. Clinical Psychology Review, 29, 163178.Google Scholar
Burt, S. A. (2013). Do etiological influences on aggression overlap with those on rule breaking? A meta-analysis. Psychological Medicine, 43(9), 18011812.Google Scholar
Cardenas, S. A., Kassem, L., Brotman, M. A., Leibenluft, E., & McMahon, F. J. (2016). Neurocognitive functioning in euthymic patients with bipolar disorder and unaffected relatives: A review of the literature. Neuroscience and Biobehavioral Reviews, 69, 193215.Google Scholar
Castellanos, F. X., Sonuga-Barke, E. J. S., Milham, M. P., & Tannock, R. (2006). Characterizing cognition in ADHD: Beyond executive dysfunction. Trends in Cognitive Sciences, 10, 117123.Google Scholar
Castellanos-Ryan, N., Pingault, J. B., Parent, S., Vitaro, F., Tremblay, R. E., & Séguin, J. R. (2017). Adolescent cannabis use, change in neurocognitive function, and high-school graduation: A longitudinal study from early adolescence to young adulthood. Development and Psychopathology, 29(4), 1253–1266.Google Scholar
Castellanos-Ryan, N., Brière, F. N., O’Leary-Barrett, M., Banaschewski, T., Bokde, A., Bromberg, U., et al. (2016). The structure of psychopathology in adolescence and its common personality and cognitive correlates. Journal of Abnormal Psychology, 125 (8), 10391052.Google Scholar
Clifford, A., Lang, L. D., & Chen, R. L. (2012). Effects of maternal cigarette smoking during pregnancy on cognitive parameters of children and young adults: A literature review. Neurotoxicology and Teratology, 34(6), 560570.Google Scholar
Coccaro, E. F. (2012). Intermittent explosive disorder as a disorder of impulsive aggression for DSM-5. American Journal of Psychiatry, 169(6), 577588.Google Scholar
Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155159.Google Scholar
Cope, L. M., Ermer, E., Gaudet, L. M., Steele, V. R., Eckhardt, A. L., Arbabshirani, M. R., et al. (2014). Abnormal brain structure in youth who commit homicide. Neuroimage-Clinical, 4, 800807.Google Scholar
Cristofori, I., Zhong, W. T., Mandoske, V., Chau, A., Krueger, F., Strenziok, M., et al. (2016). Brain regions influencing implicit violent attitudes: A lesion-mapping study. Journal of Neuroscience, 36(9), 27572768.Google Scholar
D’Onofrio, B. M., Van Hulle, C. A., Goodnight, J. A., Rathouz, P. J., & Lahey, B. B. (2012). Is maternal smoking during pregnancy a causal environmental risk factor for adolescent antisocial behavior? Testing etiological theories and assumptions. Psychological Medicine, 42(7), 15351545.Google Scholar
Damasio, A. R. (2000). A neural basis for sociopathy. Archives of General Psychiatry, 57, 128129.Google Scholar
Davidson, R. J., Putnam, K. M., & Larson, C. L. (2000). Dysfunction in the neural circuitry of emotion regulation: A possible prelude to violence. Science, 289, 591594.Google Scholar
De Brito, S. A., Viding, E., Kumari, V., Blackwood, N., & Hodgins, S. (2013). Cool and hot executive function impairments in violent offenders with antisocial personality disorder with and without psychopathy. PLoS ONE, 8(6), e65566.Google Scholar
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135168.Google Scholar
Fairchild, G., Passamonti, L., Hurford, G., Hagan, C. C., von dem Hagen, E. A. H., van Goozen, S. H. M., et al. (2011). Brain structure abnormalities in early-onset and adolescent-onset conduct disorder. American Journal of Psychiatry, 168 (6), 624633.Google Scholar
Fairchild, G., van Goozen, S. H. M., Stollery, S. J., Aitken, M. R. F., Savage, J., Moore, S. C., et al. (2009). Decision making and executive function in male adolescents with early-onset or adolescence-onset Conduct Disorder and control subjects. Biological Psychiatry, 66(2), 162168.Google Scholar
Fazel, S., Gulati, G., Linsell, L., Geddes, J. R., & Grann, M. (2009). Schizophrenia and violence: Systematic review and meta-analysis. Plos Medicine, 6(8), e1000120.Google Scholar
Fazel, S., Philipson, J., Gardiner, L., Merritt, R., & Grann, M. (2009). Neurological disorders and violence: A systematic review and meta-analysis with a focus on epilepsy and traumatic brain injury. Journal of Neurology, 256(10), 15911602.Google Scholar
Fazel, S., Lichtenstein, P., Grann, M., Goodwin, G. M., & Langstrom, N. (2010). Bipolar disorder and violent crime: New evidence from population-based longitudinal studies and systematic review. Archives of General Psychiatry, 67, 931938.Google Scholar
Frick, P. J., Ray, J. V., Thornton, L. C., & Kahn, R. E. (2014). Can callous-unemotional traits enhance the understanding, diagnosis, and treatment of serious conduct problems in children and adolescents? A comprehensive review. Psychological Bulletin, 140(1), 157.Google Scholar
Giancola, P. R. (2004). Executive functioning and alcohol-related aggression. Journal of Abnormal Psychology, 113, 541555.Google Scholar
Goldstein, L. H. & McNeil, J. E. (2012). Clinical neuropsychology: A practical guide to assessment and management for clinicians (2nd ed.). Hoboken, NJ: Wiley-Blackwell.Google Scholar
Gorenstein, E. E. & Newman, J. P. (1980). Disinhibitory psychopathology: A new perspective and a model for research. Psychological Review, 87, 301315.Google Scholar
Hamilton, R. K. B., Racer, K. H., & Newman, J. P. (2015). Impaired integration in psychopathy: a unified theory of psychopathic dysfunction. Psychological Review, 122(4), 770791.Google Scholar
Hancock, M., Tapscott, J. L., & Hoaken, P. N. S. (2010). Role of executive dysfunction in predicting frequency and severity of violence. Aggressive Behavior, 36(5), 338349.Google Scholar
Hanlon, R. E., Brook, M., Stratton, J., Jensen, M., & Rubin, L. H. (2013). Neuropsychological and intellectual differences between types of murderers: Affective/impulsive versus predatory/instrumental (premeditated) homicide. Criminal Justice And Behavior, 40(8), 933948.Google Scholar
Hare, R. D. (1999). Psychopathy as a risk factor for violence. Psychiatric Quarterly, 70, 181197.Google Scholar
Heinz, A. J., Beck, A., Meyer-Lindenberg, A., Sterzer, P., & Heinz, A. (2011). Cognitive and neurobiological mechanisms of alcohol-related aggression. Nature Reviews Neuroscience, 12(7), 400413.Google Scholar
Ishikawa, S. S., Raine, A., Lencz, T., Bihrle, S., & LaCasse, L. (2001). Autonomic stress reactivity and executive function in successful and unsuccessful criminal psychopaths from the community. Journal of Abnormal Psychology, 110, 423432.Google Scholar
Jiang, Y., Guo, X., Zhang, J., Gao, J., Wang, X., Situ, W., et al. (2015). Abnormalities of cortical structures in adolescent-onset conduct disorder. Psychological Medicine, 45(16), 34673479.Google Scholar
Johnson, V. A., Kemp, A. H., Heard, R., Lennings, C. J., & Hickie, I. B. (2015). Childhood- versus adolescent-onset antisocial youth with conduct disorder: Psychiatric illness, neuropsychological and psychosocial function. PLoS ONE, 10(4).Google Scholar
Jonker, F. A., Jonker, C., Scheltens, P., & Scherder, E. J. A. (2015). The role of the orbitofrontal cortex in cognition and behavior. Reviews in the Neurosciences, 26(1), 111.Google Scholar
Joyal, C. C., Beaulieu-Plante, J., & de Chantérac, A. (2014). The neuropsychology of sex offenders. Sexual Abuse, 26(2), 149177.Google Scholar
Klaming, L. & Koops, B. J. (2012). Neuroscientific evidence and criminal responsibility in the Netherlands. In Spranger, T. M. (Ed.), International neurolaw: A comparative analysis (pp. 227256). Heidelberg: Springer.Google Scholar
Koenigs, M., Kruepke, M., & Newman, J. P. (2010). Economic decision-making in psychopathy: A comparison with ventromedial prefrontal lesion patients. Neuropsychologia, 48(7), 21982204.Google Scholar
Lee, R., Arfanakis, K., Evia, A. M., Fanning, J., Keedy, S., & Coccaro, E. F. (2016). White matter integrity reductions in intermittent explosive disorder. Neuropsychopharmacology, 41(11), 26972703.Google Scholar
Lezak, M. D., Howieson, D. B., Bigler, E. D., & Tranel, D. T. (2012). Neuropsychological assessment. New York: Oxford University Press.Google Scholar
Lilienfeld, S. O., Smith, S. F., & Watts, A. L. (2016). The perils of unitary models of the etiology of mental disorders-the response modulation hypothesis of psychopathy as a case example: Rejoinder to Newman and Baskin-Sommers (2016) reply. Psychological Bulletin, 142(12), 13941403.Google Scholar
Lydon, D. M., Wilson, S. J., Child, A., & Geier, C. F. (2014). Adolescent brain maturation and smoking: What we know and where we’re headed. Neuroscience and Biobehavioral Reviews, 45, 323342.Google Scholar
Mayes, S. D., Waxmonsky, J. D., Calhoun, S. L., & Bixler, E. O. (2016). Disruptive mood dysregulation disorder symptoms and association with oppositional defiant and other disorders in a general population child sample. Journal of Child and Adolescent Psychopharmacology, 26(2), 101106.Google Scholar
Meyers, C. A., Berman, S. A., Scheibel, R. S., & Hayman, A. (1992). Case report: Acquired antisocial personality disorder associated with unilateral left orbital frontal lobe damage. Journal of Psychiatry and Neuroscience, 17, 121125.Google Scholar
Milner, B., Petrides, M., & Smith, M. L. (1985). Frontal lobes and the temporal organization of memory. Human Neurobiology, 4, 137142.Google Scholar
Moeller, F. G., Barratt, E. S., Dougherty, D. M., Schmitz, J. M., & Swann, A. C. (2001). Psychiatric aspects of impulsivity. American Journal of Psychiatry, 158, 17831793.Google Scholar
Moffitt, T. E. (1990). The neuropsychology of juvenile delinquency: A critical review. In Tonry, M. & Morris, N. (Eds), Crime and justice: A review of research (12th ed., pp. 99169). Chicago: University of Chicago Press.Google Scholar
Moffitt, T. E. (1993). Adolescence-limited and life-course-persistent antisocial behavior: A developmental taxonomy. Psychological Review, 100, 674701.Google Scholar
Morais, H. B., Joyal, C. C., Alexander, A. A., Fix, R. L., & Burkhart, B. R. (2016). The Neuropsychology of adolescent sexual offending: Testing an executive dysfunction hypothesis. Sexual Abuse-A Journal of Research and Treatment, 28(6), 741754.Google Scholar
Morgan, A. B. & Lilienfeld, S. O. (2000). A meta-analytic review of the relation between antisocial behavior and neuropsychological measures of executive function. Clinical Psychology Review, 20(1), 113136.Google Scholar
Murdoch, D. D., Pihl, R. O., & Ross, D. F. (1990). Alcohol and crimes of violence: Present issues. The International Journal of the Addictions, 25, 10651081.Google Scholar
Newman, J. P. & Lorenz, A. R. (2003). Response modulation and emotion processing: Implications for psychopathy and other dysregulatory psychopathology. In Davidson, R. J., Scherer, K., & Goldsmith, H. H. (Eds), Handbook of affective sciences (pp. 904929). New York: Oxford University Press.Google Scholar
Ogilvie, J. M., Stewart, A. L., Chan, R. C. K., & Shum, D. (2011). Neuropsychological measures of executive function and antisocial behavior: A meta-analysis. Criminology, 49, 10631107.Google Scholar
Pihl, R. O., Paylan, S. S., Gentes-Hawn, A., & Hoaken, P. N. S. (2004). Alcohol affects executive cognitive functioning differentially on the ascending versus descending limb of the blood alcohol concentration Curve. Alcoholism: Clinical and Experimental Research, 27, 773779.Google Scholar
Pinsonneault, M., Parent, S., Castellanos-Ryan, N., & Séguin, J. R. (2015). Low intelligence and poor executive function as risk factors for externalizing spectrum disorders. In Beauchaine, T. P. & Hinshaw, S. P. (Eds), The oxford handbook of externalizing spectrum disorders. (pp. 375400). New York: Oxford University Press.Google Scholar
Provençal, N., Booij, , , L., & Tremblay, R. E. (2015). The developmental origins of chronic physical aggression: Biological pathways triggered by early life adversity. Journal of Experimental Biology, 218(1), 123133.Google Scholar
Raine, A., Meloy, J. R., Bihrle, S., Stoddard, J., LaCasse, L., & Buchsbaum, M. S. (1998). Reduced prefrontal and increased subcortical brain functioning assessed using positron emission tomography in predatory and affective murderers. Behavioral Sciences & the Law, 16(3), 319332.Google Scholar
Rogers, J. C. & De Brito, S. A. (2016). Cortical and subcortical gray matter volume in youths with conduct problems: A meta-analysis. JAMA Psychiatry, 73(1), 6472.Google Scholar
Room, R., Babor, T., & Rehm, J. (2005). Alcohol and public health. The Lancet, 365, 519530.Google Scholar
Satel, S. & Lilienfeld, S. O. (2013). Brainwashed: The seductive appeal of mindless neuroscience. New York: Basic books.Google Scholar
Schug, R. A. & Raine, A. (2009). Comparative meta-analyses of neuropsychological functioning in antisocial schizophrenic persons. Clinical Psychology Review, 29, 230242.Google Scholar
Séguin, J. R., Arseneault, , Boulerice, L., Harden, B., , P. W., & Tremblay, R. E. (2002). Response perseveration in adolescent boys with stable and unstable histories of physical aggression: The role of underlying processes. Journal of Child Psychology and Psychiatry, 43, 481494.Google Scholar
Séguin, J. R., Arseneault, , , L., & Tremblay, R. E. (2007). The contribution of “Cool” and “Hot” components of executive function to problem solving in adolescence: Implications for developmental psychopathology. Cognitive Development, 22, 530543.Google Scholar
