Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-04-30T12:40:06.688Z Has data issue: false hasContentIssue false

17 - Treatment of intracerebral haemorrhage

Published online by Cambridge University Press:  23 December 2009

Graeme Hankey
Affiliation:
Royal Perth Hospital, Australia
Get access

Summary

Rupture of a blood vessel in the brain, resulting in intracerebral haemorrhage, causes immediate damage to neurones in the deep nuclei or cortex, and disruption of white matter tracts.

Direct mechanical compression of the brain tissue surrounding the haematoma and, to some extent, vasoconstrictor substances in extravasated blood, may compromise the local blood supply (Mendelow, 1993), and lead to cellular ischaemia which, in turn, leads to further swelling from cytotoxic, and later vasogenic, oedema. The zone of ischaemia around the haematoma may extend and swell through systemic factors such as hypoxia, hypotension and a loss of cerebral autoregulation in the vasculature supplying the region of the haematoma.

Haematomas adjacent to the ventricular system, such as cerebellar and large basal ganglia haematomas, may also directly compress the cerebrospinal fluid (CSF) pathway or rupture into the CSF pathway, and prevent outflow of the CSF from the brain, causing hydrocephalus (Ropper, 1986).

Due to the protective rigid encasement of the skull, the sudden increase in volume within the intracranial cavity due to the haemorrhage increases the intracranial pressure and threatens other parts of the brain, especially when the intracranial pressure reaches levels of the same order of magnitude as the arterial pressure, reducing the cerebral perfusion pressure close to zero.

About 25% of patients with intracerebral haematoma (ICH) die during the first day, and 40% within the first month, usually as a consequence of supratentorial haemorrhage large enough to cause transtentorial herniation, or haemorrhage in the posterior fossa causing direct brainstem compression and herniation upwards and downwards (Broderick et al., 1999).

Type
Chapter
Information
Stroke Treatment and Prevention
An Evidence-based Approach
, pp. 360 - 375
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×