Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-28T07:32:21.986Z Has data issue: false hasContentIssue false

5 - Local lattice modification by electronic excitation of halides

Published online by Cambridge University Press:  11 August 2009

Marshall Stoneham
Affiliation:
University College London
Get access

Summary

In Chapter 4, we discussed the relaxation of excitons and of electron–hole pairs to form self-trapped excitons. In halides, these relaxations may involve asymetrical atomic displacements, including the [Se, Sh] self-trapped exciton. In Chapter 5, we discuss how these asymmetric displacements relate to the asymmetric displacements which lead to defect formation. In the most important case, the displacement creates a pair of neutral defects on the halogen sublattice. This defect pair comprises a halogen atom vacancy (F centre) and a halogen atom interstitial (H centre). The F–H pair is sometimes referred to as a Frenkel pair, but this is misleading, since the term is rightly used for a defect pair comprising a halogen ion vacancy (α centre, X missing) and a halogen ion interstitial (I centre, Xi rather than Xi0, differing in charge, site, and symmetry from the H centre).

Almost all of the discussion in this chapter relates to the alkali halides and alkaline-earth fluorides, in which excitons can be self-trapped. The arguments would apply in similar ways to many other halides, but not necessarily to those for which self-trapping does not occur (like the thallous and cuprous halides). Since the self-trapped exciton has a substantial latent energy, only a small energy is needed to transform a self-trapped exciton into an interstitial-vacancy pair on the halogen sublattice. The exciton–phonon coupling which causes exciton self-trapping also assists the creation of defect pairs.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×