Séguin, J. R., Boulerice, , Harden, B., Tremblay, P., , R. E., & Pihl, R. O. (1999). Executive functions and physical aggression after controlling for attention deficit hyperactivity disorder, general memory, and IQ. Journal of Child Psychology and Psychiatry, 40, 11971208.Google Scholar
Séguin, J. R., Nagin, , Assaad, D. S., , J. M., & Tremblay, R. E. (2004). Cognitive-neuropsychological function in chronic physical aggression and hyperactivity. Journal of Abnormal Psychology, 113, 603613.Google Scholar
Séguin, J. R., Parent, , Tremblay, S., , R. E., & Zelazo, P. D. (2009). Different neurocognitive functions regulate physical aggression and hyperactivity in early childhood. Journal of Child Psychology and Psychiatry, 50, 679687.Google Scholar
Séguin, J. R., Pihl, , Harden, R. O., Tremblay, P. W., , R. E., & Boulerice, B. (1995). Cognitive and neuropsychological characteristics of physically aggressive boys. Journal of Abnormal Psychology, 104, 614624.Google Scholar
Séguin, J. R. & Pilon, M. (2013). Integration of neuropsychological assessment and clinical intervention for youth with conduct and oppositional defiant disorders. In Reddy, L. A., Hale, J. B., & Weissman, A. S. (Eds), Neuropsychological assessment and intervention for emotional and behavior disordered youth: An integrated step-by-step evidence-based approach (pp. 177199). Washington, DC: American Psychological Association.Google Scholar
Séguin, J. R., Sylvers, , , P., & Lilienfeld, S. O. (2007). The neuropsychology of violence. In Waldman, I. D., Flannery, D. J., & Vazsonyi, A. T. (Eds), The Cambridge handbook of violent behavior and aggression (pp. 187214). New York: Cambridge University Press.Google Scholar
Séguin, J. R. & Tremblay, R. E. (2013). Aggression and anti-social behavior: A developmental perspective. In Zelazo, P. D. (Ed.), Oxford handbook of developmental psychology, Vol. 2: Self and other (pp. 507526). Oxford Library of Psychology. New York: Oxford University Press.Google Scholar
Siever, L. J. (2008). Neurobiology of aggression and violence. American Journal of Psychiatry, 165, 429442.Google Scholar
Smith, S. F. & Lilienfeld, S. O. (2015). The response modulation hypothesis of psychopathy: A meta-analytic and narrative analysis. Psychological Bulletin, 141 (6), 11451177.Google Scholar
Smith, S. S., Arnett, P. A., & Newman, J. P. (1992). Neuropsychological differentiation of psychopathic and nonpsychopathic criminal offenders. Personality and Individual Differences, 13, 12331243.Google Scholar
Sonuga-Barke, E. J. S., Cortese, S., Fairchild, G., & Stringaris, A. (2016). Annual research review: Transdiagnostic neuroscience of child and adolescent mental disorders – differentiating decision making in attention-deficit/hyperactivity disorder, conduct disorder, depression, and anxiety. Journal of Child Psychology and Psychiatry, 57(3), 321349.Google Scholar
Steinberg, L. (2013, print). The influence of neuroscience on US Supreme Court decisions about adolescents’ criminal culpability. Nature Reviews Neuroscience, 14(7), 513518.Google Scholar
Stuss, D. T. (2011). Functions of the frontal lobes: Relation to executive functions. Journal of the International Neuropsychological Society, 17, 759765.Google Scholar
Taylor, J., Iacono, W. G., & McGue, M. (2000). Evidence for a genetic etiology of early-onset delinquency. Journal of Abnormal Psychology, 109, 634643.Google Scholar
Verbruggen, F. (2016). Executive control of actions across time and space. Current Directions in Psychological Science, 25(6), 399404.Google Scholar
Walsh, A. (1987). Cognitive functioning and delinquency: Property versus violent offenses. International Journal Of Offender Therapy And Comparative Criminology, 31, 285289.Google Scholar
Wang, D. S., Szyf, M., Benkelfat, C., Provençal, N., Turecki, G., Caramaschi, D., et al. (2012). Peripheral SLC6A4 DNA methylation is associated with in vivo measures of human brain serotonin synthesis and childhood physical aggression. PLoS ONE, 7, e39501.Google Scholar
Welsh, M. & Peterson, E. (2014). Issues in the conceptualization and assessment of hot executive functions in childhood. Journal of the International Neuropsychological Society, 20(2), 152156.Google Scholar
White, H. R., Bates, M. E., & Buyske, S. (2001). Adolescence-limited versus persistent delinquency: Extending Moffitt’s hypothesis into adulthood. Journal of Abnormal Psychology, 110, 600609.Google Scholar
Witt, K., van Dorn, R., & Fazel, S. (2013). Risk factors for violence in psychosis: Systematic review and meta-regression analysis of 110 studies. PLoS ONE, 8(2), e55942.Google Scholar
World Health Organization (WHO) (1992). International statistical classification of diseases and related health problems, Tenth Revision. Geneva: retrieved from http://apps.who.int/classifications/apps/icd/icd10online/.Google Scholar
Zeier, J. D., Maxwell, J. S., & Newman, J. P. (2009). Attention moderates the processing of inhibitory information in primary psychopathy. Journal of Abnormal Psychology, 118(3), 554563.Google Scholar

References

Barkley, R. A., Smith, K. M., Fischer, M., & Navia, B. (2006). An examination of the behavioral and neuropsychological correlates of three ADHD candidate gene polymorphisms (DRD4 7+, DBH Taq1 A2, and DAT1 40 bp VNTR) in hyperactive and normal children followed to adulthood. American Journal of Medical Genetics B Neuropsychiatric Genetics, 141, 487498.Google Scholar
Beaver, K. M., Connolly, E. J., Schwartz, J. A., Al-Ghamdi, M. S., & Kobeisy, A. N. (2013). Genetic and environmental contributions to stability and change in levels of self-control. Journal of Criminal Justice, 41(5), 300308.Google Scholar
Beaver, K. M., DeLisi, M., & Vaughn, M. G. (2010). A biosocial interaction between prenatal exposure to cigarette smoke and family structure in the prediction of psychopathy in adolescence. Psychiatric Quarterly, 81(4), 325334.Google Scholar
Beaver, K. M., Vaughn, M. G., DeLisi, M., & Higgins, G. E. (2010). The biosocial correlates of neuropsychological deficits: Results from the National Longitudinal Study of Adolescent Health. International Journal of Offender Therapy and Comparative Criminology, 54(6), 878894.Google Scholar
Beaver, K. M., Wright, J. P., & DeLisi, M. (2007). Self-control as an executive function: Reformulating Gottfredson and Hirschi’s parental socialization thesis. Criminal Justice and Behavior, 34(10), 13451361.Google Scholar
Beaver, K. M., Wright, J. P., & DeLisi, M. (2008). Delinquent peer group formation: Evidence of a gene X environment correlation. Journal of Genetic Psychology, 169(3), 227244.Google Scholar
Beaver, K. M., Wright, J. P., DeLisi, M., Daigle, L. E., Swatt, M. L., & Gibson, C. L. (2007). Evidence of a gene x environment interaction in the creation of victimization results from a longitudinal sample of adolescents. International Journal of Offender Therapy and Comparative Criminology, 51(6), 620645.Google Scholar
Behnken, M. P., DeLisi, M., Trulson, C. R., & Vaughn, M. G. (2015). The traumatic brain injury association with career criminality withstands powerful confounds. In DeLisi, M. & Vaughn, M. G. (Eds), The Routledge International Handbook of Biosocial Criminology (pp. 418424). New York: Routledge.Google Scholar
Belsky, J., Bakermans-Kranenburg, M. J., & Van IJzendoorn, M. H. (2007). For better and for worse differential susceptibility to environmental influences. Current Directions in Psychological Science, 16(6), 300304.Google Scholar
Belsky, J. & Pluess, M. (2009). Beyond diathesis stress: differential susceptibility to environmental influences. Psychological Bulletin, 135(6), 885908.Google Scholar
Belsky, J. & Pluess, M. (2013). Beyond risk, resilience, and dysregulation: Phenotypic plasticity and human development. Development and Psychopathology, 25(4), 12431261.Google Scholar
Boisvert, D., Wright, J. P., Knopik, V., & Vaske, J. (2012). Genetic and environmental overlap between low self-control and delinquency. Journal of Quantitative Criminology, 28(3), 477507.Google Scholar
Botchkovar, E., Marshall, I. H., Rocque, M., & Posick, C. (2015). The importance of parenting in the development of self-control in boys and girls: Results from a multinational study of youth. Journal of Criminal Justice, 43(2), 133141.Google Scholar
Byrd, A. L. & Manuck, S. B. (2014). MAOA, childhood maltreatment, and antisocial behavior: Meta-analysis of a gene-environment interaction. Biological Psychiatry, 75(1), 917.Google Scholar
Caspi, A., Langley, K., Milne, B., Moffitt, T. E., O’Donovan, M., Owen, M. J., … & Williams, B. (2008). A replicated molecular genetic basis for subtyping antisocial behavior in children with attention-deficit/hyperactivity disorder. Archives of General Psychiatry, 65(2), 203210.Google Scholar
Caspi, A., McCray, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W. … & Poulton, R. (2002) Role of genotype in the cycle of violence in maltreated children. Science, 297(5582), 851854.Google Scholar
Castellanos-Ryan, N., Séguin, J. R., Vitaro, , Parent, F., , S., & Tremblay, R. E. (2013). Impact of a 2-year multimodal intervention for disruptive 6-year-olds on substance use in adolescence: Randomised controlled trial. The British Journal of Psychiatry, 203(3), 188195.Google Scholar
Chabris, C. F., Lee, J. J., Cesarini, D., Benjamin, D. J., & Laibson, D. I. (2015). The fourth law of behavior genetics. Current Directions in Psychological Science, 24(4), 304312.Google Scholar
Chen, C., Liu, C., Chen, C., Moyzis, R., Chen, W., & Dong, Q. (2015). Genetic variations in the serotoninergic system and environmental factors contribute to aggressive behavior in Chinese adolescents. Physiology & Behavior, 138, 6268.Google Scholar
Chester, D. S., DeWall, C. N., Derefinko, K. J., Estus, S., Peters, J. R., Lynam, D. R., & Jiang, Y. (2015). Monoamine oxidase A (MAOA) genotype predicts greater aggression through impulsive reactivity to negative affect. Behavioural Brain Research, 283, 97101.Google Scholar
Choe, D. E., Shaw, D. S., Hyde, L. W., & Forbes, E. E. (2014). Interactions between monoamine oxidase A and punitive discipline in African American and Caucasian men’s antisocial behavior. Clinical Psychological Science, 2(5), 591601.Google Scholar
Cleveland, H. H., Wiebe, R., & Rowe, D. C. (2005). Genetic influences on associations with substance using peers. Journal of Genetic Psychology, 166, 153169.Google Scholar
Damasio, H., Grabowski, T., Frank, R., Galaburda, A. M., & Damasio, A. R. (1994). The return of Phineas Gage: Clues about the brain from the skull of a famous patient. Science, 264, 11021105.Google Scholar
DeLisi, M. & Vaughn, M. G. (2014). Foundation for a temperament-based theory of antisocial behavior and criminal justice system involvement. Journal of Criminal Justice, 42(1), 1025.Google Scholar
DeLisi, M., & Vaughn, M. G. (Eds) (2015). The Routledge international handbook of biosocial criminology. New York: Routledge.Google Scholar
Derringer, J., Krueger, R. F., Irons, D. E., & Iacono, W. G. (2010). Harsh discipline, childhood sexual assault, and MAOA genotype: an investigation of main and interactive effects on diverse clinical externalizing outcomes. Behavior Genetics, 40(5), 639–648.Google Scholar
Dmitrieva, J., Chen, C., Greenberger, E., Ogunseitan, O., & Ding, Y. C. (2011). Gender-specific expression of the DRD4 gene on adolescent delinquency, anger and thrill seeking. Social Cognitive and Affective Neuroscience, 6(1), 8289.Google Scholar
Farrer, T. J., Frost, R. B., & Hedges, D. W. (2012). Prevalence of traumatic brain injury in intimate partner violence offenders compared to the general population: A meta-analysis. Trauma, Violence, & Abuse, 13(2), 7782.Google Scholar
Farrer, T. J., Frost, R. B., & Hedges, D. W. (2013). Prevalence of traumatic brain injury in juvenile offenders: A meta-analysis. Child Neuropsychology, 19(3), 225234.Google Scholar
Farrer, T. J. & Hedges, D. W. (2011). Prevalence of traumatic brain injury in incarcerated groups compared to the general population: A meta-analysis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35(2), 390394.Google Scholar
Fergusson, D. M., Boden, J. M., Horwood, L. J., Miller, A. L., & Kennedy, M. A. (2011). MAOA, abuse exposure and antisocial behaviour: 30-year longitudinal study. The British Journal of Psychiatry, 198(6), 457463.Google Scholar
Fergusson, D. M., Boden, J. M., Horwood, L. J., Miller, A., & Kennedy, M. A. (2012). Moderating role of the MAOA genotype in antisocial behaviour. The British Journal of Psychiatry, 200(2), 116123.Google Scholar
Fernàndez-Castillo, N. & Cormand, B. (2016). Aggressive behavior in humans: Genes and pathways identified through association studies. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 171B, 676696.Google Scholar
Finkenauer, C., Engels, R. C., & Baumeister, R. F. (2005). Parenting behaviour and adolescent behavioural and emotional problems: The role of self-control. International Journal of Behavioral Development, 29(1), 5869.Google Scholar
Foley, D. L., Eaves, L. J., Wormley, B., Silberg, J. L., Maes, H. H., Kuhn, J., & Riley, B. (2004). Childhood adversity, monoamine oxidase a genotype, and risk for conduct disorder. Archives of General Psychiatry, 61(7), 738744.Google Scholar
