Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-03T10:44:51.163Z Has data issue: false hasContentIssue false

3 - Von Willebrand disease and other bleeding disorders in obstetrics

Published online by Cambridge University Press:  01 February 2010

Franklin Fuda D.O.
Affiliation:
Fellow: Hematopathology Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
Ravindra Sarode M.D.
Affiliation:
Professor of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
Rodger L. Bick
Affiliation:
University of Texas Southwestern Medical Center, Dallas
Eugene P. Frenkel
Affiliation:
University of Texas Southwestern Medical Center, Dallas
William F. Baker
Affiliation:
University of California, Los Angeles
Ravi Sarode
Affiliation:
University of Texas Southwestern Medical Center, Dallas
Get access

Summary

Introduction

Bleeding disorders in the female population often present unique challenges to an obstetrician. The hormonal and physical changes that occur during the menstrual cycle, pregnancy, childbirth, and the post-partum period continually place strain upon the hemostatic system. Although severe bleeding disorders are usually easily recognized, mild bleeding disorders often go undiagnosed due to the “mild degree” of signs and symptoms (e.g. slightly abnormal menstruation). Unfortunately, even these mild bleeding disorders often lead to a decrease in the quality of life, variable degrees of morbidity, and even life-threatening hemorrhage. Therefore, it is essential that the obstetrician be aware of the clinical clues, appropriate diagnostic tests, and treatment regimens for such disorders. This is particularly important for pregnant women, whose hemostatic system undergoes marked alterations in preparation for the unique challenge of delivery.

The hemostatic system

Basic knowledge of the hemostatic system assists in making clinical decisions regarding bleeding conditions in the obstetric population. Normal hemostasis is a highly regulated, physiologic process of clot formation and clot management that occurs in response to vascular injury. It involves 2 major systems: (i) primary hemostasis and (ii) secondary hemostasis. Although both systems are initiated at the same time and work together intricately to form stable platelet-fibrin clots, the influence that each system has upon clot formation in the arterial versus the venous systems is different.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kadir, R. A., Sabin, C. A., Pollard, D., et al. Quality of life during menstruation in patients with inherited bleeding disorders. Haemophilia, 1998; 4(6): 836–41.CrossRefGoogle ScholarPubMed
Kouides, P. A., Phatak, P. D., Burkart, P., et al. Gynaecological and obstetrical morbidity in women with type I von Willebrand disease: results of a patient survey. Haemophilia, 2000; 6(6): 643–8.CrossRefGoogle ScholarPubMed
Rozeik, C. H.Gynecological disorders and psychological problems in 184 women with von Willebrand disease (vWD). Haemophilia, 1998; 4(3): 293.Google Scholar
Kulkarni, S., Dopheide, S. M., Yap, C. L., et al. A revised model of platelet aggregation. J. Clin. Invest., 2000; 105(6): 783–91.CrossRefGoogle ScholarPubMed
Shattil, S. J., Kashiwagi, H. and Pampori, N.Integrin signaling: the platelet paradigm. Blood, 1998; 91(8): 2645–57.Google ScholarPubMed
Watson, S. P. and Gibbins, J.Collagen receptor signalling in platelets: extending the role of the ITAM. Immunol. Today, 1998; 19(6): 260–4.CrossRefGoogle ScholarPubMed
