Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-20T15:31:49.496Z Has data issue: false hasContentIssue false

14 - Many roads lead to Rome: different ways to construct a nematode

Published online by Cambridge University Press:  08 August 2009

Giuseppe Fusco
Affiliation:
Università degli Studi di Padova, Italy
Alessandro Minelli
Affiliation:
Università degli Studi di Padova, Italy
Get access

Summary

It has been well established that considerable differences exist in the developmental pattern among animal taxa, for instance with respect to how blastomeres perform their early cleavages, how they acquire different fates or how symmetry is formed (Gilbert and Raunio 1997). Even among relatively closely related species, for instance within sea urchins or tunicates, impressive differences can be found in the pattern of development (Jeffery et al. 1999, Raff 1999).

Nematodes appear to be excellent candidates for a comparative study of early embryogenesis (Schierenberg 2005a). The phylum Nematoda is very old, its origin dating back to the Cambrian (Douzery et al. 2004), and has many different species (estimates range from tens of thousands to several millions); eggs can develop outside the mother from the first cleavage onward, they are transparent (although to a variable degree), the freshly hatched juveniles appear to have essentially invariant species-specific cell numbers of around 600 cells (for those species tested so far), many strains can be cultured in the laboratory on simple agar plates, and, last but not least, one of them, Caenorhabditis elegans, has become one of the best-studied model systems.

In this chapter, selected aspects of the early embryogenesis of five representatives from different branches of the phylogenetic tree are compared with C. elegans and the impact of the observed differences for evolutionary considerations are discussed.