Gajos, J. M., Fagan, A. A., & Beaver, K. M. (2016). Use of genetically informed evidence-based prevention science to understand and prevent crime and related behavioral disorders. Criminology & Public Policy, 15(3), 683–701.Google Scholar
Gibson, C. L., Piquero, A. R., & Tibbetts, S. G. (2000). Assessing the relationship between maternal cigarette smoking during pregnancy and age at first police contact. Justice Quarterly, 17(3), 519542.Google Scholar
Gottfredson, M. R. & Hirschi, T. (1990). A general theory of crime. Stanford, CA: Stanford University Press.Google Scholar
Graham, D. M., Glass, L., & Mattson, S. N. (2016). Teratogen exposure and externalizing behavior. In Beauchaine, T. P. & Hinshaw, S. P. (Eds), The Oxford handbook of externalizing spectrum disorders (pp. 416439). New York: Oxford University Press.Google Scholar
Greenberg, M. T., Kusche, C., & Mihalic, S. F. (2006). Promoting alternative thin strategies (PATHS): Blueprints for violence prevention, Book Ten. Boulder, CO: Center for the Study and Prevention of Violence.Google Scholar
Hay, C. & Meldrum, R. (2015). Self-control and crime over the life course. Thousand Oaks, CA: SAGE.Google Scholar
Holland, N. R. & DeLisi, M. (2015). The warrior gene: MAOA genotype and antisocial behavior in males. In DeLisi, M. & Vaughn, M. G. (Eds), The Routledge international handbook of biosocial criminology (pp. 179189). New York: Routledge.Google Scholar
Israel, S., Caspi, A., Belsky, D. W., Harrington, H., Hogan, S., Houts, R., Ramrakha, S., Sanders, S., Poulton, R., & Moffitt, T. E. (2014). Credit scores, cardiovascular disease risk, and human capital. Proceedings of the National Academy of Sciences, 111(48), 1708717092.Google Scholar
Jackson, D. B. & Beaver, K. M. (2015). The influence of nutritional factors on verbal deficits and psychopathic personality traits: Evidence of the moderating role of the MAOA genotype. International Journal of Environmental Research and Public Health, 12(12), 1573915755.Google Scholar
Jackson, D. B. & Newsome, J. (2016). The link between infant neuropsychological risk and childhood antisocial behavior among males: The moderating role of neonatal health risk. Journal of Criminal Justice, 47, 3240.Google Scholar
Kochanska, G., Philibert, R. A., & Barry, R. A. (2009). Interplay of genes and early mother-child relationship in the development of self-regulation from toddler to preschool age. Journal of Child Psychology and Psychiatry, 50, 13311338.Google Scholar
Kim-Cohen, J., Caspi, A., Taylor, A., Williams, B., Newcombe, R., Craig, I. W., & Moffitt, T. E. (2006). MAOA, maltreatment, and gene–environment interaction predicting children’s mental health: new evidence and a meta-analysis. Molecular Psychiatry, 11(10), 903913.Google Scholar
Kretschmer, T., Dijkstra, J. K., Ormel, J., Verhulst, F. C., & Veenstra, R. (2013). Dopamine receptor D4 gene moderates the effect of positive and negative peer experiences on later delinquency: The Tracking Adolescents’ Individual Lives Survey study. Development and Psychopathology, 25(4), 11071117.Google Scholar
Kretschmer, T., Vitaro, F., & Barker, E. D. (2014). The association between peer and own aggression is moderated by the BDNF Val-Met polymorphism. Journal of Research on Adolescence, 24(1), 177185.Google Scholar
Luppino, D., Moul, C., Hawes, D. J., Brennan, J., & Dadds, M. R. (2014). Association between a polymorphism of the vasopressin 1B receptor gene and aggression in children. Psychiatric Genetics, 24(5), 185190.Google Scholar
Meldrum, R. C. & Barnes, J. C. (2016). Prenatal exposure to secondhand smoke and the development of self-control. Journal of Developmental and Life Course Criminology, doi: 10.1007/s40865-016-0038-1.Google Scholar
Moffitt, T. E. (1993). Adolescence-limited and life-course-persistent antisocial behavior: A developmental taxonomy. Psychological Review, 100(4), 674701.Google Scholar
Moffitt, T. E. (2005). The new look of behavioral genetics in developmental psychopathology: gene-environment interplay in antisocial behaviors. Psychological Bulletin, 131(4), 533554.Google Scholar
Moffitt, T. E., Arseneault, L., Belsky, D., Dickson, N., Hancox, R. J., Harrington, H., … & Caspi, A. (2011). A gradient of childhood self-control predicts health, wealth, and public safety. Proceedings of the National Academy of Sciences, 108(7), 26932698.Google Scholar
Musci, R. J., Bradshaw, C. P., Maher, B., Uhl, G. R., Kellam, S. G., & Ialongo, N. S. (2014). Reducing aggression and impulsivity through school-based prevention programs: A gene by intervention interaction. Prevention Science, 15(6), 831840.Google Scholar
Pappa, I., Mileva-Seitz, V. R., Bakermans-Kranenburg, M. J., Tiemeier, H., & van IJzendoorn, M. H. (2015). The magnificent seven: A quantitative review of dopamine receptor d4 and its association with child behavior. Neuroscience & Biobehavioral Reviews, 57, 175186.Google Scholar
Plomin, R., DeFries, J. C., & Loehlin, J. C. (1977). Genotype-environment interaction and correlation in the analysis of human behavior. Psychological Bulletin, 84(2), 309322.Google Scholar
Pluess, M. & Belsky, J. (2011). Prenatal programming of postnatal plasticity? Development and Psychopathology, 23(1), 2938.Google Scholar
Raine, A., Moffitt, T. E., Caspi, A., Loeber, R., Stouthamer-Loeber, M., & Lynam, D. (2005). Neurocognitive impairments in boys on the life-course persistent antisocial path. Journal of Abnormal Psychology, 114, 3849.Google Scholar
Rehan, W., Antfolk, J., Johansson, A., Aminoff, M., Sandnabba, N. K., Westberg, L., & Santtila, P. (2016). Gene–environment correlation between the dopamine transporter gene (DAT1) polymorphism and childhood experiences of abuse. Journal of Interpersonal Violence. doi: 10.1177/0886260515622299.Google Scholar
Roettger, M. E., Boardman, J. D., Harris, K. M., & Guo, G. (2016). The association between the MAOA 2R genotype and delinquency over time among men: The interactive role of parental closeness and parental incarceration. Criminal Justice and Behavior, 43(8), 10761094.Google Scholar
Rutter, M. L. (1997). Nature–nurture integration: the example of antisocial behavior. American Psychologist, 52(4), 390398.Google Scholar
Rutter, M., Dunn, J., Plomin, R., Simonoff, E., Pickles, A., Maughan, B., Ormel, J., Meyer, J., & Eaves, L. (1997). Integrating nature and nurture: Implications of person–environment correlations and interactions for developmental psychopathology. Development and Psychopathology, 9(2), 335364.Google Scholar
Samek, D. R., Bailey, J., Hill, K. G., Wilson, S., Lee, S., Keyes, M. A., … & McGue, M. (2016). A test-replicate approach to candidate gene research on addiction and externalizing disorders: A collaboration across five longitudinal studies. Behavior Genetics, 46(5), 608626.Google Scholar
Scarr, S. & McCartney, K. (1983). How people make their own environments: A theory of genotype→environment effects. Child Development, 54, 424435.Google Scholar
Shiroma, E. J., Ferguson, P. L., & Pickelsimer, E. E. (2010). Prevalence of traumatic brain injury in an offender population: a meta-analysis. Journal of Correctional Health Care, 16(2), 147159.Google Scholar
Stetler, D. A., Davis, C., Leavitt, K., Schriger, I., Benson, K., Bhakta, S., … & Bortolato, M. (2014). Association of low-activity MAOA allelic variants with violent crime in incarcerated offenders. Journal of Psychiatric Research, 58, 6975.Google Scholar
Taylor, A. & Kim-Cohen, J. (2007). Meta-analysis of gene–environment interactions in developmental psychopathology. Development and Psychopathology, 19(4), 10291037.Google Scholar
Thibodeau, E. L., Cicchetti, D., & Rogosch, F. A. (2015). Child maltreatment, impulsivity, and antisocial behavior in African American children: Moderation effects from a cumulative dopaminergic gene index. Development and Psychopathology, 27(4), 16211636.Google Scholar
Tielbeek, J. J., Karlsson Linnér, R., Beers, , Posthuma, K., Popma, D., , A., & Polderman, T. J. (2016). Meta-analysis of the serotonin transporter promoter variant (5-HTTLPR) in relation to adverse environment and antisocial behavior. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 171(5), 748760.Google Scholar
Tiihonen, J., Rautiainen, M. R., Ollila, H. M., Repo-Tiihonen, E., Virkkunen, M., Palotie, A., … & Paunio, T. (2015). Genetic background of extreme violent behavior. Molecular Psychiatry, 20(6), 786792.Google Scholar
Tuvblad, C., Narusyte, J., Comasco, E., Andershed, H., Andershed, A. K., Colins, O. F., Fanti, K. A., & Nilsson, K. W. (2016). Physical and verbal aggressive behavior and COMT genotype: Sensitivity to the Environment. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 171B, 708718.Google Scholar
Van Horn, J. D., Irimia, A., Torgerson, C. M., Chambers, M. C., Kikinis, R., & Toga, A. W. (2012). Mapping connectivity damage in the case of Phineas Gage. PLoS ONE, 7(5), e37454.Google Scholar
Vaske, J., Galyean, K., & Cullen, F. T. (2011). Toward a biosocial theory of offender rehabilitation: Why does cognitive-behavioral therapy work? Journal of Criminal Justice, 39(1), 90102.Google Scholar
Vaughn, M. G., DeLisi, M., Beaver, K. M., & Wright, J. P. (2009). Identifying latent classes of behavioral risk based on early childhood manifestations of self-control. Youth Violence and Juvenile Justice, 7, 1631.Google Scholar
Vazsonyi, A. T. & Huang, L. (2010). Where self-control comes from: on the development of self-control and its relationship to deviance over time. Developmental Psychology, 46(1), 245257.Google Scholar
Vazsonyi, A. T., Jiskrova, G. K., Ksinan, A. J., & Blatný, M. (2016). An empirical test of self- control theory in Roma adolescents. Journal of Criminal Justice, 44, 6676.Google Scholar
Vazsonyi, A. T., Mikuška, J., & Kelley, E. L. (2017). It's time: A meta-analysis on the self-control-deviance link. Journal of Criminal Justice, 48, 48-63.Google Scholar
Vazsonyi, A. T., Roberts, J. W., & Huang, L. (2015). Why focusing on nurture made and still makes sense: The biosocial development of self-control. In DeLisi, M. & Vaughn, M. G. (Eds), The Routledge international handbook of biosocial criminology (pp. 263279). New York: Routledge.Google Scholar
Veroude, K., Zhang-James, Y., Fernàndez-Castillo, N., Bakker, , Cormand, M. J., , B., & Faraone, S. V. (2016). Genetics of aggressive behavior: An overview. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 171(1), 343.Google Scholar
Wakschlag, L. S., Leventhal, B. L., Pine, D. S., Pickett, K. E., & Carter, A. S. (2006). Elucidating early mechanisms of developmental psychopathology: The case of prenatal smoking and disruptive behavior. Child Development, 77(4), 893906.Google Scholar
Wakschlag, L. S., Pickett, K. E., Cook, E., Jr., Benowitz, N. L., & Leventhal, B. L. (2002). Maternal smoking during pregnancy and severe antisocial behavior in offspring: A review. American Journal of Public Health, 92(6), 966974.Google Scholar
Weeland, J., Overbeek, G., de Castro, B. O., & Matthys, W. (2015). Underlying mechanisms of gene–environment interactions in externalizing behavior: A systematic review and search for theoretical mechanisms. Clinical Child and Family Psychology Review, 18(4), 413–442.Google Scholar
Wright, J. P. & Beaver, K. M. (2005). Do parents matter in creating self-control in their children? A genetically informed test of Gottfredson and Hirschi’s theory of low self-control. Criminology, 43, 11691198.Google Scholar
Wright, J. P., Beaver, K. M., DeLisi, M., & Vaughn, M. G. (2008). Evidence of negligible parenting influences on self-control, delinquent peers, and delinquency in a sample of twins. Justice Quarterly, 25, 544569.Google Scholar
Wright, J. P., Boisvert, D., & Vaske, J. (2009). Blood lead levels in early childhood predict adulthood psychopathy. Youth Violence and Juvenile Justice, 7(3), 208222.Google Scholar
Wright, J. P., Dietrich, K. N., Ris, M. D., Hornung, R. W., Wessel, S. D., Lanphear, B. P., … & Rae, M. N. (2008). Association of prenatal and childhood blood lead concentrations with criminal arrests in early adulthood. PLoS Medicine, 5(5), e101.Google Scholar

References

Arana, A. A., Boyd, E. Q., Guarneri-White, M., Iyer-Eimerbrink, P., Liegey Dougall, A., & Jensen-Campbell, L. (in press). The impact of social and physical peer victimization on systemic inflammation in adolescence. Merrill-Palmer Quarterly.Google Scholar
Banny, A. M., Cicchetti, D., Rogosch, F. A., Oshri, A., & Crick, N. R. (2013). Vulnerability to depression: A moderated mediation model of the roles of child maltreatment, peer victimization, and serotonin transporter linked polymorphic region genetic variation among children from low socioeconomic status backgrounds. Development and Psychopathology, 25, 599614.Google Scholar
Baumeister, D., Akhtar, R., Ciufolini, S., Pariante, C. M., & Mondelli, V. (2016). Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-α. Molecular Psychiatry, 21, 642649.Google Scholar
Baumeister, D., Russell, A., Pariante, C. M., & Mondelli, V. (2014). Inflammatory biomarker profiles of mental disorders and their relation to clinical, social and lifestyle factors. Social Psychiatry and Psychiatric Epidemiology, 49, 841849. doi: 10.1007/s00127-014-0887-z.Google Scholar