Wickstrom, K., Edelstam, G., Lowbeer, C. H., et al. Reference intervals for plasma levels of fibronectin, von Willebrand factor, free protein S and antithrombin during third-trimester pregnancy. Scand. J. Clin. Lab. Invest., 2004; 64(1): 31–40.CrossRefGoogle ScholarPubMed
Kadir, R. A., Lee, C. A., Sabin, C. A., et al. Pregnancy in women with von Willebrand's disease or factor XI deficiency. Br. J. Obstet. Gynaecol., 1998; 105(3): 314–21.CrossRefGoogle ScholarPubMed
Conti, M., Mari, D., Conti, E., et al. Pregnancy in women with different types of von Willebrand disease. Obstet. Gynecol., 1986; 68(2): 282–5.Google ScholarPubMed
Stirling, Y., Woolf, L., North, W. R., et al. Haemostasis in normal pregnancy. Thromb. Haemost., 1984; 52(2): 176–82.Google ScholarPubMed
Economides, D. L., Kadir, R. A. and Lee, C. A.Inherited bleeding disorders in obstetrics and gynaecology. Br. J. Obstet. Gynaecol., 1999; 106(1): 5–13.CrossRefGoogle ScholarPubMed
Cerneca, F., Ricci, G., Simeone, R., et al. Coagulation and fibrinolysis changes in normal pregnancy. Increased levels of procoagulants and reduced levels of inhibitors during pregnancy induce a hypercoagulable state, combined with a reactive fibrinolysis. Eur. J. Obstet. Gynecol. Reprod. Biol., 1997; 73(1): 31–6.CrossRefGoogle ScholarPubMed
Dobrkovska, A., Krzensk, U. and Chediak, J. R.Pharmacokinetics, efficacy and safety of Humate-P in von Willebrand disease. Haemophilia, 1998; 4(Suppl 3): 33–9.CrossRefGoogle ScholarPubMed
Condie, R. G.A serial study of coagulation factors XII, XI and X in plasma in normal pregnancy and in pregnancy complicated by pre-eclampsia. Br. J. Obstet. Gynaecol., 1976; 83(8): 636–9.CrossRefGoogle Scholar
Phillips, L. L., Rosano, L. and Skrodelis, V.Changes in factor XI (plasma thromboplastin antecedent) levels during pregnancy. Am. J. Obstet. Gynecol., 1973; 116(8): 1114–6.CrossRefGoogle ScholarPubMed
Beller, F. K. and Ebert, C.The coagulation and fibrinolytic enzyme system in pregnancy and in the puerperium. Eur. J. Obstet. Gynecol. Reprod. Biol., 1982; 13(3): 177–97.CrossRefGoogle ScholarPubMed
Hilgartner, M. W. and Smith, C. H.Plasma thromboplastin antecedent (Factor Xi) in the neonate. J. Pediatr., 1965; 66: 747–52.CrossRefGoogle ScholarPubMed
Fernandez, J. A., Estelles, A., Gilabert, J., et al. Functional and immunologic protein S in normal pregnant women and in full-term newborns. Thromb. Haemost., 1989; 61(3): 474–8.Google ScholarPubMed
Clark, P., Brennand, J., Conkie, J. A., et al. Activated protein C sensitivity, protein C, protein S and coagulation in normal pregnancy. Thromb. Haemost., 1998; 79(6): 1166–70.Google ScholarPubMed
Edelstam, G., Lowbeer, C., Kral, G., et al. New reference values for routine blood samples and human neutrophilic lipocalin during third-trimester pregnancy. Scand. J. Clin. Lab. Invest., 2001; 61(8): 583–92.CrossRefGoogle ScholarPubMed
Kjellberg, U., Andersson, N. E., Rosen, S., et al. APC resistance and other haemostatic variables during pregnancy and puerperium. Thromb. Haemost., 1999; 81(4): 527–31.Google ScholarPubMed
Chabloz, P., Reber, G., Boehlen, F., et al. TAFI antigen and D-dimer levels during normal pregnancy and at delivery. Br. J. Haematol., 2001; 115(1): 150–2.CrossRefGoogle ScholarPubMed
Cadroy, Y., Grandjean, H., Pichon, J., et al. Evaluation of six markers of haemostatic systems in normal pregnancy and pregnancy complicated by hypertension or pre-eclampsia. Br. J. Obstet. Gynaecol., 1993; 100(5): 416–20.CrossRefGoogle ScholarPubMed
