Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-18T19:59:41.365Z Has data issue: false hasContentIssue false

4 - Neuroanatomy

Published online by Cambridge University Press:  08 November 2023

Mary-Ellen Lynall
Affiliation:
University of Cambridge
Peter B. Jones
Affiliation:
University of Cambridge
Stephen M. Stahl
Affiliation:
University of California, San Diego
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Knecht, S. et al. (2000). Handedness and hemispheric language dominance in healthy humans. Brain 123, 25122518.CrossRefGoogle ScholarPubMed
McVey Neufeld, K.-A. et al. (2019). Oral selective serotonin reuptake inhibitors activate vagus nerve dependent gut–brain signalling. Sci Rep 9, 14290.CrossRefGoogle ScholarPubMed
Brodmann, K. (1909). Vergleichende Lokalisationslehre der Grosshirnrinde [Localisation in the Cerebral Cortex]. Verlag von Johann Ambrosius Barth (3rd edition of Localisation in the Cerebral Cortex published by Springer, 2006, translated by Laurence J. Garey).Google Scholar
Marr, D. (1969). A theory of cerebellar cortex. J Physiol 202, 437470.CrossRefGoogle ScholarPubMed
Vogt, C. Vogt, O. (1919). Allgemeinere Ergebnisse unserer Hirnforschung [General results of our brain research]. J Psychol Neurol 25, 292398.Google Scholar
Maclean, P. D. (1949). Psychosomatic disease and the ‘visceral brain’; recent developments bearing on the Papez theory of emotion. Psychosom Med 11, 338353.CrossRefGoogle ScholarPubMed
Papez, J. (1937). A proposed mechanism of emotion. J Neuropsychiatry, doi:10.1176/jnp.7.1.103.CrossRefGoogle Scholar
Xie, L. et al. (2013). Sleep drives metabolite clearance from the adult brain. Science 342, 10.1126/science.1241224.CrossRefGoogle ScholarPubMed

References

Alexander, GE (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci 9: 357–381.CrossRefGoogle ScholarPubMed
Fernández-Miranda, JC, Rhoton, AL Jr, Kakizawa, Y, Choi, C, Alvarez-Linera, J (2008). The claustrum and its projection system in the human brain: a microsurgical and tractographic anatomical study. J Neurosurg 108(4): 764774.CrossRefGoogle Scholar
Haber, SN (2003). The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 26: 317330.CrossRefGoogle ScholarPubMed
Heimer, L (1995). The Human Brain and Spinal Cord: Functional Neuroanatomy and Dissection Guide, 2nd ed. Springer Verlag.CrossRefGoogle Scholar
Koestler, A (1967). The Ghost in the Machine. MacMillan.Google Scholar
Laplane, D, Levasseur, M, Pillon, B et al. (1989). Obsessive–compulsive and other behavioural changes with bilateral basal ganglia lesions: a neuropsychological, magnetic resonance imaging and positron tomography study. Brain 112(Pt 3): 699725.CrossRefGoogle ScholarPubMed
McGuire, PK, Bench, CJ, Frith, CD et al. (1994). Functional anatomy of obsessive–compulsive phenomena. Br J Psych 164(4): 459468.CrossRefGoogle ScholarPubMed
Mello, E, Villares, J (1997). Neuroanatomy of the basal ganglia. Psychiatr Clin North Am 20(4): 691704.CrossRefGoogle ScholarPubMed
Middleton, FA, Strick, PL (2000). Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Rev 31(2–3): 236250.CrossRefGoogle ScholarPubMed
Ribas, EC, Yagmurlu, K, Wen, HT, Rhoton, AL Jr (2015). Microsurgical anatomy of the inferior limiting insular sulcus and the temporal stem. J Neurosurg 122(6): 12631273.CrossRefGoogle ScholarPubMed
Ribas, EC, Yağmurlu, K, de Oliveira, E, Ribas, GC, Rhoton, A (2018). Microsurgical anatomy of the central core of the brain. J Neurosurg 129(3): 752769.CrossRefGoogle ScholarPubMed
Ribas, GC (2010). The cerebral sulci and gyri. Neurosurg Focus 28(2): E2.CrossRefGoogle ScholarPubMed
Teixeira, AL, Malheiros, JA, de Oliveira, JT, Nicolato, R, Correa, H (2006). Limbic encephalitis manifesting as a psychotic disorder. Rev Bras Psiquiatr 28(2): 163164.CrossRefGoogle ScholarPubMed