Baumeister, R. F. & Leary, M. R. (1995). The need to belong: Desire for interpersonal attachments as a fundamental human motivation. Psychological Bulletin, 117, 497529.Google Scholar
Benjet, C., Thompson, R. J., & Gotlib, I. H. (2010). 5-HTTLPR moderates the effect of relational peer victimization on depressive symptoms in adolescent girls. Journal of Child Psychology and Psychiatry, 51, 173179. doi: 10.1111/j.1469-7610.2009.02149.x.Google Scholar
Brendgen, M., Ouellet-Morin, I., Lupien, S. J., Vitaro, F., Dionne, G., & Boivin, M. (2017). Environmental influence of problematic social relationships on adolescents’ daily cortisol secretion: a monozygotic twin-difference study. Psychological Medicine, 47, 460470.Google Scholar
Carney, J. V., Hazler, R. J., Oh, I., Hibel, L. C., & Granger, D. A. (2010). The relations between bullying exposures in middle childhood, anxiety, and adrenocortical activity. Journal of School Violence, 9, 194211. doi: 10.1080/15388220903479602.Google Scholar
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., … & Poulton, R. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386389.Google Scholar
Copeland, W. E., Wolke, D., Angold, A., & Costello, E. J. (2013). Adult psychiatric outcomes of bullying and being bullied by peers in childhood and adolescence. JAMA Psychiatry, 70, 419426.Google Scholar
Copeland, W. E., Wolke, D., Lereya, S. T., Shanahan, L., Worthman, C., & Costello, E. J. (2014). Childhood bullying involvement predicts low-grade systemic inflammation into adulthood. Proceedings of the National Academy of Sciences, 111, 75707575.Google Scholar
Duncan, L. E., Pollastri, A. R., & Smoller, J. W. (2014). Mind the gap: Why many geneticists and psychological scientists have discrepant views about gene-environment interaction (G×E) research. American Psychologist, 69, 249268.Google Scholar
Ehlert, U. (2013). Enduring psychobiological effects of childhood adversity. Psychoneuroendocrinology, 38(9), 18501857.Google Scholar
Eraly, S. A., Nievergelt, C. M., & Maihofer, A. X. (2014). Assessment of Plasma C-Reactive Protein as a Biomarker of Posttraumatic Stress Disorder Risk. JAMA Psychiatry, 71, 423431. doi: 10.1001/jamapsychiatry.2013.4374.Google Scholar
Faris, R. & Felmlee, D. (2011). Status struggles: Network centrality and gender segregation in same- and cross-gender aggression. American Sociological Review, 76, 4873.Google Scholar
Farmer, T. W., Estell, D. B., Bishop, J. L., O’Neal, K. K., & Cairns, B. D. (2003). Rejected bullies or popular leaders? The social relations of aggressive subtypes of rural African American early adolescents. Developmental Psychology, 39, 9921004.Google Scholar
González-Cabrera, J., Calvete, E., León-Mejía, A., Pérez-Sancho, C., & Peinado, J. M. (2017). Relationship between cyberbullying roles, cortisol secretion and psychological stress. Computers in Human Behavior, 70, 153160.Google Scholar
Hansen, Å. M., Hogh, A., & Persson, R. (2011). Frequency of bullying at work, physiological response, and mental health. Journal of Psychosomatic Research, 70, 1927. doi: 10.1016/j.jpsychores.2010.05.010.Google Scholar
Hansen, Å. M., Hogh, A., Persson, R., Karlson, B., Garde, A. H., & Ørbæk, P. (2006). Bullying at work, health outcomes, and physiological stress response. Journal of Psychosomatic Research, 60, 6372.Google Scholar
Idsoe, T., Dyregrov, A., & Idsoe, E. C. (2012). Bullying and PTSD symptoms. Journal of Abnormal Child Psychology, 40, 901911.Google Scholar
Iyer, P. A., Dougall, A. L., & Jensen-Campbell, L. A. (2013). Are some adolescents differentially susceptible to the influence of bullying on depression? Journal of Research in Personality, 47, 272281.Google Scholar
Jacobson, L. & Sapolsky, R. (1991). The role of the hippocampus in feedback regulation of the hypothalamic–pituitary–adrenocortical axis. Endocrine Reviews, 12, 118134.Google Scholar
King, R. A., Schwab-Stone, M., Flisher, A. J., Greenwald, S., Kramer, R. A., Goodman, S. H., & Gould, M. S. (2001). Psychosocial and risk behavior correlates of youth suicide attempts and suicidal ideation. Journal of the American Academy of Child & Adolescent Psychiatry, 40, 837846. doi: 10.1097/00004583-200107000-00019.Google Scholar
Kliewer, W. (2006). Violence exposure and cortisol responses in urban youth. International Journal of Behavioral Medicine, 13, 109120.Google Scholar
Kliewer, W. (2016). Victimization and biological stress responses in urban adolescents: emotion regulation as a moderator. Journal of Youth and Adolescence, 45, 18121823.Google Scholar
Knack, J. M., Jensen-Campbell, L. A., & Baum, A. (2011). Worse than sticks and stones? Bullying is associated with altered HPA axis functioning and poorer health. Brain and cognition, 77, 183190.Google Scholar
Knack, J. M., Tsar, V., Vaillancourt, T., Hymel, S., & McDougall, P. (2012). What protects rejected adolescents from also being bullied by their peers? The moderating role of peer-valued characteristics. Journal of Research on Adolescence, 22, 467479.Google Scholar
Lereya, S. T., Copeland, W. E., Costello, E. J., & Wolke, D. (2015). Adult mental health consequences of peer bullying and maltreatment in childhood: Two cohorts in two countries. The Lancet Psychiatry, 2, 524531.Google Scholar
Lesch, K.-P., Bengel, D., Heilis, A., Sabol, S. Z., Greenberg, B. D., Petri, S., … & Murphy, D. L. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science, 274, 15271531.Google Scholar
Lin, J. E., Neylan, T. C., Epel, E., & O’Donovan, A. (2016). Associations of childhood adversity and adulthood trauma with C-reactive protein: A cross-sectional population-based study. Brain, Behavior, and Immunity, 53, 105112.Google Scholar
Litman, L., Costantino, G., Waxman, R., Sanabria-Velez, C., Rodriguez-Guzman, V. M., Lampon-Velez, A., … & Cruz, T. (2015). Relationship between peer victimization and posttraumatic stress among primary school children. Journal of Traumatic Stress, 28, 348354.Google Scholar
Lupien, S. J., Fiocco, A., Wan, N., Maheu, F., Lord, C., Schramek, T., & Tu, M. T. (2005). Stress hormones and human memory function across the lifespan. Psychoneuroendocrinology, 30(3), 225242. doi: 10.1016/j.psyneuen.2004.08.003.Google Scholar
Lupien, S. J., DeLeon, M., DeSanti, S., Convit, A., Tarshish, C., Nair, N. P. V., … & Meaney, M.J. (1998). Longitudinal increase in cortisol during human aging predicts hippocampal atrophy and memory deficits. Nature Neuroscience, 1, 6973. doi: 10.1038/271.Google Scholar
Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10, 434445.Google Scholar
McDougall, P. & Vaillancourt, T. (2015). Long-term adult outcomes of peer victimization in childhood and adolescence: Pathways to adjustment and maladjustment. American Psychologist, 70, 300310.Google Scholar
McEwen, B. S. (1998). Stress, adaptation, and disease: Allostasis and allostatic load. Annals of the New York Academy of Sciences, 840, 3344.Google Scholar
McEwen, B. S. (2004). Protection and damage from acute and chronic stress: Allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Annals of the New York Academy of Sciences, 1032, 17.Google Scholar
Miller, A. H., Maletic, V., & Raison, C. L. (2009). Inflammation and its discontents: The role of cytokines in the pathophysiology of major depression. Biological Psychiatry, 65, 732741. doi: 10.1016/j.biopsych.2008.11.029.Google Scholar
Miller, G. E., Chen, E., & Parker, K. J. (2011). Psychological stress in childhood and susceptibility to the chronic diseases of aging: Moving toward a model of behavioral and biological mechanisms. Psychological Bulletin, 137, 959997.Google Scholar
Miller, G. E., Chen, E., & Zhou, E. S. (2007). If it goes up, must it come down? Chronic stress and the hypothalamic-pituitary-adrenocortical axis in humans. Psychological Bulletin, 133, 2545.Google Scholar
Mishna, F. (2007). Bullying and victimization: Transforming trauma through empowerment. In Bussey, M. & Bula Wise, J. (Eds), Trauma transformed: An empowerment response (pp. 124141). New York: Columbia University Press.Google Scholar
Morris, M. C., Compas, B. E., & Garber, J. (2012). Relations among posttraumatic stress disorder, comorbid major depression, and HPA function: A systematic review and meta-analysis. Clinical Psychology Review, 32, 301315.Google Scholar
Nansel, T. R., Overpeck, M., Pilla, R. S., Ruan, W. J., Simons-Morton, B., & Scheidt, P. (2001). Bullying behaviors among US youth: Prevalence and association with psychosocial adjustment. JAMA, 285, 20942100.Google Scholar
National Academies of Sciences, Engineering, and Medicine (2016). Preventing Bullying Through Science, Policy, and Practice. Washington, DC: The National Academies Press.Google Scholar
Olweus, D. (1999). Sweden. In Smith, P. K., Morita, Y., Junger-Tas, J., Olweus, D., Catalano, R., & Slee, P. (Eds), The nature of school bullying: A cross-national perspective (pp. 727). London; New York: Routledge.Google Scholar
Ouellet-Morin, I., Danese, A., Bowes, L., Shakoor, S., Ambler, A., Pariante, C. M., … & Arseneault, L. (2011a). A discordant monozygotic twin design shows blunted cortisol reactivity among bullied children. Journal of the American Academy of Child & Adolescent Psychiatry, 50, 574582.Google Scholar
Ouellet-Morin, I., Odgers, C. L., Danese, A., Bowes, L., Shakoor, S., Papadopoulos, A. S., … & Arseneault, L. (2011b). Blunted cortisol responses to stress signal social and behavioral problems among maltreated/bullied 12-year-old children. Biological Psychiatry, 70, 10161023.Google Scholar
Ouellet-Morin, I., Wong, C. C. Y., Danese, A., Pariante, C. M., Papadopoulos, A. S., Mill, J., & Arseneault, L. (2013). Increased serotonin transporter gene (SERT) DNA methylation is associated with bullying victimization and blunted cortisol response to stress in childhood: a longitudinal study of discordant monozygotic twins. Psychological Medicine, 43, 18131823.Google Scholar
Sapolsky, R. M., Krey, L. C., & McEwen, B. S. (1986). The neuroendocrinology of stress and aging: The glucocorticoid cascade hypothesis. Endocrine Reviews, 7, 284301.Google Scholar
Shalev, I. & Belsky, J. (2016). Early-life stress and reproductive cost: A two-hit developmental model of accelerated aging? Medical Hypotheses, 90, 4147. doi: 10.1016/j.mehy.2016.03.002.Google Scholar
Stetler, C. & Miller, G. E. (2011). Depression and hypothalamic-pituitary-adrenal activation: A quantitative summary of four decades of research. Psychosomatic Medicine, 73, 114126.Google Scholar
Straub, R., Buttgereit, F., & Cutolo, M. (2011). Alterations of the hypothalamic-pituitary-adrenal axis in systemic immune diseases – a role for misguided energy regulation. Clinical and Experimental Rheumatology, 29(5 Suppl. 68), S23S31.Google Scholar
Sugden, K., Arseneault, L., Harrington, H., Moffitt, T. E., Williams, B., & Caspi, A. (2010). Serotonin transporter gene moderates the development of emotional problems among children following bullying victimization. Journal of the American Academy of Child and Adolescent Psychiatry, 49, 830840.Google Scholar
Szyf, M. & Bick, J. (2013). DNA methylation: A mechanism for embedding early life experiences in the genome. Child Development, 84, 4957. doi: 10.1111/j.1467-8624.2012.01793.x.Google Scholar
Takizawa, R., Danese, A., Maughan, B., & Arseneault, L. (2015). Bullying victimization in childhood predicts inflammation and obesity at mid-life: a five-decade birth cohort study. Psychological Medicine, 45, 27052715.Google Scholar
Takizawa, R., Maughan, B., & Arseneault, L. (2014). Adult health outcomes of childhood bullying victimization: Evidence from a five-decade longitudinal British birth cohort. American Journal of Psychiatry, 171, 777784.Google Scholar
Ttofi, M. M., Farrington, D. P., Lösel, F., & Loeber, R. (2011). The predictive efficiency of school bullying versus later offending: A systematic/meta-analytic review of longitudinal studies. Criminal Behaviour and Mental Health, 21, 8089.Google Scholar
Ttofi, M. M., Farrington, D. P., Lösel, F., Crago, , , R. V., & Theodorakis, N. (2016). School bullying and drug use later in life: A meta-analytic investigation. School Psychology Quarterly, 31, 827.Google Scholar
Tyrka, A. R., Ridout, K. K., & Parade, S. H. (2016). Childhood adversity and epigenetic regulation of glucocorticoid signaling genes: Associations in children and adults. Development and Psychopathology, 28, 13191331.Google Scholar
Uher, R. & McGuffin, P. (2008). The moderation by the serotonin transporter gene of environmental adversity in the aetiology of mental illness: Review and methodological analysis. Molecular Psychiatry, 13, 131146.Google Scholar
UNICEF Office of Research (2013). Child Well-being in Rich Countries: A comparative overview, Innocenti Report Card 11, UNICEF Office of Research, Florence. Retrieved from www.unicef-irc.org/publications/pdf/rc11_eng.pdf.Google Scholar
Vaillancourt, T., Brittain, H., Bennett, L., Arnocky, S., McDougall, P., Hymel, S., … & Cunningham, L. (2010a). Places to avoid: Population-based study of student reports of unsafe and high bullying areas at school. Canadian Journal of School Psychology, 25, 4054.Google Scholar