Koh, C. L., Viegas, O. A., Yuen, R., et al. Plasminogen activators and inhibitors in normal late pregnancy, postpartum and in the postnatal period. Int. J. Gynaecol. Obstet., 1992; 38(1): 9–18.CrossRefGoogle ScholarPubMed
Wahlberg, T., Blomback, M., Hall, P., et al. Application of indicators, predictors and diagnostic indices in coagulation disorders. I. Evaluation of a self-administered questionnaire with binary questions. Methods Inf. Med., 1980; 19(4): 194–200.Google ScholarPubMed
Kouides, P. A.Menorrhagia from a haematologist's point of view. Part I: initial evaluation. Haemophilia, 2002; 8(3): 330–8.CrossRefGoogle ScholarPubMed
Siegel, J. E. and Kouides, P. A.Menorrhagia from a haematologist's point of view. Part II: management. Haemophilia 2002; 8(3): 339–47.CrossRefGoogle ScholarPubMed
Peterson, P., Hayes, T. E., Arkin, C. F., et al. The preoperative bleeding time test lacks clinical benefit: College of American Pathologists' and American Society of Clinical Pathologists' position article. Arch. Surg., 1998; 133(2): 134–9.CrossRefGoogle ScholarPubMed
Favaloro, E. J.Utility of the PFA-100™ for assessing bleeding disorders and monitoring therapy: a review of analytical variables, benefits and limitations. Haemophilia, 2001; 7(2): 170–9.CrossRefGoogle Scholar
Wuillemin, W., Gasser, K., Zeerleder, S., et al. Evaluation of a Platelet Function Analyser (PFA-100™) in patients with a bleeding tendency. Swiss Med. Wkly., 2002(132): 443–8.Google Scholar
Roa, A. Disorders of platelet function. In Kitchens, C. S. A. B., and Kessler, C. M., eds. Consultative Hemostasis and Thrombosis. 1st edn. Philadelphia: W. B. Saunders; 2002. pp. 133–48.Google Scholar
Wilner, K. D., Rushing, M., Walden, C., et al. Celecoxib does not affect the antiplatelet activity of aspirin in healthy volunteers. J. Clin. Pharmacol., 2002; 42(9): 1027–30.CrossRefGoogle Scholar
Silverman, D. G., Halaszynski, T., Sinatra, R., et al. Rofecoxib does not compromise platelet aggregation during anesthesia and surgery. Can. J. Anaesth., 2003; 50(10): 1004–8.CrossRefGoogle Scholar
Homoncik, M., Malec, M., Marsik, C., et al. Rofecoxib exerts no effect on platelet plug formation in healthy volunteers. Clin. Exp. Rheumatol., 2003; 21(2): 229–31.Google ScholarPubMed
Coukell, A. J. and Markham, A.Clopidogrel. Drugs, 1997; 54(5): 745–50; discussion p. 751.CrossRefGoogle ScholarPubMed
Pritchard, J. A., Weisman, R. Jr., Ratnoff, O. D., et al. Intravascular hemolysis, thrombocytopenia and other hematologic abnormalities associated with severe toxemia of pregnancy. N. Engl. J. Med., 1954; 250(3): 89–98.CrossRefGoogle ScholarPubMed
Pitkin, R. M. and Witte, D. L.Platelet and leukocyte counts in pregnancy. JAMA, 1979; 242(24): 2696–8.CrossRefGoogle ScholarPubMed
Dilley, A., Drews, C., Miller, C., et al. Von Willebrand disease and other inherited bleeding disorders in women with diagnosed menorrhagia. Obstet. Gynecol., 2001; 97(4): 630–6.Google ScholarPubMed
Rodeghiero, F., Castaman, G. and Dini, E.Epidemiological investigation of the prevalence of von Willebrand's disease. Blood, 1987; 69(2): 454–9.Google ScholarPubMed
Edlund, M., Blomback, M., Schoultz, B., et al. On the value of menorrhagia as a predictor for coagulation disorders. Am. J. Hematol., 1996; 53(4): 234–8.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Ruggeri, Z. M.Structure of von Willebrand factor and its function in platelet adhesion and thrombus formation. Best Pract. Res. Clin. Haematol., 2001; 14(2): 257–79.CrossRefGoogle ScholarPubMed
