Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-07T20:15:14.534Z Has data issue: false hasContentIssue false

CONCLUSION: DIVERSITY AND UNITY IN STRUCTURAL PROOF THEORY

Published online by Cambridge University Press:  25 February 2010

Sara Negri
Affiliation:
University of Helsinki
Jan von Plato
Affiliation:
University of Helsinki
Get access

Summary

COMPARING SEQUENT CALCULUS AND NATURAL DEDUCTION

Structural proof theory was born in two forms, natural deduction and sequent calculus. The former has been the more accessible way to proof theory, used in teaching. The latter, instead, has yielded better to structural proof analysis. For example, the underivability results for intuitionistic predicate logic in Section 4.3 were obtained for sequent calculus in the early 1950s.

Even if natural deduction gives the easier access, in the end proofs are easier to find in sequent calculus. It formalizes the analysis into subgoals of the theorem to be proved, whereas in natural deduction this has to be done intuitively.

Furthermore, the sequent calculi we studied in Chapters 2–4, with their shared contexts in two-premiss rules, support root-first proof search.

With independent contexts, we found sequent calculi that come very close to natural deduction, especially if in the latter general elimination rules are used. One essential difference, the presence in sequent calculus of explicit rules of weakening and contraction, was overcome by a suitable change of the logical rules of sequent calculus to permit implicit weakening and contraction similarly to natural deduction. Then cut-free proofs in sequent calculus and normal proofs in natural deduction became mere notational variants of one and the same proof. Isomorphic translation turned the sequent calculus derivation with its locally applied rules into a standard nonlocal natural deduction derivation. One difference between the two types of calculi remained: Where the logical rules of natural deduction admit of non-normal instances, sequent calculus uses a logical rule and a cut. It is a cut with the cut formula principal in at least the right premiss.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×