Type
Chapter
Information
Evolving Pathways
Key Themes in Evolutionary Developmental Biology
, pp. 261 - 280
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguinaldo, A. M., Turbeville, J. M., Linford, L. S., et al. 1997. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387, 489–493.CrossRefGoogle ScholarPubMed
Albertson, D. G. & Thomson, J. N. 1993. Segregation of holocentric chromosomes at meiosis in the nematode Caenorhabditis elegans. Chromosome Research 1, 15–26.CrossRefGoogle ScholarPubMed
Basham, S. E. & Rose, L. S. 2001. Caenorhabditis elegans embryo: establishment of asymmetry. In Encyclopedia of Life Sciences. Chichester:Wiley. www.els.net.Google Scholar
Bischoff, M. & Schnabel, R. 2006. A posterior centre establishes and maintains polarity of the Caenorhabditis elegans embryo by a Wnt-dependent relay mechanism. PLOS Biology 4, e396.CrossRefGoogle ScholarPubMed
Blaxter, M. L., Ley, P., Garey, J. R, et al. 1998. A molecular evolutionary framework for the phylum Nematoda. Nature 392, 71–75.CrossRefGoogle ScholarPubMed
Bolker, J. A. 1995. Model systems in developmental biology. BioEssays 17, 451–455.CrossRefGoogle ScholarPubMed
Brenner, S. 1974. The genetics of Caenorhabditis elegans. Genetics 77, 71–94.Google ScholarPubMed
Bucher, E. A. & Seydoux, G. 1994. Gastrulation in the nematode Caenorhabditis elegans. Seminars in Developmental Biology 5, 121–130.CrossRefGoogle Scholar
Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C. 1994. Fluorescent protein as a marker for gene expression. Science 263, 802–805.CrossRefGoogle ScholarPubMed
Cowan, C. R. & Hyman, A. A. 2004. Centrosomes direct cell polarity independently of microtubule assembly in C. elegans embryos. Nature 431, 92–96.Google Scholar
Ley, P. & Blaxter, M. L. 2002. Systematic position and phylogeny. In Lee, D. L. (ed.) The Biology of Nematodes. London: Taylor & Francis, pp. 1–30.CrossRefGoogle Scholar
Dolinski, C., Baldwin, J. G. & Thomas, W. K. 2001. Comparative survey of early embryogenesis of Secernentea (Nematoda), with phylogenetic implications. Canadian Journal of Zoology 79, 82–94.CrossRefGoogle Scholar
Douzery, E. J., Snell, E. A., Bapteste, E., Delsuc, F. & Philippe, H. 2004. The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils?Proceedings of the National Academy of Sciences of the USA 101, 15386–15391.CrossRefGoogle ScholarPubMed
Edgar, L. G. 2001. Caenorhabditis elegans embryogenesis: genetic analysis of cell specification. In Encyclopedia of Life Sciences. Chichester: Wiley, www.els.net.Google Scholar
Fire, A., Montgomery, M. K., Kostas, S. A., Driver, S. E. & Mello, C. C. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.CrossRefGoogle ScholarPubMed
Fitch, D. H. & Thomas, W. K. 1997. Evolution. In Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R. (eds.) C. elegans II, New York: Cold Spring Harbor Laboratory Press, pp. 815–850.Google ScholarPubMed
Gilbert, S. F. & Raunio, A. M. 1997. Embryology. Constructing the Organism. Sunderland, MD: Sinauer Associates.Google Scholar
Goldstein, B., Frisse, L. M. & Thomas, W. K. 1998. Embryonic axis specification in nematodes: evolution of the first step in development. Current Biology 8, 157–160.CrossRefGoogle ScholarPubMed
Goldstein, B. & Hird, S. N. 1996. Specification of the anteroposterior axis in Caenorhabditis elegans. Development 122, 1467–1474.Google ScholarPubMed
Hajnal, A. & Berset, T. 2002. The C. elegans MAPK phosphatase LIP-1 is required for the G(2)/M meiotic arrest of developing oocytes. EMBO Journal 21, 4317–4326.CrossRefGoogle Scholar
Hamilton, W. D., Axelrod, R. & Tanese, R. 1990. Sexual reproduction as an adaptation to resist parasites. Proceedings of the National Academy of Sciences of the USA 87, 3566–3573.CrossRefGoogle ScholarPubMed
Holterman, M., Wurff, A., Elsen, S.et al. 2006. Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Molecular Biology and Evolution 23, 1792–1800.CrossRefGoogle ScholarPubMed
Houthoofd, W., Jacobsen, K., Mertens, C.et al. 2003. Embryonic cell lineage of the marine nematode Pellioditis marina. Developmental Biology 258, 57–69.CrossRefGoogle ScholarPubMed
Houthoofd, W., Willems, M., Vangestel, S.et al. 2006. Different roads to form the same gut in nematodes. Evolution & Development 8, 362–369.CrossRefGoogle ScholarPubMed
Jeffery, W. R. 2001. Determinants of cell and positional fate in ascidian embryos. International Review of Cytology 203, 3–62.CrossRefGoogle ScholarPubMed
Jeffery, W. R., Swalla, B. J., Ewing, N. & Kusakabe, T. 1999. Evolution of the ascidian anural larva: evidence from embryos and molecules. Molecular Biology and Evolution 16, 646–654.CrossRefGoogle ScholarPubMed
