Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-15T22:55:06.383Z Has data issue: false hasContentIssue false

1 - Foundation of radiation theory

Published online by Cambridge University Press:  07 September 2009

B. J. Conrath
Affiliation:
Goddard Space Flight Center, Maryland
D. E. Jennings
Affiliation:
Goddard Space Flight Center, Maryland
R. E. Samuelson
Affiliation:
Goddard Space Flight Center, Maryland
Get access

Summary

In this chapter we review the physical foundation of remote sensing. Except for possible gravitational effects, information accessible to a distant observer must be sensed as electromagnetic radiation, either in the form of reflected or refracted solar or stellar radiation, or in the form of thermal or nonthermal emission. We restrict the discussion to passive techniques. Active methods, involving the generation of electromagnetic radiation (radar, lidar), are not explicitly treated. However, the physical principles discussed in this text are equally applicable to passive and active methods. In either case a discussion of the measurement and interpretation of remotely sensed data must be based on electromagnetic theory. In Section 1.1 we begin with that theory by reviewing Maxwell's equations. The application of the principle of energy conservation to Maxwell's equations leads to the Poynting theorem with the Poynting vector describing radiative energy transport; this is discussed in Section 1.2. However, the Poynting vector does not characterize more complex phenomena, such as reflection, refraction, polarization, or interference; all of these phenomena play significant roles in many aspects of remote sensing. Their study requires, first, a derivation of the wave equation from Maxwell's formulas, and second, finding appropriate solutions for the electric and magnetic field vectors; this is the subject of Section 1.3. Polarization is briefly reviewed in Section 1.4. Effects of electromagnetic waves striking an interface between two media and the conditions that must be satisfied at the boundary are treated in Section 1.5.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×