Siediecki, C.Shear-dependant changes in the three-dimensional structure of human von Willebrand factor. Blood, 1996; 88: 2939–50.Google Scholar
Ruggeri, Z. M., Dent, J. A. and Saldivar, E.Contribution of distinct adhesive interactions to platelet aggregation in flowing blood. Blood, 1999; 94(1): 172–8.Google ScholarPubMed
Fujimoto, T. and Hawiger, J.Adenosine diphosphate induces binding of von Willebrand factor to human platelets. Nature, 1982; 297(5862): 154–6.CrossRefGoogle ScholarPubMed
Ni, H., Denis, C. V., Subbarao, S., et al. Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen. J. Clin. Invest., 2000; 106(3): 385–92.CrossRefGoogle ScholarPubMed
Goto, S., Ikeda, Y., Saldivar, E., et al. Distinct mechanisms of platelet aggregation as a consequence of different shearing flow conditions. J. Clin. Invest., 1998; 101(2): 479–86.CrossRefGoogle ScholarPubMed
Seremetis S. and Afshani, V. Management of bleeding disorders in pregnancy. In Kitchens, C. S. A. B., and Kessler, C. M., eds. Consultative Hemostasis and Thrombosis. 1st edn. Philadelphia: W. B. Saunders; 2002. pp. 437–48.Google Scholar
Hennessy, B. J., White, B., Byrne, M., et al. Acquired von Willebrand's disease. Ir. J. Med. Sci., 1998; 167(2): 81–5.CrossRefGoogle ScholarPubMed
Nitu-Whalley, I. C. and Lee, C. A.Acquired von Willebrand syndrome – report of 10 cases and review of the literature. Haemophilia, 1999; 5(5): 318–26.CrossRefGoogle ScholarPubMed
Attivissimo, L. A., Lichtman, S. M. and Klein, I.Acquired von Willebrand's syndrome causing a hemorrhagic diathesis in a patient with hypothyroidism. Thyroid, 1995; 5(5): 399–401.CrossRefGoogle Scholar
Lak, M., Peyvandi, F. and Mannucci, P. M.Clinical manifestations and complications of childbirth and replacement therapy in 385 Iranian patients with type 3 von Willebrand disease. Br. J. Haematol., 2000; 111(4): 1236–9.CrossRefGoogle ScholarPubMed
Kroll, M.Manual of Coagulation Disorders. 1st edn. Malden, MA: Blackwell Science; 2001.Google Scholar
Castaman, G., Eikenboom, J. C., Contri, A., et al. Pregnancy in women with type 1 von Willebrand disease caused by heterozygosity for von Willebrand factor mutation C1130F. Thromb. Haemost., 2000; 84(2): 351–2.Google ScholarPubMed
Kouides, P. A.Obstetric and gynaecological aspects of von Willebrand disease. Best Pract. Res. Clin. Haematol., 2001; 14(2): 381–99.CrossRefGoogle ScholarPubMed
Sorosky, J., Klatsky, A., Nobert, G. F.Von Willebrand's disease complicating second-trimester abortion. Obstet. Gynecol., 1980; 55(2): 253–4.Google ScholarPubMed
Meyer, D., Fressinaud, E., Hilbert, L., et al. Type 2 von Willebrand disease causing defective von Willebrand factor-dependent platelet function. Best. Pract. Res. Clin. Haematol., 2001; 14(2): 349–64.CrossRefGoogle ScholarPubMed
Ginsburg, D. and Sadler, J. E.Von Willebrand disease: a database of point mutations, insertions, and deletions. For the Consortium on von Willebrand Factor Mutations and Polymorphisms, and the Subcommittee on von Willebrand Factor of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thromb. Haemost., 1993; 69(2): 177–84.Google Scholar
Ruggeri, Z. M. and Zimmerman, T. S.Classification of variant von Willebrand's disease subtypes by analysis of functional characteristics and multimeric composition of factor VIII/von Willebrand factor. Ann. NY. Acad. Sci., 1981; 370: 205–9.CrossRefGoogle ScholarPubMed
