Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-30T04:10:06.764Z Has data issue: false hasContentIssue false

9 - Large chemical potentials and color superconductivity

Published online by Cambridge University Press:  17 August 2009

John B. Kogut
Affiliation:
University of Illinois, Urbana-Champaign
Mikhail A. Stephanov
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

Color superconductivity and color–flavor locking

Lattice-gauge theory has produced unique insights and predictions for QCD at high temperature, but it has had little to say about QCD in environments rich in baryons. There are several reasons for this impasse. One of them is the fact that the fermion determinant is complex in this environment, so the standard algorithms of the subject fail. This point will be demonstrated later. Other more conventional methods, such as weak-coupling approximations, apparently apply in this environment and suggest that the theory experiences color superconductivity at asymptotically large baryon chemical potentials. There is the hope that the transition to this exotic state of matter actually occurs at a chemical potential of just a few hundred MeV. The subject of color superconductivity produces interesting conjectures for the QCD phase diagram in the T–µB plane where T is small (below a few tens of MeV) and µB is very large. In this chapter we will discuss the major points, both strengths and weaknesses, of this approach and refer the reader to the growing literature for more recent, developing events. Once lattice-gauge theory develops an algorithm that applies to this environment, these ideas will be put to stringent tests. However, for much of the rest of this chapter, we must ignore lattice-gauge theory and focus on weak-coupling methods and the BCS theory of superconductivity and its application and extensions to QCD.

Type
Chapter
Information
The Phases of Quantum Chromodynamics
From Confinement to Extreme Environments
, pp. 236 - 279
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×