Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-21T02:59:29.039Z Has data issue: false hasContentIssue false

10 - Super- and Coinfection: Filling the Range

Published online by Cambridge University Press:  15 January 2010

Ulf Dieckmann
Affiliation:
International Institute for Applied Systems Analysis, Austria
Johan A. J. Metz
Affiliation:
Universiteit Leiden
Maurice W. Sabelis
Affiliation:
Universiteit van Amsterdam
Karl Sigmund
Affiliation:
Universität Wien, Austria
Get access

Summary

Introduction

How many different strains of a disease can coexist in a single population of hosts? What effect do different mechanisms of coexistence have on the properties of diseases? The principle of competitive exclusion (Armstrong and McGehee 1980; Levin 1970) states that no more species can coexist in a system than the number of resources or limiting factors allow, which can be thought of, somewhat imprecisely, as stating that a single trade-off can support only a single species – the one that deals best with that trade-off. Disease models describe a simple ecological interaction, with hosts acting as resources, to test the limits of competitive exclusion. Trade-offs for the disease often involve virulence, a trait of abiding interest to hosts.

In the absence of a trade-off between host mortality and transmission efficiency, the disease strain with the lowest virulence would always win out in competition, and diseases would be favored to evolve ever-reduced virulence. When such a trade-off between host mortality and transmission efficiency exists, the single strain that maximizes the basic reproduction ratio R0 will persist (see Boxes 2.2, 5.1, and 9.1; Bremermann and Thieme 1989). Ecological factors that affect this trade-off, such as host density, might favor higher or lower virulence (Ewald 1994a). However, in the absence of spatial or temporal variation in these factors, only one strain persists [but see Andreasen and Pugliese (1995) for a case in which coexistence is due to density-dependence in the host].

Type
Chapter
Information
Adaptive Dynamics of Infectious Diseases
In Pursuit of Virulence Management
, pp. 138 - 149
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×