Weiss, H. J., Ball, A. P. and Mannucci, P. M.Incidence of severe von Willebrand's disease. N. Engl. J. Med., 1982; 307(2): 127.Google ScholarPubMed
Mannucci, P. M., Bloom, A. L., Larrieu, M. J., et al. Atherosclerosis and von Willebrand factor. I. Prevalence of severe von Willebrand's disease in western Europe and Israel. Br. J. Haematol., 1984; 57(1): 163–9.CrossRefGoogle ScholarPubMed
Kadir, R. A., Economides, D. L., Sabin, C. A., et al. Variations in coagulation factors in women: effects of age, ethnicity, menstrual cycle and combined oral contraceptive. Thromb. Haemost., 1999; 82(5): 1456–61.CrossRefGoogle ScholarPubMed
Miller, C., Dilley, A. B., Drews, C., et al. Changes in von Willebrand factor and Factor VIII during the menstrual cycle. Thromb. Haemost., 2002; 87(6): 1082–3.Google ScholarPubMed
Mandalaki, T., Louizou, C., Dimitriadou, C., et al. Variations in factor VIII during the menstrual cycle in normal women. N. Engl. J. Med., 1980; 302(19): 1093–4.Google ScholarPubMed
Blomback, M., Eneroth, P., Andersson, O., et al. On laboratory problems in diagnosing mild von Willebrand's disease. Am. J. Hematol., 1992; 40(2): 117–20.CrossRefGoogle ScholarPubMed
Budde, U., Drewke, E., Mainusch, K., et al. Laboratory diagnosis of congenital von Willebrand disease. Semin. Thromb. Hemost., 2002; 28(2): 173–90.CrossRefGoogle ScholarPubMed
Enayat, M. S. and Hill, F. G.Analysis of the complexity of the multimeric structure of factor VIII related antigen/von Willebrand protein using a modified electrophoretic technique. J. Clin. Pathol., 1983; 36(8): 915–9.CrossRefGoogle ScholarPubMed
Walker, I. D., Walker, J. J., Colvin, B. T., et al. Investigation and management of haemorrhagic disorders in pregnancy. Haemostasis and Thrombosis Task Force. J. Clin. Pathol., 1994; 47(2): 100–8.CrossRefGoogle ScholarPubMed
Eikenboom, J. C.Congenital von Willebrand disease type 3: clinical manifestations, pathophysiology and molecular biology. Best Pract. Res. Clin. Haematol., 2001; 14(2): 365–79.CrossRefGoogle ScholarPubMed
Batlle, J., Noya, M. S., Giangrande, P., et al. Advances in the therapy of von Willebrand disease. Haemophilia, 2002; 8(3): 301–7.CrossRefGoogle ScholarPubMed
Mannucci, P. M.How I treat patients with von Willebrand disease. Blood, 2001; 97(7): 1915–19.CrossRefGoogle Scholar
Chediak, J. R., Alban, G. M. and Maxey, B.Von Willebrand's disease and pregnancy: management during delivery and outcome of offspring. Am. J. Obstet. Gynecol., 1986; 155(3): 618–24.CrossRefGoogle ScholarPubMed
Mannucci, P. M.Desmopressin (DDAVP) in the treatment of bleeding disorders: the first 20 years. Blood, 1997; 90(7): 2515–21.Google ScholarPubMed
Mannucci, P. M.Hemostatic drugs. N. Engl. J. Med., 1998; 339(4): 245–53.CrossRefGoogle ScholarPubMed
Charles, K., Preston, F. and Makris, M.Successful use of desmopression (DDAVP) in pregnant women with inherited storage pool disease. Haemophilia, 2000; 6: 241.Google Scholar
Burrow, G., Wassenaar, W. and Robertson, G.DDAVP treatment of diabetes insipidus during pregnancy and the post-partum period. Acta Endocrinol., 1981; 97: 23–5.Google ScholarPubMed
Rochelson, B., Caruso, R., Davenport, D., et al. The use of prophylactic desmopressin (DDAVP) in labor to prevent hemorrhage in a patient with Ehlers-Danlos syndrome. NY State J. Med., 1991; 91(6): 268–9.Google Scholar
