Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-29T21:03:30.497Z Has data issue: false hasContentIssue false

1 - Introduction

Published online by Cambridge University Press:  23 November 2009

John R. Helliwell
Affiliation:
University of Manchester
Get access

Summary

Macromolecular crystallography is a very powerful method used to study complex biological systems. The structures of a wide variety of proteins, nucleic acids and their assemblies have been determined at atomic or near-atomic resolution. As a result, a detailed understanding has been gained of various living processes such as enzyme catalysis, the immune response, the encoding of hereditary information, viral infection and photosynthesis.

The first X-ray diffraction photograph ever taken was from copper sulphate by Friedrich and Knipping at von Laue's suggestion in 1912. In the following year W. L. Bragg deduced the crystal structure of sodium chloride from Laue photographs. A variety of relatively small molecular structures were then solved at an increasing rate.

The first X-ray diffraction pictures of a protein crystal were taken in 1934 by Bernal in Cambridge, but in those days the data quality was crude and the techniques for deriving a crystal structure of a macromolecule from the X-ray data were not sufficiently developed. The advent of the computer has been a critical development.

The first protein structures to be determined were myoglobin and haemoglobin in the late 1950s by Kendrew et al (1958) and Perutz et al (1960). From then on a steadily increasing number of protein structures have become known.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Introduction
  • John R. Helliwell, University of Manchester
  • Book: Macromolecular Crystallography with Synchrotron Radiation
  • Online publication: 23 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511524264.003
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Introduction
  • John R. Helliwell, University of Manchester
  • Book: Macromolecular Crystallography with Synchrotron Radiation
  • Online publication: 23 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511524264.003
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Introduction
  • John R. Helliwell, University of Manchester
  • Book: Macromolecular Crystallography with Synchrotron Radiation
  • Online publication: 23 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511524264.003
Available formats
×