Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-28T07:05:18.980Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  19 October 2009

Vincent J. McBrierty
Affiliation:
Trinity College, Dublin
Get access

Summary

Since its inception, nuclear magnetic resonance (NMR) has been used with remarkable success to investigate polymeric materials. However, application to solid polymers was for many years largely the province of physicists and physical chemists because of the need for specialised spectrometers to gain access to the broad spectra (usually H) typical of solids, and because interpretation of these spectra and associated relaxation times required theoretical models of a strongly physical nature. The chemist, meanwhile, was more than satisfied to exploit the enormous potential provided by the increasing power of liquid-state NMR spectroscopy which had benefited considerably from the introduction of Fourier transform (FT) methods, the availability of higher fields generated by superconducting magnets with concomitant enhanced sensitivity, formidable on-line computing capabilities, and the added flexibility of multidimensional NMR. The rich site-specific information in high-resolution liquid-state NMR remained undetected in early solid-state spectra because of the dominant dipolar contribution. Sustained efforts to achieve comparable results for solids led to procedures to suppress dipolar contributions using high-power decoupling techniques, sample spinning and the application of ingenious pulse sequences. Today the full power of high-resolution one-, two- and three-dimensional NMR is available for solid materials, albeit requiring more sophisticated experimentation and analysis. Specifically, multidimensional NMR permits different spin interactions to be correlated or separated, exchange between different states of a resonant nucleus to be monitored over selected timeframes and the intricacies of complex molecular motions to be elucidated.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×