Weinbaum, P. J., Cassidy, S. B., Campbell, W. A., et al. Pregnancy management and successful outcome of Ehlers-Danlos syndrome type IV. Am. J. Perinatol., 1987; 4(2): 134–7.CrossRefGoogle ScholarPubMed
Ray, J. G.DDAVP use during pregnancy: an analysis of its safety for mother and child. Obstet. Gynecol. Surv., 1998; 53(7): 450–5.CrossRefGoogle ScholarPubMed
Mannucci, P. M., Lombardi, R., Bader, R., et al. Heterogeneity of type I von Willebrand disease: evidence for a subgroup with an abnormal von Willebrand factor. Blood, 1985; 66(4): 796–802.Google ScholarPubMed
Sadler, J. E., Mannucci, P. M., Berntorp, E., et al. Impact, diagnosis and treatment of von Willebrand disease. Thromb. Haemost., 2000; 84(2): 160–74.CrossRefGoogle ScholarPubMed
Mazurier, C., Gaucher, C., Jorieux, S., et al. Biological effect of desmopressin in eight patients with type 2N (‘Normandy’) von Willebrand disease. Collaborative Group. Br. J. Haematol., 1994; 88(4): 849–54.CrossRefGoogle Scholar
Holmberg, L., Nilsson, I. M., Borge, L., et al. Platelet aggregation induced by 1-desamino-8-D-arginine vasopressin (DDAVP) in Type II B von Willebrand's disease. N. Engl. J. Med., 1983; 309(14): 816–21.CrossRefGoogle Scholar
Fausett, B. and Silver, R. M.Congenital disorders of platelet function. Clin. Obstet. Gynecol. 1999; 42(2): 390–405.CrossRefGoogle ScholarPubMed
Sage, D. J.Epidurals, spinals and bleeding disorders in pregnancy: a review. Anaesth. Intensive Care, 1990; 18(3): 319–26.Google ScholarPubMed
Phillips, M. D. and Santhouse, A.von Willebrand disease: recent advances in pathophysiology and treatment. Am. J. Med. Sci., 1998; 316(2): 77–86.Google ScholarPubMed
Pales, J. L., Lopez, A., Asensio, A., et al. Inhibitory effect of peak 2–4 of uremic middle molecules on platelet aggregation. Eur. J. Haematol., 1987; 39(3): 197–202.CrossRefGoogle ScholarPubMed
Bazilinski, N., Shaykh, M., Dunea, G., et al. Inhibition of platelet function by uremic middle molecules. Nephron, 1985; 40(4): 423–8.CrossRefGoogle ScholarPubMed
Moal, V., Brunet, P., Dou, L., et al. Impaired expression of glycoproteins on resting and stimulated platelets in uraemic patients. Nephrol. Dial. Transplant, 2003; 18(9): 1834–41.CrossRefGoogle ScholarPubMed
Kunicki T. J. Platelet immunology. In Colman, R. W., Hirsh, J., Marder, V. J., et al., eds. Hemostasis and Thrombosis: Basic Principles & Clinical Practice. 4th edn. Philadelphia: Lippincott Williams & Wilkins; 2001, pp. 461–77.Google Scholar
Ramasamy, I.Inherited bleeding disorders: disorders of platelet adhesion and aggregation. Crit. Rev. Oncol. Hematol., 2004; 49(1): 1–35.CrossRefGoogle ScholarPubMed
Khalil, A., Seoud, M., Tannous, R., et al. Bernard-Soulier syndrome in pregnancy: case report and review of the literature. Clin. Lab. Haematol., 1998; 20(2): 125–8.CrossRefGoogle ScholarPubMed
Laurian, Y.Treatment of bleeding in patients with platelet disorders: is there a place for recombinant factor VIIa?Pathophysiol. Haemost. Thromb., 2002; 32(Suppl. 1): 37–40.CrossRefGoogle Scholar
Caglar, K., Cetinkaya, A., Aytac, S., et al. Use of recombinant factor VIIa for bleeding in children with Glanzmann thrombasthenia. Pediatr. Hematol. Oncol., 2003; 20(6): 435–8.CrossRefGoogle ScholarPubMed
Poon, M. C., d'Oiron, R., Hann, I., et al. Use of recombinant factor VIIa (NovoSeven) in patients with Glanzmann thrombasthenia. Semin. Hematol., 2001; 38(4 Suppl. 12): 21–5.CrossRefGoogle ScholarPubMed
