Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-04T21:38:51.360Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  14 August 2009

John J. Gilman
Affiliation:
University of California, Los Angeles
Get access

Summary

In the middle of the twentieth century it was recognized that the theory of the mechanics of continua (particularly solid mechanics) is not adequate to account for the strength properties of materials. It was clear that structural considerations at the microscopic and nanoscopic levels of aggregation are not only important but are essential to an understanding of the strengths of materials. It also came to be realized, as a result of the fact that plastic shear deformation is usually heterogeneous, that a space can be continuous but not simply connected, that is, dislocated. Also, in crystals, such dislocations are quantized, having constant displacements equal to the magnitudes of translation vectors of the crystal structure.

Although structural geometry plays an essential role in determining mechanical behavior, it leaves a number of questions unanswered. The answers to these questions can only be found by considering the electronic structure that underlies the geometric factors. Since the behavior of electrons is not described by classical mechanics, this necessitates the use of quantum mechanics to obtain answers to the various unanswered questions. For example, why is the shear stiffness of diamond greater than its volumetric stiffness? Why do the most simple metals, the alkalis, have body-centered cubic crystal structures which are not atomically close packed? Why is pure silicon brittle, while pure nickel is quite ductile? They both have the same crystal structure, so why is pure TiC hard, while pure NaCl is soft?

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Preface
  • John J. Gilman, University of California, Los Angeles
  • Book: Electronic Basis of the Strength of Materials
  • Online publication: 14 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541247.001
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Preface
  • John J. Gilman, University of California, Los Angeles
  • Book: Electronic Basis of the Strength of Materials
  • Online publication: 14 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541247.001
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Preface
  • John J. Gilman, University of California, Los Angeles
  • Book: Electronic Basis of the Strength of Materials
  • Online publication: 14 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541247.001
Available formats
×