Vaillancourt, T., Clinton, J., McDougall, P., Schmidt, L., & Hymel, S. (2010b). The neurobiology of peer victimization and rejection. In Jimerson, S. R., Swearer, S. M., & Espelage, D. L. (Eds), The handbook of bullying in schools: An international perspective (pp. 293327). New York: Routledge.Google Scholar
Vaillancourt, T., Duku, E., Becker, S., Schmidt, L., Nicol, J., Muir, C., & MacMillian, H. (2011). Peer victimization, depressive symptoms, and high salivary cortisol predict poor memory in children. Brain and Cognition, 77, 191199.Google Scholar
Vaillancourt, T., Duku, E., Decatanzaro, D., MacMillan, H., Muir, C., & Schmidt, L. A. (2008). Variation in hypothalamic–pituitary–adrenal axis activity among bullied and non-bullied children. Aggressive Behavior, 34, 294305.Google Scholar
Vaillancourt, T., Hymel, S., & McDougall, P. (2003). Bullying is power: Implications for school-based intervention strategies. Journal of Applied School Psychology, 19, 157176.Google Scholar
Vaillancourt, T., Hymel, S., & McDougall, P. (2013). The biological underpinnings of peer victimization: Understanding why and how the effects of bullying can last a lifetime. Theory into Practice, 52, 241248.Google Scholar
Vaillancourt, T., Sanderson, C., Arnold, P., & McDougall, P. (2017). The neurobiology of peer victimization: Longitudinal links to health, genetic risk, and epigenetic mechanisms. In Bradshaw, C. P. (Ed.), Handbook of bullying prevention: The life course perspective (pp. 35–47). National Association of Social Workers Press.Google Scholar
Wolke, D., Copeland, W. E., Angold, A., & Costello, E. J. (2013). Impact of bullying in childhood on adult health, wealth, crime, and social outcomes. Psychological Science, 24, 19581970.Google Scholar
Yehuda, R., Kahana, B., Binder-Brynes, K., Southwick, S. M., Mason, J. W., & Giller, E. L. (1995). Low urinary cortisol excretion in holocaust survivors with posttraumatic stress disorder. American Journal of Psychiatry, 152, 982986. doi: 10.1176/ajp.152.7.982.Google Scholar

References

Bakermans-Kranenburg, M. J., Van Ijzendoorn, M. H., Pijlman, F. T. A., Mesman, J., & Juffer, F. (2008). Experimental evidence for differential susceptibility: Dopamine D4 receptor polymorphism (DRD4 VNTR) moderates intervention effects on toddlers’ externalizing behavior in a randomized controlled trial. Developmental Psychology, 44, 293300.Google Scholar
Balaban, E., Alper, J. S., & Kasamon, Y. L., (1996). Review mean genes and the biology of aggression: A critical review of recent animal and human research. Journal of Neurogenetics, 11, 143.Google Scholar
Barnes, J. C. & Jacobs, B. A. (2013). Genetic risk for violent behavior and environmental exposure to disadvantage and violent crime: The case for gene-environment interaction. Journal of Interpersonal Violence, 18, 92120.Google Scholar
Barnes, J. C., Wright, J. P., Boutwell, B. B., Schwartz, J. A., Connolly, E. J., Nedelec, J. L., & Beaver, K. M. (2014). Demonstrating the validity of twin research in criminology. Criminology, 52, 588626.Google Scholar
Beaver, K. M. (2011). Genetic influences on being processed through the criminal justice system: Results from a sample of adoptees. Biological Psychiatry, 69, 282–87.Google Scholar
Beaver, K. M., DeLisi, M., Wright, J. P., & Vaughn, M. G. (2009). Gene-environment interplay and delinquency involvement: Evidence of direct, indirect, and interactive effects. Journal of Adolescent Research, 24, 147168.Google Scholar
Beaver, K. M., Gibson, C. L., DeLisi, M., Vaughn, M. G., & Wright, J. P. (2012). The interaction between neighborhood disadvantage and genetic factors in the prediction of antisocial outcomes. Youth Violence and Juvenile Justice, 10, 2540.Google Scholar
Beaver, K. M., Wright, J. P., DeLisi, M., Daigle, L. E., Swatt, M. L., & Gibson, C. L. (2007). Evidence of a gene X environment interaction in the creation of victimization: Results from a longitudinal sample of adolescents. International Journal of Offender Therapy and Comparative Criminology, 51, 620645.Google Scholar
Beaver, K. M., Wright, J. P., & Walsh, A. (2008). A gene-based evolutionary explanation for the association between criminal involvement and number of sex partners. Biodemography and Social Biology, 54, 4755.Google Scholar
Belsky, J. & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135, 885908.Google Scholar
Bjork, J. M., Moeller, F. G., Kramer, G. L., Kram, M., Suris, A., Rush, A. J., & Petty, F. (2001). Plasma GABA levels correlate with aggressiveness in relatives of patients with unipolar depressive disorder. Psychiatry Research, 101, 131136.Google Scholar
Brody, G. H., Beach, S. R. H., Philibert, R. A., Chen, Y.-F., & Murry, V. M. (2009). Preventative effects moderate the association of 5-HTTLPR and youth risk behavior initiation: Gene x environment hypotheses tested via a randomized prevention design. Child Development, 80, 645661.Google Scholar
Brody, G. H., Chen, Y. F., Beach, S. R., Kogan, S. M., Yu, T., DiClemente, R. J., Wingwood, G. M., Windle, M., & Philibert, R. A. (2014). Differential sensitivity to prevention programming: A dopaminergic polymorphism-enhanced prevention effect on protective parenting and adolescent substance use. Health Psychology, 33, 182191.Google Scholar
Brown, G. L., Goodwin, F. K., Ballenger, J. C., Goyer, P. F., & Major, L. F. (1979). Aggression in humans correlated with cerebrospinal fluid amine metabolites. Psychiatry Research, 1, 131139.Google Scholar
Budworth, H. & McMurray, C. T. (2013). A brief history of triplet repeat diseases. Methods in Molecular Biology, 1010, 317.Google Scholar
Byrd, A. L. & Manuck, S. B. (2014). MAOA, childhood maltreatment, and antisocial behavior: A meta-analysis of gene-environment interaction. Biological Psychiatry, 75, 917.Google Scholar
Cadoret, R. J., Langebehn, D., Caspers, K., Troughton, E. P., Yucuis, R., Sandhu, H. K., & Philibert, R. (2003). Associations of the serotonin transporter promoter polymorphism with aggressivity, attention deficit, and conduct disorder in an adoptee population. Comprehensive Psychiatry, 44, 88101.Google Scholar
Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., Taylor, A., & Poulton, R. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851854.Google Scholar
Conner, T. S., Jensen, K. P., Tennen, H., Furneaux, H. M., Kranzler, H. R., & Covault, J. (2010). Functional polymorphisms in the serotonin 1B receptor gene (HTR1B) predict self-reported anger and hostility among young men. American Journal of Medical Genetics, Part B, 153, 6778.Google Scholar
DeLisi, M., Beaver, K. M., Vaughn, M. G., & Wright, J. P. (2009). All in the family: Gene x environmental interaction between DRD2 and criminal father is associated with five antisocial phenotypes. Criminal Justice and Behavior, 36, 11871197.Google Scholar
Dick, D. M., Agrawal, A., Schuckit, M. A., Bierut, L., Hinrichs, A., Fox, L., … & Begleiter, H. (2006a). Marital status, alcohol dependence, and GABRA2: Evidence for gene- environment correlation and interaction. Journal of Studies on Alcohol, 67, 185194.Google Scholar
Dick, D. M., Beirut, L., Hinrichs, A., Fox, L., Bucholz, K. K., Kramer, J., … & Foroud, T. (2006b). The role of GABRA2 in risk for conduct disorder and alcohol and drug dependence across developmental stages. Behavior Genetics, 36, 577590.Google Scholar
Dick, D. M., Latendresse, S. J., Lansford, J. E., Budde, J. P., Goate, A., Dodge, K. A., … & Bates, J. E. (2009). Role of GABRA2 in trajectories of externalizing behavior across development and evidence of moderation by parental monitoring. Archives of General Psychiatry, 66, 649657.Google Scholar
Dick, D. M., Aliev, F., Krueger, R. F., Edwards, A., Agrawal, A., Lynskey, M., Lin, P., Schuckit, M., Hesselbrock, V., Nurnberger, J., Almasy, L., Porjesz, B., Edenberg, H. J., Bucholz, K., Kramer, J., Kuperman, S., & Bierut, L. (2011). Genome-wide association study of conduct disorder symptomatology. Molecular Psychiatry, 16, 800808.Google Scholar
Dick, D. M. & Foroud, T. (2003). Candidate genes for alcohol dependence: A review of genetic evidence form human studies. Alcoholism: Clinical and Experimental Research, 27, 868879.Google Scholar
Douglas, K., Chan, G., Gelernter, J., Arias, A. J., Anton, R. F., Poling, J., … & Kranzler, H. R. (2011). 5-HTTLPR as a potential moderator of the effects of adverse childhood experiences on risk of antisocial personality disorder. Psychiatric Genetics, 21, 240248.Google Scholar
Duke, A. A., Begue, L., Bell, R., & Eisenlohr-Moul, T. (2013). Revisiting the serotonin- aggression relation in humans: A meta-analysis. Psychological Bulletin, 139, 11481172.Google Scholar
Ferguson, C. J. (2010). Genetic contributions to antisocial personality and behavior: A meta-analytic review from an evolutionary perspective. Journal of Social Psychology, 150, 121.Google Scholar
Ficks, C. A. & Waldman, I. D. (2014). Candidate genes for aggression and antisocial behavior: A meta-analysis of association studies of the 5HTTLPR and MAOA-uVNTR. Behavior Genetics, 44, 427444.Google Scholar
Foley, D. L., Eaves, L. J., Wormley, B., Silberg, J. L., Maes, H. H., Kuhn, J., & Riley, B. (2004). Childhood adversity, monoamine oxidase A genotype, and risk for conduct disorder. Archives of General Psychiatry, 61, 738744.Google Scholar
Gajos, J. M., Fagan, A. A., & Beaver, K. M. (2016). Use of genetically informed evidence-based prevention science to understand and prevent crime and related behavioral disorders. Criminology & Public Policy, 15, 119. doi: 10.1111/1745–9133.12214.Google Scholar
Gill, M., Daly, G., Heron, S., Hawi, Z., & Fitzgerald, M. (1997). Confirmation of association between attention deficit hyperactivity disorder and a dopamine transporter polymorphism. Molecular Psychiatry, 2, 311313.Google Scholar
Guo, G., Roettger, M. E., & Shih, J. C. (2007). Contributions of the DAT1 and DRD2 genes to serious and violent delinquency among adolescents and young adults. Human Genetics, 121, 125136.Google Scholar
Haberstick, B. C., Smolen, A., & Hewitt, J. K. (2006). Family-based association test of the 5HTTLPR and aggressive behavior in a general population sample of children. Biological Psychiatry, 59, 836843.Google Scholar
Herman, A. I., Philbeck, J. W., Vasilopoulos, N. L., & Depetrillo, P. B., (2003). Serotonin transporter promoter polymorphism and differences in alcohol consumption behavior in a college student population. Alcohol and Alcoholism, 38, 446449.Google Scholar
Hirata, Y., Zai, C. C., Nowrouzi, B., Beitchman, J. H., & Kennedy, J. L. (2013). Study of the catechol-O-methyltransferase (COMT) gene with high aggression in children. Aggressive Behavior, 39, 4551.Google Scholar
Jensen, K. P., Covailt, J., Conner, T. S., Tennen, H., Kranzler, H. R., & Furneaux, H. M. (2009). A common polymorphism in serotonin receptor 1B mRNA moderates regulation by miR-96 and associates with aggressive behavior in humans. Molecular Psychiatry, 14, 381389.Google Scholar
Jones, G., Zammit, S., Norton, N., Hamshere, M. L., Jones, S. J., Milham, C., … & Owen, M. J. (2001). Aggressive behavior in patients with schizophrenia is associated with catechol-O-methyltransferase genotype. British Journal of Psychiatry, 179, 351355.Google Scholar
Kim-Cohen, J., Caspi, A., Taylor, A., Williams, B., Newcombe, R., Craig, I. W., & Moffitt, T. E. (2006). MAOA, maltreatment, and gene-environment interaction predicting children’s mental health: New evidence and a meta-analysis. Molecular Psychiatry, 11, 903913.Google Scholar
Kruesi, M. J. P., Rapoport, J. L., Hamburger, S., Hibbs, E., Potter, W. Z., Lenane, M., & Brown, G. L. (1990). Cerebrospinal fluid monoamine metabolites, aggression, and impulsivity in disruptive behavior disorders of children and adolescents. Archives of General Psychiatry, 47, 419426.Google Scholar
Lesch, K. P., Bengel, D., Heils, A., Sabol, S. Z., Greenberg, B. D., Petri, S., … & Murphy, D. I. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science, 274, 15271531.Google Scholar
Li, D., Sham, P. S., Owen, M. L., & He, L. (2006). Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Human Molecular Genetics, 15, 22762284.Google Scholar
Liao, D. L., Hong, C. G., Shih, H. L., & Tsai, S. J. (2004). Possible association between serotonin transporter promoter region polymorphism and extremely violent crime in Chinese males. Neuropsychobiology, 50, 284287.Google Scholar
Limson, R., Goldman, D., Roy, A., Lamparski, D., Ravitz, D., Adinoff, B., & Linnoila, M. (1991). Personality and cerebrospinal fluid monoamine metabolites in alcoholics and controls. Archives of General Psychiatry, 48, 37–441.Google Scholar
Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., … & Visscher, P. M. (2009). Finding the missing heritability of complex diseases. Nature, 461, 747753.Google Scholar
Manuck, S. B., Flory, J. D., Ferrell, R. E., Mann, J. J., & Muldoon, M. F. (2000). A regulatory polymorphism of the monoamine oxidase-A gene may be associated with variability in aggression, impulsivity, and central nervous system serotonergic responsivity. Psychiatry Research, 95, 923.Google Scholar
