Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-02T03:00:00.025Z Has data issue: false hasContentIssue false

4 - Description of radiation

Published online by Cambridge University Press:  18 February 2010

John I. Castor
Affiliation:
Lawrence Livermore National Laboratory, California
Get access

Summary

We turn now to the subject of radiation transport. As much as possible, the present goal is to demystify this subject. Photons are just particles like the others that make up our systems; they just happen to go faster and farther, and are therefore often of special importance in carrying energy and momentum from one place to another. In kinetic theory we introduce the phase-space distribution function for the atoms, develop the theory of the Boltzmann transport equation, and come up with some satisfactory approximate methods for solving it. Radiation transport is exactly the same; the transport equation is about the same, and the approximate methods are about the same as well. The difference is that the subject of radiation transport was elaborated by different people than was kinetic theory, using an entirely different notation, and we have that difference with us today. In the last two or three decades yet another community has joined the discussion of radiation transport, and these are the nuclear engineers, who have evolved a collection of methods for describing neutron transport, methods that are useful for photons as well as neutrons. The present discussion will not attempt to show, Rashomon-like, the same physical concepts from the varied points of view of several disciplines. We will stick with one, mainly the astrophysical notation found, for example, in Mihalas and Mihalas (1984). The elementary definitions of the radiation field quantities are found in many astrophysics books. One good treatment is Mihalas's Stellar Atmospheres (1978), and this is also found in Mihalas and Mihalas (1984).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Description of radiation
  • John I. Castor, Lawrence Livermore National Laboratory, California
  • Book: Radiation Hydrodynamics
  • Online publication: 18 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536182.005
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Description of radiation
  • John I. Castor, Lawrence Livermore National Laboratory, California
  • Book: Radiation Hydrodynamics
  • Online publication: 18 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536182.005
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Description of radiation
  • John I. Castor, Lawrence Livermore National Laboratory, California
  • Book: Radiation Hydrodynamics
  • Online publication: 18 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536182.005
Available formats
×