Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-03T15:20:50.395Z Has data issue: false hasContentIssue false

17 - Bioelastomers

from Part II - Additional topics

Published online by Cambridge University Press:  04 December 2009

Get access

Summary

Introduction

Bioelastomers, or elastomeric biopolymers, are utilized by living organisms in a variety of tissues for a number of purposes. In vertebrates, including mammals such as humans, examples of tissues are the skin, arteries and veins, and organs such as the lungs and heart. As is obvious, all these tissues involve the already-mentioned characteristics of deformability with recoverability.

There are two general reasons for studying the elasticity of such materials. The more fundamental one is the simple desire to understand rubberlike elasticity in as broad a context as possible. The more practical one is to learn how nature designs and produces these materials, so as possibly to obtain some guidance on the commercial preparation of more useful non-biopolymeric elastomers.

The bioelastomers that have been investigated with regard to their rubberlike elasticity are listed in Table 17.1. All are proteins and thus have the repeat unit shown in Figure 17.1, where the side group R is different for the different α-amino acids that produce this chain structure. Although there are a variety of bioelastomers, elastin has been the most studied by far. It is thus emphasized in following sections.

Structural choices

Elastin is, of course, a chemical copolymer, and its repeat unit sequence is sufficiently irregular that it is always totally amorphous. This use of copolymerization to suppress the large amounts of crystallinity that would interfere with elastomeric behavior is also practiced by synthetic polymer chemists.

Type
Chapter
Information
Rubberlike Elasticity
A Molecular Primer
, pp. 179 - 190
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×