Manuck, S. B., & McCaffery, J. M. (2014). Gene-environment interaction. Annual Review of Psychology, 65, 4170.Google Scholar
Mason, D. A. & Frick, P. J. (1994). The heritability of antisocial behavior: A meta-analysis of twin and adoption studies. Journal of Psychopathology and Behavioral Assessment, 16, 301323.Google Scholar
Merjonen, P. Keltikangas-Järvinen, L., Jokela, M., Seppälä, I, Lyytikäinen, L. P., Pulkki- Råback, L., … & Lehtimäki, T. (2011). Hostility in adolescents and adults: a genome-wide association study of the young Finns. Translational Psychiatry, 1, e11.Google Scholar
Mick, E., McGough, J., Deutsch, C. K., Frazier, J. A., Kennedy, D., & Goldberg, R. J. (2014). Genome-wise association study of proneness to anger. PLoS ONE, 9, e87257.Google Scholar
Mielke, J. H., Konigsberg, L. W., & Relethford, J. H. (2006). Human biological variation. New York: Oxford University Press.Google Scholar
Miles, D. R. & Carey, G. (1997). Genetic and environmental architecture in human aggression. Journal of Personality and Social Psychology, 72, 207217.Google Scholar
Moore, T. M., Scarpa, A., & Raine, A. (2002) A meta-analysis of serotonin metabolite 5-HIAA and antisocial behavior. Aggressive Behavior, 28, 299316.Google Scholar
Niehoff, D. (1999). The biology of violence: How understanding the brain, behavior, and environment can break the vicious cycle of aggression. New York: The Free Press.Google Scholar
Pappa, I., St Pourcain, B., Benke, K., Cavadino, A., Hakulinen, C., Nivard, M. G., … & Tiemeier, H. (2015). A genome-wide approach to children’s aggressive behavior: The EAGLE consortium. American Journal of Medical Genetics Part B, 9999, 111.Google Scholar
Petty, F., Fulton, M., Kramer, G. L., Kram, M., Davis, L. L., & Rush, A. J. (1999). Evidence for the segregation of a major gene for human plasma GABA levels. Molecular Psychiatry, 4, 587589.Google Scholar
Plomin, R., DeFries, J., Craig, I., & McGuffin, P. (2001). Behavioral genetics (4th ed.). New York: Worth Publishers.Google Scholar
Plomin, R., DeFries, J. C., Knopik, V. S., & Neiderhiser, J. M. (2013). Behavioral genetics (6th ed.). New York: Worth Publishers.Google Scholar
Plomin, R. (2013). Child development and molecular genetics: 14 years later. Child Development, 84, 104120.Google Scholar
Pohjalainen, T., Rinne, J. O., Någren, K., Lehikoinen, O., Anttila, K., Syvalahti, E. K. G., & Hietala, J. (1998). The A1 allele of the human D2 dopamine receptor gene predicts low D2 receptor availability in healthy volunteers. Molecular Psychiatry, 3, 256260.Google Scholar
Polderman, T. J. C., Benyamin, B., de Leeuw, C. A., Sullivan, P. F., van Bochoven, A., Visscher, P. M., & Posthuma, D. (2015). Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nature Genetics, 47, 702–709.Google Scholar
Raine, A. (1993). The psychopathology of crime: Criminal behavior as a clinical disorder. San Diego, CA: Academic Press.Google Scholar
Retz, W., Retz-Junginger, P., Supprian, T., Thome, J., & Rösler, M. (2004). Association of serotonin transporter promoter gene polymorphism with violence: Relation with personality disorders, impulsivity, and childhood ADHD psychopathology. Behavioral Sciences & the Law, 22, 415425.Google Scholar
Rhee, S. H. & Waldman, I. D. (2002). Genetic and environmental influences on antisocial behavior: A meta-analysis of twin and adoption studies. Psychological Bulletin, 128, 490529.Google Scholar
Rowe, D. C., Stever, C., Gard, J. M. C., Cleveland, H. H., Sanders, M. L., Abramowitz, A., … & Waldman, I. D. (1998). The relation of the dopamine transporter gene (DAT1) to symptoms of internalizing disorders in children. Behavioral Genetics, 28, 215225.Google Scholar
Rujescu, D., Giegling, I., Gietl, A., Hartman, A. M., & Moller, H. J. (2003). A functional single nucleotide polymorphism (V158M) in the COMT gene is associated with aggressive personality traits. Biological Psychiatry, 54, 3439.Google Scholar
Sadeh, N., Javdani, S., Jackson, J. J., Reynolds, E. K., Potenza, M. N., Gelernter, J., … & Verona, E. (2010). Serotnin transporter gene associations with psychopathic traits in youth vary as a function of socioeconomic resources. Journal of Abnormal Psychology, 119, 604609.Google Scholar
Salvatore, J. E., Edwards, A. C., McClintick, J. N., Bigdeli, T. B., Adkins, A., Aliev, F., … & Dick, D. M. (2015). Genome-wide association data suggest ABCB1 and immune-related gene sets may be involved in adult antisocial behavior. Translational Psychiatry, 5, e558.Google Scholar
Taylor, S. E., Way, B. M., Welch, W. T., Hilmert, C. J., Lehman, B. J., & Eisenberger, N. I. (2006). Early family environment, current adversity, the serotonin transporter promoter polymorphism, and depressive symptomatology. Biological Psychiatry, 60, 671676.Google Scholar
Terranova, C., Tucci, M., Sartore, D., Cavarzeran, F., Pietra, L., Barzon, L., … & Ferrara, S. D. (2013). GABA receptors, alcohol dependence and criminal behavior. Journal of Forensic Sciences, 58, 12271232.Google Scholar
Tielbeek, J. J., Medland, S. E., Benyamin, B., Byrne, E. M., Heath, A. C., Madden, P. A., … & Verweij, K. J. H. (2012). Unraveling the genetic etiology of adult antisocial behavior: A genome-wide association study. PLoS ONE, 7, e45086.Google Scholar
Truman, J. L. & Langton, L. (2015). Criminal victimization, 2014. Washington, DC: US Department of Justice, Office of Justice Programs, Bureau of Justice Statistics.Google Scholar
US Department of Justice, Federal Bureau of Investigation. (2014). Crime in the United States in 2013. Retrieved on July 5, 2016 from www.fbi.gov/about-us/cjis/ucr/crime-in-the-u.s/2013/crime-in-the-u.s.-2013/violent-crime/violent-crime-topic-page/violentcrimemain_final.Google Scholar
Van den Hoofdakker, B. J., Nauta, M. H., Dijck-Brouwer, D. A. J., van der Veen-Mulders, L., Sytema, S., & Emmelkamp, P. M. G. (2012). Dopamine transporter gene moderate response to behavioral parent training in children with ADHD: A pilot study. Developmental Psychology, 48, 567574.Google Scholar
Vaughn, M. G., DeLisi, M., Beaver, K. M., Wright, J. P. (2009). DAT1 and 5HTT are associated with pathological criminal behavior in a nationally representative sample of youth. Criminal Justice and Behavior, 36, 11131124.Google Scholar
Verhoeven, F. E., Booij, L., Kruijt, A. W., Cerit, H., Antypa, N., Does, W. (2012). The effects of MAOA genotype, childhood trauma, and sex on trait and state-dependent aggression. Brain and Behavior, 2, 806813.Google Scholar
Virkkunen, M., Rawlings, R. R., Tokola, R., Poland, R. E., Guidotti, A., Nemeroff, C., … & Linoila, M. (1994). CSF biochemistries, glucose metabolism, and diurnal activity rhythms in alcoholic, violent offenders, fire setters, and healthy volunteers. Archives of General Psychiatry, 51, 2027.Google Scholar
Volavka, J., Bilder, R., & Nolan, K. (2004). Catecholamines and aggression: The role of COMT and MAO polymorphisms. Annals of the New York Academy of Sciences, 1036, 393398.Google Scholar

References

Aguilar, B., Sroufe, L. A., Egeland, B., & Carlson, E. (2000). Distinguishing the early-onset/persistent and adolescence-onset antisocial behavior types: From birth to 16 years. Development and Psychopathology, 12(2), 109132.Google Scholar
Althoff, R. R., Verhulst, F. C., Rettew, D. C., Hudziak, J. J., & van der Ende, J. (2010). Adult outcomes of childhood dysregulation: a 14-year follow-up study. Journal of the American Academy of Child & Adolescent Psychiatry, 49(11), 11051116.Google Scholar
American Public Health Association (2013). Defining and Implementing a Public Health Response to Drug Use and Misuse. Retrieved on June 10, 2016 from www.apha.org/policies-and-advocacy/public-health-policy-statements/policy-database/2014/07/08/08/04/defining-and-implementing-a-public-health-response-to-drug-use-and-misuse.Google Scholar
Anthony, J. C. & Petronis, K. R. (1995). Early-onset drug use and risk of later drug problems. Drug and Alcohol Dependence, 40(1), 915.Google Scholar
Beaver, K. M., DeLisi, M., Vaughn, M. G., & Barnes, J. C. (2010). MAOA genotype is associated with gang membership and weapon use, Comprehensive Psychiatry, 51, 130134.Google Scholar
Berkman, E. T., Falk, E. B., & Lieberman, M. D. (2011). In the trenches of real-world self-control: Neural correlates and breaking the link between craving and smoking. Psychological Science, 22, 498506.Google Scholar
Broidy, L. M., Nagin, D. S., Tremblay, R. E., Bates, J. E., Brame, B., Dodge, K. A., … & Lynam, D. R. (2003). Developmental trajectories of childhood disruptive behaviors and adolescent delinquency: a six-site, cross-national study. Developmental Psychology, 39(2), 222245.Google Scholar
Brower, M. C. & Price, B. H. (2001). Neuropsychiatry of frontal lobe dysfunction in violent and criminal behaviour: a critical review. Journal of Neurology, Neurosurgery, and Psychiatry, 71, 720726.Google Scholar
Campbell, S. B., Spieker, S., Burchinal, M., & Poe, M. D. (2006). Trajectories of aggression from toddlerhood to age 9 predict academic and social functioning through age 12. Journal of Child Psychology and Psychiatry, 47(8), 791800.Google Scholar
Campbell, S. B. (2006). Behavior problems in preschool children: Clinical and developmental issues. New York: Guilford Press.Google Scholar
Carson, E. A. & Golinelli, D. (2013). Prisoners in 2012: Trends in Admissions and Releases, 1991–2012. Washington, DC: Bureau of Justice Statistics.Google Scholar
Carter, A. S., Briggs-Gowan, M. J., Jones, S. M., & Little, T. D. (2003). The infant–toddler social and emotional assessment (ITSEA): Factor structure, reliability, and validity. Journal of Abnormal Child Psychology, 31(5), 495514.Google Scholar
Caspi, A., Henry, B., McGee, R. O., Moffitt, T. E., & Silva, P. A. (1995). Temperamental origins of child and adolescent behavior problems: From age three to age fifteen. Child Development, 66(1), 5568.Google Scholar
Chen, C. Y., Storr, C. L., & Anthony, J. C. (2009). Early-onset drug use and risk for drug dependence problems. Addictive Behaviors, 34(3), 319322.Google Scholar
Childress, A. R. (2006). What can human brain imaging tell us about vulnerability to addiction and to relapse? In Miller, W. R. & Carroll, K. M. (Eds), Rethinking substance abuse: what the science shows, and what we should do about it (4660). New York: Guilford Press.Google Scholar
Demers, C. H., Bogdan, R., & Agrawal, A. (2014). The Genetics, Neurogenetics and Pharmacogenetics of Addiction. Current Behavioral Neuroscience Reports, 1(1), 3344.Google Scholar
DeWit, D. J., Adlaf, E. M., Offord, D. R., & Ogborne, A. C. (2000). Age at first alcohol use: a risk factor for the development of alcohol disorders. American Journal of Psychiatry, 157(5), 745750.Google Scholar
Dick, D. M., Latendresse, S. J., Lansford, J. E., Budde, J. P., Goate, A., Dodge, K. A., … & Bates, J. E. (2009). Role of GABRA2 in trajectories of externalizing behavior across development and evidence of moderation by parental monitoring. Archives of General Psychiatry, 66, 649657.Google Scholar
Edenberg, H. J., Dick, D. M, Xuei, X., Tian, H., Almasy, L., Bauer, L. O., … & Begleiter, H. (2004). Variations in GABRA2, encoding the alpha 2 subunit of the GABA(A) receptor, are associated with alcohol dependence and with brain oscillations. American Journal of Human Genetics, 74, 705714.Google Scholar
Elder, G. H. (1974). Children of the Great Depression: Social change in life experience. Chicago: University of Chicago Press.Google Scholar
Ellickson, P. L., Tucker, J. S., & Klein, D. J. (2003). Ten-year prospective study of public health problems associated with early drinking. Pediatrics, 11(5), 949955.Google Scholar
Englund, M. M., Egeland, B., Oliva, E. M., & Collins, W. A. (2008). Childhood and adolescent predictors of heavy drinking and alcohol use disorders in early adulthood: a longitudinal developmental analysis. Addiction, 103(s1), 2335.Google Scholar
Farrington, D. P., Lambert, S., & West, D. J. (1998). Criminal careers of two generations of family members in the Cambridge Study in Delinquent Development. Studies on Crime and Crime Prevention, 7, 85106.Google Scholar
Fearon, R. M., Reiss, D., Leve, L. D., Shaw, D. S., Scaramella, L. V., Ganiban, J. M., & Neiderhiser, J. M. (2014). Child-evoked maternal negativity from 9 to 27 months: Evidence of gene–environment correlation and its moderation by marital distress. Development and Psychopathology, 27(4pt1), 12511265.Google Scholar
Fergusson, D. M., Horwood, L. J., & Ridder, E. M., (2007). Conduct and attentional problems in childhood and adolescence and later substance use, abuse and dependence: results of a 25 year longitudinal study. Drug and Alcohol Dependence, 88S, S14S26.Google Scholar
Gartstein, M. A. & Rothbart, M. K. (2003). Studying infant temperament via the revised infant behavior questionnaire. Infant Behavior and Development, 26(1), 6486.Google Scholar
Goldstein, P. J. (1985). The drugs/violence nexus: A tripartite conceptual framework. Journal of Drug Issues, 15, 493506.Google Scholar
Guo, G., Wilhelmsen, K., & Hamilton, N. (2007). Gene-lifecourse interaction for alcohol consumption in adolescence and young adulthood: Five monoamine genes. American Journal of Medical Genetics Part B (Neuropsychiatric Genetics), 144B, 417423.Google Scholar