References

de Olmos JS, , Heimer, L (1999). The concept of ventral striatopallidal system and extended amygdala. Ann N Y Acad Sci 877: 132.CrossRefGoogle ScholarPubMed
Duvernoy, MH (1998). The Human Hippocampus: Functional Anatomy, Vascularization, and Serial Section with MRI, 2nd ed. Springer.CrossRefGoogle Scholar
Heimer, L, Van Hoesen, GW (2006).The limbic lobe and its output channels: implications for emotional functions and adaptive behavior. Neurosci Biobehav Rev 30(2): 126147.CrossRefGoogle ScholarPubMed
Kandel, ER, Schwartz, JH, Jessell, TM, eds (1991). Principles of Neural Science, 3rd ed. Elsevier.Google Scholar
LeDoux, J (1994). Emotion, memory and the brain: the neural routes underlying the formation of memories about primitive emotional experiences, such as fear, have been traced. Sci Am 270(6): 5057.CrossRefGoogle Scholar
LeDoux, J (2003). The self: clues from the brain. Ann N Y Acad Sci 1001: 295304.CrossRefGoogle ScholarPubMed
Nagata, S, Rhoton, AL, Barry, M (1988). Microsurgical anatomy of the choroidal fissure. Surg Neurol 30: 359,CrossRefGoogle ScholarPubMed
Ribas, GC (2010). The cerebral sulci and gyri. Neurosurg Focus 28(2): E2.CrossRefGoogle ScholarPubMed
Ribas, GC (2015). The cerebral hemispheres. In Gray’s Anatomy, 41st ed. Elsevier.Google Scholar
Ribas, GC (ed.) (2018). Applied Cranial-Cerebral Anatomy. Cambridge University Press.CrossRefGoogle Scholar
Squire, LR, Bloom, FE, McConnell, SK et al. (2003). Fundamental Neuroscience, 2nd ed. Elsevier Academic Press.Google Scholar
Ture, U, Yasargil, DC, Al-Mefty, O, Yasargil, MG (1999). Topographic anatomy of the insular region. J Neurosurg 90(4): 730733.CrossRefGoogle ScholarPubMed
Ture, U, Yasargil, MG, Friedman, AH, Al-Mefty, O (2000). Fiber dissection technique: lateral aspect of the brain. Neurosurgery 47(2): 417426.CrossRefGoogle ScholarPubMed
Wen, HT, Rhoton, AL Jr, de Oliveira, E et al. (1999). Microsurgical anatomy of the temporal lobe: Part I: mesial temporal lobe anatomy and its vascular relationships and applied to amygdalohippocampectomy. Neurosurgery 45(3): 549591.CrossRefGoogle ScholarPubMed
Williams, PL, Warwick, R, eds. (1980). Gray’s Anatomy, 36th ed. Saunders.Google Scholar

References

Brodal, P (2010). The Central Nervous System, Structure and Function, 4th ed. Oxford University Press.Google Scholar
Duffau, H (2011). Brain Mapping: from Neural Basis of Cognition to Surgical Applications. Springer-Verlag.CrossRefGoogle Scholar
Duvernoy, MH (1998). The Human Hippocampus: Functional Anatomy, Vascularization, and Serial Section with MRI, 2nd ed. Springer.CrossRefGoogle Scholar
Finger, S (1994). Origins of Neuroscience. Oxford University Press.CrossRefGoogle Scholar
Heimer, L (1995). The Human Brain and Spinal Cord: Functional Neuroanatomy and Dissection Guide, 2nd ed. Springer Verlag.CrossRefGoogle Scholar
Heimer, L, Van Hoesen, GW (2006). The limbic lobe and its output channels: implications for emotional functions and adaptive behavior. Neurosci Biobehav Rev 30(2): 126147.CrossRefGoogle ScholarPubMed
LeDoux, J (2003). The self: clues from the brain. Ann N Y Acad Sci 1001: 295304.CrossRefGoogle ScholarPubMed
MacLean, PD (1990). The Triune Brain in Evolution. Plenum.Google Scholar
Marino, R Jr. (1975). Fisiologia das emoções. Sarvier. 18.Google Scholar
Martin, JH (1996). Neuroanatomy, Text and Atlas, 2nd ed. Appleton and Lange Co.Google Scholar
Mesulam, MM (1987). Patterns in behavioral neuroanatomy: association areas, the limbic system, and hemisphere specialization. In Principles of Behavioral Neurology. FA Davis, pp. 170.Google Scholar
Penfield, W, Rasmussen, T (1950). The Cerebral Cortex of Man. Macmillan,Google ScholarPubMed
Ribas, GC (2015). The cerebral hemispheres. In Gray’s Anatomy, 41st ed. Elsevier.Google Scholar