Kimble, J. & Simpson, P. 1997. The LIN-12/Notch signaling pathway and its regulation. Annual Review of Cell and Developmental Biology 13, 333–361.CrossRefGoogle ScholarPubMed
Lahl, V., Halama, C. & Schierenberg, E. 2003. Comparative and experimental embryogenesis of Plectidae (Nematoda). Development, Genes & Evolution 213, 18–27.Google Scholar
Lahl, V., Sadler, B. & Schierenberg, E. 2006. Egg development in parthenogenetic nematodes: variations in meiosis and axis formation. International Journal of Developmental Biology 50, 393–398.CrossRefGoogle ScholarPubMed
Malakhov, V. V. 1994. Nematodes. Structure, Development, Classification and Phylogeny. Washington: Smithsonian Institution Press.Google Scholar
Maynard-Smith, J. 1978. The Evolution of Sex. Cambridge: Cambridge University Press.Google Scholar
Miller, M. A., Nguyen, V. Q., Lee, M. H.et al. 2001. A sperm cytoskeletal protein that signals oocyte meiotic maturation and ovulation. Science 291, 2144–2147.CrossRefGoogle ScholarPubMed
Nance, J. & Priess, J. R. 2002. Cell polarity and gastrulation in C. elegans. Development 129, 387–397.Google ScholarPubMed
Priess, J. R. & Thomson, J. N. 1987. Cellular interactions in early C. elegans embryos. Cell 48, 241–250.CrossRefGoogle ScholarPubMed
Raff, R. A. 1996. The Shape of Life. Chicago: University of Chicago Press.Google Scholar
Raff, R. A. 1999. Larval homologies and radical evolutionary changes in early development. In Bock, G. R. & Cardew, G. (eds.) Homology (Novartis Foundation Symposia 222 Chichester: Wiley, pp. 110–121.CrossRefGoogle Scholar
Rocheleau, C. E., Downs, W. D., Lin, R.et al. 1997. Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos. Cell 90, 707–716.CrossRefGoogle ScholarPubMed
Schierenberg, E. 1987. Reversal of cellular polarity and early cell–cell interaction in the embryo of C. elegans. Developmental Biology 122, 452–463.CrossRefGoogle Scholar
Schierenberg, E. 2001. Three sons of fortune: early embryogenesis, evolution and ecology of nematodes. BioEssays 23, 841–847.CrossRefGoogle ScholarPubMed
Schierenberg, E. 2005a. Embryological variation during nematode development. In WormBook, www.wormbook.org.
Schierenberg, E. 2005b. Unusual cleavage and gastrulation in a freshwater nematode: developmental and phylogenetic implications. Development, Genes & Evolution 215, 103–108.CrossRefGoogle Scholar
Schierenberg, E. & Lahl, V. 2004. Embryology and phylogeny of nematodes. In Cook, R. C. & Hunt, D. J. (eds.) Nematology Monographs & Perspectives, Vol. 2. Leiden: Brill, pp. 667–679.Google Scholar
Schnabel, R., Bischoff, M., Hintze, A.et al. 2006. Global cell sorting in the C. elegans embryo defines a new mechanism for pattern formation. Developmental Biology 294, 418–431.CrossRefGoogle Scholar
Skiba, F. & Schierenberg, E. 1992. Cell lineages, developmental timing and spatial formation in embryos of free living soil nematodes. Developmental Biology 151, 597–610.CrossRefGoogle ScholarPubMed
Strome, S. & Wood, W. B. 1983. Generation of asymmetry and segregation of germ-line granules in early Caenorhabditis elegans embryos. Cell 35, 15–25.CrossRefGoogle Scholar
Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. 1983. The embryonic cell lineage of the nematode Caenorhabditis elegans. Developmental Biology 100, 64–119.CrossRefGoogle ScholarPubMed
Technau, U. & Scholz, C. B. 2003. Origin and evolution of endoderm and mesoderm. International Journal of Developmental Biology 47, 531–539.Google ScholarPubMed
The C. elegans Sequencing Consortium 1998. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science282, 2012–2018.
von Ehrenstein, G. & Schierenberg, E. 1980. Cell lineages and development of C. elegans and other nematodes. In Zuckerman, B. M. (ed.) Nematodes as Biological Models, Vol. 1: Behavioral and Developmental Models. New York: Academic Press, pp. 1–72.Google Scholar
Voronov, D. A. 1999. The embryonic development of Pontonema vulgare (Enoplida: Oncholaimidae) with discussion of nematode phylogeny. Russian Journal of Nematology 7, 105–114.Google Scholar
Voronov, D. A. & Panchin, Y. V. 1998. Cell lineage in marine nematode Enoplus brevis. Development 125, 143–150.Google ScholarPubMed
White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. 1986. The structure of the nervous system of Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London B 314, 1–340.CrossRefGoogle ScholarPubMed
Wiegner, O. & Schierenberg, E. 1998. Specification of gut cell fate differs significantly between the nematodes Acrobeloides nanus and Caenorhabditis elegans. Developmental Biology 204, 3–14.CrossRefGoogle ScholarPubMed
Wiegner, O. & Schierenberg, E. 1999. Regulative development in a nematode embryo: a hierarchy of cell fate transformations. Developmental Biology 215, 1–12.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×