Hicks, B. M., South, S. C., DiRago, A. C., Iacono, W. G., & McGue, M. (2009). Environmental adversity and increasing genetic risk for externalizing disorders. Archives of General Psychiatry, 66, 640648.Google Scholar
Hser, Y. I., Longshore, D., & Anglin, M. D. (2007). The life course perspective on drug use: A conceptual framework for understanding drug use trajectories. Evaluation Review, 31(6), 515547.Google Scholar
Kendler, K. S., Schmitt, E., Aggen, S. H., & Prescott, C. A. (2008). Genetic and environmental influences on alcohol, caffeine, cannabis, and nicotine use from early adolescence to middle adulthood. Archives of General Psychiatry, 65: 674682.Google Scholar
Meier, M. H., Hall, W., Caspi, A., Belsky, D. W., Cerdá, M., Harrington, H. L., … & Moffitt, T. E. (2016). Which adolescents develop persistent substance dependence in adulthood? Using population-representative longitudinal data to inform universal risk assessment. Psychological Medicine, 46(4), 877889.Google Scholar
Moffitt, T. E. (1993). “Life-course persistent” and “adolescence-limited” antisocial behavior: A developmental taxonomy. Psychological Review, 100, 674701.Google Scholar
Moffitt, T. E., Arseneault, L., Belsky, D., Dickson, N., Hancox, R. J., Harrington, H., Caspi, A. (2011). A gradient of childhood self-control predicts health, wealth, and public safety. Proceedings of the National Academy of Sciences, U.S.A., 108, 26932698.Google Scholar
Moffitt, T. E., Caspi, A., Harrington, H., & Milne, B. J. (2002). Males on the life-course-persistent and adolescence-limited antisocial pathways: Follow-up at age 26 years. Development and Psychopathology, 14(1), 179207.Google Scholar
Nærde, A., Ogden, , Janson, T., , H., & Zachrisson, H. D. (2014). Normative development of physical aggression from 8 to 26 months. Developmental Psychology, 50(6), 17101720.Google Scholar
Nelson, R. J. & Chiavegatto, S. (2001). Molecular basis of aggression. Trends in Neuroscience, 24, 713719.Google Scholar
Noble, E. P. (2000). Addiction and its reward process through polymorphisms of the D2 dopamine receptor gene: A review. European Psychiatry, 15, 789.Google Scholar
Odgers, C. L., Caspi, A., Nagin, D. S., Piquero, A. R., Slutske, W. S., Milne, B. J., … & Moffitt, T. E. (2008). Is it important to prevent early exposure to drugs and alcohol among adolescents? Psychological Science, 19(10), 10371044.Google Scholar
Piquero, A. R., Jennings, W. G. & Barnes, J. C. (2012). Violence in criminal careers: A review of the literature from a developmental life-course perspective. Aggression and Violent Behavior, 17(3), 171179.Google Scholar
Rogers, J. C. & De Brito, S. A. (2016). Cortical and subcortical gray matter volume in youths with conduct problems: A meta-analysis. JAMA Psychiatry, 73, 6472.Google Scholar
Roisman, G. I., Monahan, K. C., Campbell, S. B., Steinberg, L., & Cauffman, E. (2010). Is adolescence-onset antisocial behavior developmentally normative? Development and Psychopathology, 22(2), 295311.Google Scholar
Rothbart, M. K. (2011). Becoming who we are: Temperament and personality in development. New York: Guilford Press.Google Scholar
Samochowiec, J., Lesch, K. P., Rottman, M., Smolka, M., Syagailo, Y. V., Okladnova, O., … & Sander, T. (1999). Association of a regulatory polymorphism in the promoter region of the MAOA gene with antisocial alcoholism. Psychiatry Research, 86, 6772.Google Scholar
Sampson, R. J. & Laub, J. H. (2003). Life-course desisters? Trajectories of crime among delinquent boys followed to age 70. Criminology, 41(3), 555592.Google Scholar
Science Daily. (2014). Huntington disease prevention trial shows creatine safe, slows progression. Retrieved from www.sciencedaily.com/releases/2014/02/140208080705.htm. Acessed November 1, 2017.Google Scholar
Shook, J. J., Vaughn, M. G., Goodkind, S., & Johnson, H. (2011). An empirical portrait of youthful offenders who sell drugs. Journal of Criminal Justice, 39, 224231.Google Scholar
Steinberg, L. (2007). Risk-taking in adolescence: New perspectives from brain and behavioral science. Current Directions in Psychological Science, 16, 5559.Google Scholar
Tarter, R. E., Kirisci, L., Habeych, M., Reynolds, M., & Vanyukov, M. (2003). Neurobehavior disinhibition in childhood predisposes boys to substance use disorder by young adulthood: direct and mediated etiologic pathways. American Journal of Psychiatry, 160, 10781085.Google Scholar
Tremblay, R. E. (2015). Antisocial behavior before the age–crime curve: Can developmental criminology continue to ignore developmental origins? In Morizot, J. & Kazemian, L. (Eds), The development of criminal and antisocial behavior (pp. 3949). Cham, Switzerland: Springer International Publishing.Google Scholar
Tuvblad, C., Isen, J., Baker, L. A., Raine, A., Lozano, D. I., & Jacobson, K. C. (2010). The genetic and environmental etiology of sympathetic and parasympathetic activity in children. Behavior Genetics, 40(4), 452466.Google Scholar
Van Zeijl, J., Mesman, J., Stolk, M. N., Alink, L. R., Van Ijzendoorn, M. H., Bakermans-Kranenburg, M. J., … & Koot, H. M. (2006). Terrible ones? Assessment of externalizing behaviors in infancy with the Child Behavior Checklist. Journal of Child Psychology and Psychiatry, 47(8), 801810.Google Scholar
Volkow, N. D. (2003). The addicted brain: Why such poor decisions? NIDA Notes, 18, 115.Google Scholar
Volkow, N. D. & Muenke, M. (2012). The genetics of addiction. Human Genetics, 131, 773777.Google Scholar
Weeland, J., Overbeek, G., Orobio de Castro, B., & Matthys, W. (2015). Underlying mechanisms of gene–environment interactions in externalizing behavior: A systematic review and search for theoretical mechanisms. Clinical Child and Family Psychology Review, 18, 413442.Google Scholar

References

Al-Dajani, N., Gralnick, T. M., & Bagby, R. M. (2016). A psychometric review of the Personality Inventory for DSM-5 (PID–5): Current status and future directions. Journal of Personality Assessment, 98, 6281.Google Scholar
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: Author.Google Scholar
Anderson, C. A. & Bushman, B. J. (2002). Human aggression. Annual Review of Psychology, 53, 2751.Google Scholar
Anderson, J. L., Sellbom, M., Ayearst, L., Quilty, L. C., Chmielewski, M., & Bagby, R. M. (2015). Associations between DSM-5 section III personality traits and the Minnesota Multiphasic Personality Inventory 2-Restructured Form (MMPI-2-RF) scales in a psychiatric patient sample. Psychological Assessment, 27, 801815.Google Scholar
Archer, J. & Coyne, S. M. (2005). An integrated review of indirect, relational, and social aggression. Personality and Social Psychology Review, 9, 212230.Google Scholar
Ashton, M. C. & Lee, K. (2005). A defence of the lexical approach to the study of personality structure. European Journal of Personality, 19, 524.Google Scholar
Bandura, A. (1973). Aggression: A social learning analysis. Englewood Cliff, NJ: Prentice-Hall.Google Scholar
Beanland, V., Sellbom, M., & Johnson, A. K. (2014). Personality domains and traits that predict self-reported aberrant driving behaviours in a southeastern US university sample. Accident Analysis and Prevention, 72, 184192.Google Scholar
Berenson, K. R., Downey, G., Rafaeli, E., Coifman, K. G., & Leventhal-Paquin, N. (2011). The rejection-rage contingency in borderline personality disorder. Journal of Abnormal Psychology, 120, 681690.Google Scholar
Bettencourt, B., Talley, A., Benjamin, A. J., & Valentine, J. (2006). Personality and aggressive behavior under provoking and neutral conditions: A meta-analytic review. Psychological Bulletin, 132, 751777.Google Scholar
Bierman, K. L., Coie, J. D., Dodge, K. A., Greenberg, M. T., Lochman, J. E., McMahon, R. J., & Pinderhughes, E. (2010). The effects of a multiyear universal social– emotional learning program: The role of student and school characteristics. Journal of Consulting and Clinical Psychology, 78, 156168.Google Scholar
Black, D. W., Gunter, T., Allen, J., Blum, N., Arndt, S., Wenman, G., & Sieleni, B. (2007). Borderline personality disorder in male and female offenders newly committed to prison. Comprehensive Psychiatry, 48, 400405.Google Scholar
Blais, J., Solodukhin, E., & Forth, A. E. (2014). A meta-analysis exploring the relationship between psychopathy and instrumental versus reactive violence. Criminal Justice and Behavior, 41, 797821.Google Scholar
Blonigen, D. M. (2010). Explaining the relationship between age and crime: Contributions from the developmental literature on personality. Clinical Psychology Review, 30, 89100.Google Scholar
Bresin, K. & Robinson, M. D. (2015). You are what you see and choose: Agreeableness and situation selection. Journal of Personality, 83, 452463.Google Scholar
Brugman, S., Lobbestael, J., Arntz, A., Cima, M., Schuhmann, T., Dambacher, F., & Sack, A. T. (2015). Identifying cognitive predictors of reactive and proactive aggression. Aggressive Behavior, 41, 5164.Google Scholar
Bushman, B. J. & Anderson, C. A. (2001). Is it time to pull the plug on hostile versus instrumental aggression dichotomy? Psychological Review, 108, 273279.Google Scholar
Bushman, B. J. & Baumeister, R. F. (1998). Threatened egotism, narcissism, self-esteem, and direct and displaced aggression: Does self-love or self-hate lead to violence? Journal of Personality and Social Psychology, 75, 219229.Google Scholar
Cale, E. M. (2006). A quantitative review of the relations between the “Big 3” higher order personality dimensions and antisocial behavior. Journal of Research in Personality, 40, 250284.Google Scholar
Cale, E. M. & Lilienfeld, S. O. (2002). Sex differences in psychopathy and antisocial personality disorder. A review and integration. Clinical Psychology Review, 22(8), 11791207.Google Scholar
Campbell, W. K. & Miller, J. D. (2011). The handbook of narcissism and narcissistic personality disorder. Hoboken, NJ: John Wiley & Sons.Google Scholar
Carlson, E. N., Vazire, S., & Oltmanns, T. F. (2013). Self-other knowledge asymmetries in personality pathology. Journal of Personality, 81, 155170.Google Scholar
Clark, L. A. (2007). Assessment and diagnosis of personality disorder: Perennial issues and an emerging reconceptualization. Annual Review of Psychology, 58, 227257.Google Scholar
Crego, C. & Widiger, T. A. (2016). Cleckley’s psychopaths: Revisited. Journal of Abnormal Psychology, 125, 7587.Google Scholar
Costa, P. T. & McCrae, R. R. (1992). Normal personality assessment in clinical practice: The NEO Personality Inventory. Psychological Assessment, 4, 513.Google Scholar
DeYoung, C. G., Quilty, L. C., & Peterson, J. B. (2007). Between facets and domains: 10 aspects of the Big Five. Journal of Personality and Social Psychology, 93, 880896.Google Scholar
Digman, J. M. (1990). Personality structure: Emergence of the five-factor model. Annual Review of Psychology, 41, 417440.Google Scholar
Dixon, L., Hamilton-Giachritsis, C., & Browne, K. (2008). Classifying partner femicide. Journal of Interpersonal Violence, 23, 7493.Google Scholar
Dodge, K. A. & Coie, J. D. (1987). Social-information-processing factors in reactive and proactive aggression in children’s peer groups. Journal of Personality and Social Psychology, 53, 11461158.Google Scholar
Dollard, J., Miller, N. E., Doob, L. W., Mowrer, O. H., & Sears, R. R. (1939). Frustration and Aggression. New Haven, CT: Yale University Press.Google Scholar
Dougherty, D. M., Bjork, J. M., Huckabee, H. C., Moeller, F. G., & Swann, A. C. (1999). Laboratory measures of aggression and impulsivity in women with borderline personality disorder. Psychiatry Research, 85, 315326.Google Scholar
Eysenck, H. J. & Eysenck, M. W. (1985). Personality and individual differences: A natural science approach. New York: Plenum.Google Scholar
Few, L. R., Miller, J. D., Rothbaum, A. O., Meller, S., Maples, J., Terry, D. P., … & MacKillop, J. (2013). Examination of the Section III DSM-5 diagnostic system for personality disorders in an outpatient clinical sample. Journal of Abnormal Psychology, 122, 10571069.Google Scholar
Few, L. R., Miller, J. D., & Lynam, D. R. (2013). An examination of the factor structure of the Elemental Psychopathy Assessment. Personality Disorders: Theory, Research, and Treatment, 4, 247253.Google Scholar
Foss, T. (2014). Freud 100 years ago: On narcissism: An introduction (1914a); On the history of the psychoanalytic movement (1914b); Preface to the 3rd edition of Three essays on the theory of sexuality (1914c). The Scandinavian Psychoanalytic Review, 37, 8084.Google Scholar
Gardner, K. J., Archer, J., & Jackson, S. (2012). Does maladaptive coping mediate the relationship between borderline personality traits and reactive and proactive aggression? Aggressive Behavior, 38, 403413.Google Scholar
Gore, W. L. & Widiger, T. A. (2013). The DSM-5 dimensional trait model and five-factor models of general personality. Journal of Abnormal Psychology, 122, 816821.Google Scholar
Graziano, W. G., Jensen-Campbell, L. A., & Hair, E. C. (1996). Perceiving interpersonal conflict and reacting to it: the case for agreeableness. Journal of Personality and Social Psychology, 70, 820835.Google Scholar