References

Broca, P (1877). Sur la circonvolution limbique et la scissure limbique. Bull Soc d’Anth 12: 646657.Google Scholar
Brodal, A (1981). Neurological Anatomy in Relation to Clinical Medicine, 3rd ed. Oxford University Press.Google Scholar
Catani, M, Jones, DK, ffytche, DH (2005). Perisylvian language networks of the human brain. Ann Neurol 57(1): 816.CrossRefGoogle ScholarPubMed
Duffau, H (2008). The anatomo-functional connectivity of language revisited. New insights provided by electrostimulation and tractography. Neuropsychologia 46: 927934.CrossRefGoogle ScholarPubMed
Federative Committee on Anatomical Terminology (1998). Terminologia Anatomica: International Anatomical Terminology. Thieme.Google Scholar
MacLean, PD (1949). Psychosomatic disease and the visceral brain: recent developments bearing on the Papez theory of emotion. Psychosom Med 11(6): 338353.CrossRefGoogle ScholarPubMed
MacLean, PD (1978). Challenges of the Papez heritage. In Livingston, KE, Hornykiewicz, O, eds. Limbic Mechanisms: The Continuing Evolution of the Limbic System Concept. Plenum Press, pp. 115.Google Scholar
Makris, N, Kennedy, DN, McInerney, S et al. (2005). Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex 15(6): 854869.CrossRefGoogle ScholarPubMed
Matsumoto, M, Hikosaka, O (2007). Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 447: 11111115.CrossRefGoogle ScholarPubMed
Papez, J (1937). A proposed mechanism of emotion. Arch Neurol Psychiatry 38: 725743.CrossRefGoogle Scholar
Papez, JW (1958). Visceral brain, its component parts and their connections. J Nerv Ment Dis 126(1): 4055.CrossRefGoogle ScholarPubMed
Ribas, GC, ed. (2018). Applied Cranial-Cerebral Anatomy. Cambridge University Press.CrossRefGoogle Scholar
Tavor, I, Yablonski, M, Mezer, A, Rom, S, Assaf, Y, Yovel, G. (2014) Separate parts of occipito-temporal white matter fibers are associated with recognition of faces and places. Neuroimage 86:123–30.Google Scholar
Thiebaut de Schotten, M, Dell’Acqua, F, Forkel, SJ et al. (2011). A lateralized brain network for visuospatial attention. Nat Neurosci 14:12451246.CrossRefGoogle Scholar
Williams, PL, Warwick, R, eds. (1980). Gray’s Anatomy, 36th ed. Saunders.Google Scholar