Almeida, A. M., Khair, K., Hann, I.The use of recombinant factor VIIa in children with inherited platelet function disorders. Br. J. Haematol., 2003; 121(3): 477–81.CrossRefGoogle ScholarPubMed
Lusher, J. M. and McMillan, C. W.Severe factor VIII and factor IX deficiency in females. Am. J. Med., 1978; 65(4): 637–48.CrossRefGoogle ScholarPubMed
Seligsohn, U.High gene frequency of factor XI (PTA) deficiency in Ashkenazi Jews. Blood, 1978; 51(6): 1223–8.Google ScholarPubMed
Bauduer, F., Dupreuilh, F., Ducout, L., et al. Factor XI deficiency in the French Basque Country. Haemophilia, 1999; 5(3): 187–90.CrossRefGoogle ScholarPubMed
Kadir, R. A., Economides, D. L. and Lee, C. A.Factor XI deficiency in women. Am. J. Hematol., 1999; 60(1): 48–54.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Bolton-Maggs, P. H., Wan-Yin, Young B., McCraw, A. H., et al. Inheritance and bleeding in factor XI deficiency. Br. J. Haematol., 1988; 69(4): 521–8.CrossRefGoogle ScholarPubMed
Bolton-Maggs, P. H., Colvin, B. T., Satchi, B. T., et al. Thrombogenic potential of factor XI concentrate. Lancet, 1994; 344(8924): 748–9.CrossRefGoogle ScholarPubMed
Roberts, H. and Escobar, M. Less common congenital disorders of hemostasis. In Kitchens, C. S. A. B., and Kessler, C. M., eds. Consultative Hemostasis and Thrombosis. Philadelphia: W. B. Saunders; 2002, pp. 57–73.Google Scholar
Green, D. and Lechner, K.A survey of 215 non-hemophilic patients with inhibitors to Factor VIII. Thromb. Haemost., 1981; 45(3): 200–3.Google ScholarPubMed
Hauser, I., Schneider, B. and Lechner, K.Post-partum factor VIII inhibitors. A review of the literature with special reference to the value of steroid and immunosuppressive treatment. Thromb. Haemost., 1995; 73(1): 1–5.Google ScholarPubMed
Delgado, J., Jimenez-Yuste, V., Hernandez-Navarro, F., Villar, A.et al. Acquired haemophilia: review and meta-analysis focused on therapy and prognostic factors. Br. J. Haematol., 2003; 121(1): 21–35.CrossRefGoogle ScholarPubMed
Rubinger, M., Rivard, G. E., Teitel, J., et al. Suggestions for the management of factor VIII inhibitors. Haemophilia, 2000; 6(Suppl. 1): 52–9.Google ScholarPubMed
Ewenstein B., Putnam K. and Bohn R. Nonhemophilic inhibitors of coagulation. In Kitchens, C. S., Alving, B. M. and Kessler, C. M., eds. Consultative Hemostasis and Thrombosis. Philadelphia: W. B. Saunders; 2002, pp. 75–90.Google Scholar
Rubinger, M., Houston, D. S., Schwetz, N., et al. Continuous infusion of porcine factor VIII in the management of patients with factor VIII inhibitors. Am. J. Hematol., 1997; 56(2): 112–8.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Shulman, N. R. and Hirschman, R. J.Acquired hemophilia. Trans. Assoc. Am. Physicians, 1969; 82: 388–97.Google ScholarPubMed
Green, D.Suppression of an antibody to factor VIII by a combination of factor VIII and cyclophosphamide. Blood, 1971; 37(4): 381–7.Google ScholarPubMed
Spero, J. A., Lewis, J. H. and Hasiba, U.Corticosteroid therapy for acquired F VIII: C inhibitors. Br. J. Haematol., 1981; 48(4): 635–42.CrossRefGoogle ScholarPubMed
Schwartz, R. S., Gabriel, D. A., Aledort, L. M., et al. A prospective study of treatment of acquired (autoimmune) factor VIII inhibitors with high-dose intravenous gammaglobulin. Blood, 1995; 86(2): 797–804.Google ScholarPubMed
Sultan, Y., Kazatchkine, M. D., Nydegger, U., et al. Intravenous immunoglobulin in the treatment of spontaneously acquired factor VIII: C inhibitors. Am. J. Med., 1991; 91(5A): 35–9(S).CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×