Henggeler, S. W., Melton, G. B., & Smith, L. A. (1992). Family preservation using multisystemic therapy: an effective alternative to incarcerating serious juvenile offenders. Journal of Consulting and Clinical Psychology, 60(6), 953.Google Scholar
Hopwood, C. J., Morey, L. C., Donnellan, M. B., Samuel, D. B., Grilo, C. M., McGlashan, T. H., … & Skodol, A. E. (2013). Ten-year rank-order stability of personality traits and disorders in a clinical sample. Journal of Personality, 81(3), 335344.Google Scholar
Jackson, M. A., Sippel, L. M., Mota, N., Whalen, D., & Schumacher, J. A. (2015). Borderline personality disorder and related constructs as risk factors for intimate partner violence perpetration. Aggression and Violent Behavior, 24, 95106.Google Scholar
John, O. P., Caspi, A., Robins, R. W., Moffitt, T. E., & Stouthamer-Loeber, M. (1994). The “little five”: Exploring the nomological network of the five-factor model of personality in adolescent boys. Child Development, 160178.Google Scholar
John, O. P. & Srivastava, S. (1999). The Big Five trait taxonomy: History, measurement, and theoretical perspectives. Handbook of personality: Theory and research, 2(1999), 102138.Google Scholar
Jonason, P. K., Duineveld, J. J., & Middleton, J. P. (2015). Pathology, pseudopathology, and the Dark Triad of personality. Personality and Individual Differences, 78, 4347.Google Scholar
Jones, S. E., Miller, J. D., & Lynam, D. R. (2011). Personality, antisocial behavior, and aggression: A meta-analytic review. Journal of Criminal Justice, 39, 329337.Google Scholar
Jones, D. N. & Neria, A. L. (2015). The Dark Triad and dispositional aggression. Personality and Individual Differences, 86, 360364.Google Scholar
Jones, D. N. & Paulhus, D. L. (2011). The role of impulsivity in the Dark Triad of personality. Personality and Individual Differences, 51, 670682.Google Scholar
Kohut, H. (1972). Thoughts on narcissism and narcissistic rage. In Eissler, R. S., Freud, A., Kris, M., & Solnit, A. J. (Eds), The psychoanalytic study of the child (Vol. 27, pp. 360400). New York: Quadrangle Books.Google Scholar
Krizan, Z. & Johar, O. (2015). Narcissistic rage revisited. Journal of Personality And Social Psychology, 108(5), 784801.Google Scholar
Krueger, R. F., Caspi, A., Moffitt, T. E., & Silva, P. A. (1998). The structure and stability of common mental disorders (DSM-III-R): A longitudinal-epidemiological study. Journal of Abnormal Psychology, 107(2), 216.Google Scholar
Krueger, R. F., Derringer, J., Markon, K. E., Watson, D., & Skodol, A. E. (2012). Initial construction of a maladaptive personality trait model and inventory for DSM-5. Psychological Medicine, 42, 18791890.Google Scholar
Leistico, A. M. R., Salekin, R. T., DeCoster, J., & Rogers, R. (2008). A large-scale meta-analysis relating the hare measures of psychopathy to antisocial conduct. Law and Human Behavior, 32, 2845.Google Scholar
Lilienfeld, S. O., Patrick, C. J., Benning, S. D., Berg, J., Sellbom, M., & Edens, J. F. (2012). The role of fearless dominance in psychopathy: Confusions, controversies, and clarifications. Personality Disorders: Theory, Research, And Treatment, 3(3), 327340.Google Scholar
Lilienfeld, S. O., Watts, A. L., Francis Smith, S., Berg, J. M., & Latzman, R. D. (2015). Psychopathy deconstructed and reconstructed: Identifying and assembling the Personality building blocks of Cleckley’s chimera. Journal of Personality, 83(6), 593610.Google Scholar
Lilienfeld, S. O. & Widows, M. R. (2005). PPI-R: Psychopathic personality inventory revised: Professional Manual. Lutz, FL: Psychological Assessment Resources, Incorporated.Google Scholar
Livesley, W. J., Schroeder, M. L., Jackson, D. N., & Jang, K. L. (1994). Categorical distinctions in the study of personality disorder: Implications for classification. Journal of Abnormal Psychology, 103(1), 617.Google Scholar
Lobbestael, J., Baumeister, R. F., Fiebig, T., & Eckel, L. A. (2014). The role of grandiose and vulnerable narcissism in self-reported and laboratory aggression and testosterone reactivity. Personality and Individual Differences, 69, 2227.Google Scholar
Lobbestael, J., Cima, M., & Lemmens, A. (2015). The relationship between personality disorder traits and reactive versus proactive motivation for aggression. Psychiatry Research, 229, 155160.Google Scholar
Mancke, F., Herpertz, S. C., & Bertsch, K. (2015). Aggression in borderline personality disorder: A multidimensional model. Personality Disorders: Theory, Research, and Treatment, 6, 278291.Google Scholar
McCrae, R. R. & John, O. P. (1992). An introduction to the five-factor model and its applications. Journal of Personality, 60, 175215.Google Scholar
McCrae, R. R., Costa, P. T., Del Pilar, G. H., Rolland, J. P., & Parker, W. D. (1998). Cross-cultural assessment of the five-factor model the revised NEO personality inventory. Journal of Cross-Cultural Psychology, 29, 171188.Google Scholar
McHoskey, J. W., Worzel, W., & Szyarto, C. (1998). Machiavellianism and psychopathy. Journal of Personality and Social psychology, 74, 192210.Google Scholar
Meier, B. P., Robinson, M. D., & Wilkowski, B. M. (2006). Turning the Other Cheek: Agreeableness and the Regulation of Aggression-Related Primes. Psychological Science, 17, 136142.Google Scholar
Miller, J. D. (2012). Five-factor model personality disorder prototypes: A review of their development, validity, and comparison to alternative approaches. Journal of Personality, 80, 15651591.Google Scholar
Miller, J. D., Hyatt, C. S., Maples-Keller, J. L., Carter, N. T., & Lynam, D. R. (2017). Psychopathy and Machiavellianism: A distinction without a difference?. Journal of Personality, 85, 439–453.Google Scholar
Miller, J. D. & Lynam, D. R. (2001). Structural models of personality and their relation to antisocial behavior: a meta-analytic review. Criminology, 39, 765798.Google Scholar
Miller, J. D. & Lynam, D. R. (2003). Psychopathy and the five-factor model of personality: A replication and extension. Journal of Personality Assessment, 81, 168178.Google Scholar
Miller, J. D. & Lynam, D. R. (2006). Reactive and proactive aggression: Similarities and differences. Personality and Individual Differences, 41, 14691480.Google Scholar
Miller, J. D. & Lynam, D. R. (2012). An examination of the Psychopathic Personality Inventory’s nomological network: a meta-analytic review. Personality Disorders: Theory, Research, and Treatment, 3, 305326.Google Scholar
Miller, J. D., Lynam, D. R., Hyatt, C. S., & Campbell, W. K. (in press). Controversies in narcissism. Annual Review of Clinical Psychology.Google Scholar
Miller, J. D., Lynam, D. R., & Jones, S. E. (2008). Externalizing behavior through the lens of the Five Factor Model: A focus on agreeableness and conscientiousness. Journal of Personality Assessment, 90, 158164.Google Scholar
Miller, J. D., Lyman, D. R., Widiger, T. A., & Leukefeld, C. (2001). Personality disorders as extreme variants of common personality dimensions: can the five factor model adequately represent psychopathy?. Journal of Personality, 69, 253276.Google Scholar
Miller, J. D., Lynam, D. R., Siedor, L., Crowe, M., Campbell, W. K. (2016) Consensual lay profiles of narcissism and their connection to existing assessment measures. Manuscript under review.Google Scholar
Miller, J. D., Rausher, S., Hyatt, C. S., Maples, J., & Zeichner, A. (2014). Examining the relations among pain tolerance, psychopathic traits, and violent and nonviolent antisocial behavior. Journal of Abnormal Psychology, 123, 205.Google Scholar
Miller, J. D., Zeichner, A., & Wilson, L. F. (2012). Personality correlates of aggression: Evidence from measures of the Five-Factor Model, UPPS Model of Impulsivity, and BIS/BAS. Journal of Interpersonal Violence, 27, 29032919.Google Scholar
Newhill, C. E., Eack, S. M., & Mulvey, E. P. (2009). Violent behavior in borderline personality. Journal of Personality Disorders, 23, 541554.Google Scholar
O’Boyle, E. H., Forsyth, D. R., Banks, G. C., Story, P. A., & White, C. D. (2015). A meta-analytic test of redundancy and relative importance of the dark triad and five-factor model of personality. Journal of Personality, 83, 644664.Google Scholar
Ozer, D. J. & Benet-Martinez, V. (2006). Personality and the prediction of consequential outcomes. Annual Review of Psychology, 57, 401421.Google Scholar
Patrick, C. J., Fowles, D. C., & Krueger, R. F. (2009). Triarchic conceptualization of psychopathy: Developmental origins of disinhibition, boldness, and meanness. Developmental Psychopathology, 21, 913938.Google Scholar
Paulhus, D. L. & Williams, K. M. (2002). The dark triad of personality: Narcissism, Machiavellianism, and psychopathy. Journal of Research in Personality, 36, 556563.Google Scholar
Reidy, D. E., Foster, J. D., & Zeichner, A. (2010). Narcissism and unprovoked aggression. Aggressive Behavior, 36, 414422.Google Scholar
Reidy, D. E., Shelley-Tremblay, J. F., & Lilienfeld, S. O. (2011). Psychopathy, reactive aggression, and precarious proclamations: A review of behavioral, cognitive, and biological research. Aggression and Violent Behavior, 16, 512524.Google Scholar
Rogers, C. R. (2007). The necessary and sufficient conditions of therapeutic personality change. Psychotherapy: Theory, Research, Practice, Training, 44(3), 240248.Google Scholar
Rosell, D. R. & Siever, L. J. (2015) The neurobiology of aggression and violence. CNS Spectrums, 20, 254279.Google Scholar
Russel, J. J., Moskowitz, D. S., Zuroff, D. C., Sookman, D., & Paris, J. (2007). Stability and variability of affective experience and interpersonal behavior in borderline personality disorder. Journal of Abnormal Psychology, 116, 578588.Google Scholar
Samstag, L. W. (2007). The necessary and sufficient conditions of therapeutic personality change: Reactions to Rogers’ 1957 article. Psychotherapy: Theory, Research, Practice, Training, 44(3), 295299.Google Scholar
Samuel, D. B. & Widiger, T. A. (2008). A meta-analytic review of the relationships between the five-factor model and DSM-IV-TR personality disorders: A facet level analysis. Clinical Psychology Review, 28, 13261342.Google Scholar
Sansone, R. A. & Sansone, L. A. (2009). Borderline personality and criminality. Psychiatry, 6, 1620.Google Scholar
Sleep, C. E., Lynam, D. R., Hyatt, C. S., & Miller, J. D. (2016). Perils of partialling Redux: The case of the dark triad. Manuscript in preparation.Google Scholar
Skodol, A. E., Gunderson, J. G., Pfohl, B., Widiger, T. A., Livesley, W. J., & Siever, L. J. (2002). The borderline diagnosis I: Psychopathology, comorbidity, and personality structure. Biological Psychiatry, 51, 936950.Google Scholar
South, S. C., Turkheimer, E., & Oltmanns, T. F. (2008). Personality disorder symptoms and marital functioning. Journal of Consulting and Clinical Psychology, 76, 769780.Google Scholar
Stead, R. & Fekken, G. C. (2014). Agreeableness at the core of the dark triad of personality. Individual Differences Research, 12, 131141.Google Scholar
Tackett, J. L., Daoud, S. L., De Bolle, M., & Burt, S. A. (2013). Is relational aggression part of the externalizing spectrum? A bifactor model of youth antisocial behavior. Aggressive Behavior, 39, 149159.Google Scholar
Thomas, K. M., Wright, A. G. C., Lukowitsky, M. R., Donnellan, M. B., & Hopwood, C. J. (2012) Evidence for the criterion validity and clinical utility of the Pathological Narcissism Inventory. Assessment, 19, 135145.Google Scholar
Twenge, J. M. & Campbell, W. K. (2003). ‘Isn’t it fun to get the respect that we’re going to deserve?’ Narcissism, social rejection, and aggression. Personality and Social Psychology Bulletin, 29, 261272.Google Scholar
Vize, C. E., Lynam, D. R., Collison, K. L., & Miller, J. D. (2018). Differences among dark triad components: A meta-analytic investigation. Personality Disorders: Theory, Research, and Treatment, 9(2), 101111.Google Scholar
Walters, G. D. (2003). Predicting institutional adjustment and recidivism with the psychopathy checklist factor scores: A meta-analysis. Law and Human Behavior, 27, 541558.Google Scholar
Whisman, M. A. & Schonbrun, Y. C. (2009). Social consequences of borderline personality disorder symptoms in a population-based survey: Marital distress, marital violence, and marital disruption. Journal of Personality Disorders, 23, 410415.Google Scholar
Widiger, T. A. (1993). The DSM-III-R categorical personality disorder diagnoses: A critique and an alternative. Psychological Inquiry, 4, 7590.Google Scholar
Widiger, T. A. & Trull, T. J. (2007). Plate tectonics in the classification of personality disorder: Shifting to a dimensional model. American Psychologist, 62, 7183.Google Scholar
Wilkowski, B. M., Robinson, M. D., & Meier, B. P. (2006). Agreeableness and the prolonged spatial processing of antisocial and prosocial information. Journal of Research in Personality, 40, 11521168.Google Scholar
Yamagata, S., Suzuki, A., Ando, J., One, Y., Kijima, N., Yoshimura, K. … & Livesly, W. J. (2006). Is the genetic structure of human personality universal? A cross-cultural twin study from North America, Europe, and Asia. Journal of Personality and Social Psychology, 90, 987−998.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×