References

Amat, J, Baratta, MV, Paul, E et al. (2005). Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nat Neurosci 8(3): 365371. doi:10.1038/nn1399CrossRefGoogle ScholarPubMed
Aston-Jones, G, Rajkowski, J, Cohen, J (1999). Role of locus coeruleus in attention and behavioral flexibility. Biol Psychiatry 46(9): 13091320. doi:10.1016/s0006-3223(99)00140-7CrossRefGoogle ScholarPubMed
Atzori, M, Cuevas-Olguin, R, Esquivel-Rendon, E et al. (2016). Locus ceruleus norepinephrine release: a central regulator of CNS spatio-temporal activation? Front Synaptic Neurosci 8: 25. doi:10.1177/1073858420974336CrossRefGoogle ScholarPubMed
Azizi, SA (2020). Monoamines: dopamine, norepinephrine, and serotonin, beyond modulation, “switches” that alter the state of target networks. Neuroscientist 28(2) doi:10.1177/1073858420974336Google ScholarPubMed
Browning, M, Behrens, TE, Jocham, G, O’Reilly, JX, Bishop, SJ (2015). Anxious individuals have difficulty learning the causal statistics of aversive environments. Nat Neurosci 18(4): 590596. doi:10.1038/nn.3961CrossRefGoogle ScholarPubMed
Cahill, L, Prins, B, Weber, M, McGaugh, JL (1994). Beta-adrenergic activation and memory for emotional events. Nature 371(6499): 702704. doi:10.1038/371702a0CrossRefGoogle ScholarPubMed
Dalley, JW, McGaughy, J, O’Connell, MT et al. (2001). Distinct changes in cortical acetylcholine and noradrenaline efflux during contingent and noncontingent performance of a visual attentional task. J Neurosci 21(13): 49084914. www.ncbi.nlm.nih.gov/pubmed/11425918CrossRefGoogle ScholarPubMed
Furey, ML, Drevets, WC (2006). Antidepressant efficacy of the antimuscarinic drug scopolamine: a randomized, placebo-controlled clinical trial. Arch Gen Psychiatry 63(10): 11211129. doi:10.1001/archpsyc.63.10.1121CrossRefGoogle ScholarPubMed
Mei, J, Muller, E, Ramaswamy, S (2022). Informing deep neural networks by multiscale principles of neuromodulatory systems. Trends Neurosci 45(3): 237250. doi: 10.1016/j.tins.2021.12.008CrossRefGoogle ScholarPubMed
Mesulam, MM, Mufson, EJ, Wainer, BH, Levey, AI (1983). Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience 10(4): 11851201. doi:10.1016/0306-4522(83)90108-2CrossRefGoogle Scholar
Morales, I, Berridge, KC (2020). ‘Liking’ and ‘wanting’ in eating and food reward: brain mechanisms and clinical implications. Physiol Behav 227: 113152. doi:10.1016/j.physbeh.2020.113152CrossRefGoogle ScholarPubMed
Moruzzi, G, Magou, HW (1949). Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1(4): 455473. www.ncbi.nlm.nih.gov/pubmed/18421835CrossRefGoogle ScholarPubMed
Perry, EK (1986). The cholinergic hypothesis ten years on. Br Med Bull 42(1): 6369. doi:10.1093/oxfordjournals.bmb.a072100CrossRefGoogle Scholar
Poe, GR, Foote, S, Eschenk, O et al. (2020). Locus coeruleus: a new look at the blue spot. Nat Rev Neurosci 21(11): 644659. doi:10.1038/s41583-020-0360-9CrossRefGoogle Scholar
Sara, SJ (2009). The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci 10(3): 211223. doi:10.1038/nrn2573CrossRefGoogle ScholarPubMed
Schultz, W (2007). Behavioral dopamine signals. Trends Neurosci 30(5): 203210. doi:10.1016/j.tins.2007.03.007CrossRefGoogle ScholarPubMed
Segal, M, Bloom, FE (1976). The action of norepinephrine in the rat hippocampus. IV. The effects of locus coeruleus stimulation on evoked hippocampal unit activity. Brain Res 107(3): 513525. doi:10.1016/0006-8993(76)90141-4CrossRefGoogle ScholarPubMed
Sharp, T, Barnes, NM (2020). Central 5-HT receptors and their function: present and future. Neuropharmacology 177: 108155. doi:10.1016/j.neuropharm.2020.108155CrossRefGoogle ScholarPubMed
Soubrie, P (1986). [Serotonergic neurons and behavior]. J Pharmacol 17(2): 107112. www.ncbi.nlm.nih.gov/pubmed/2875217Google ScholarPubMed
Steinberg, LJ, Rubin-Falcone, H, Galfalvy, HC et al. (2019). Cortisol stress response and in vivo PET imaging of human brain serotonin 1A receptor binding. Int J Neuropsychopharmacol 22(5): 329338. doi:10.1093/ijnp/pyz009CrossRefGoogle ScholarPubMed
Svob Strac, D, Pivac, N, Muck-Seler, D (2016). The serotonergic system and cognitive function. Transl Neurosci 7(1): 3549. doi:10.1515/tnsci-2016-0007CrossRefGoogle ScholarPubMed
Weiss, JM, Stone, EA, Harrell, N (1970). Coping behavior and brain norepinephrine level in rats. J Comp Physiol Psychol 72(1) 153160. doi:10.1037/h0029311CrossRefGoogle ScholarPubMed
Yu, AJ, Dayan, P (2005). Uncertainty, neuromodulation, and attention. Neuron 46(4): 681692. doi:10.1016/j.neuron.2005.04.026CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×