Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-19T08:29:44.042Z Has data issue: false hasContentIssue false

4 - Neural population recording in behaving animals: constituents of a neural code for behavioral decisions

Published online by Cambridge University Press:  14 August 2009

Christian Holscher
Affiliation:
University of Ulster
Matthias Munk
Affiliation:
Max-Planck-Institut für biologische Kybernetik, Tübingen
Get access

Summary

Introduction

A major advantage conferred by recording from populations of neurons from any brain area is the potential to determine how that population encodes or represents information about a sensory input, behavioral task, motor movement, or cognitive decision. The ultimate purpose of populations of neural ensemble, recording and analysis can then be characterized as understanding: (1) what does the ensemble encode? (2) how does the ensemble encode it? and finally, (3) how do brain structures use that ensemble code?

In the hippocampus, the anatomy has been studied extensively such that connections between the major principal cell groups are well characterized and the local “functional” circuitry is currently under intense investigation. Neurons have been recorded in all major subfields in the hippocampus, and cell identification via firing signature or local analysis is not a problem in most cases. In the same manner, anatomical connections between subfields are also known; therefore, it is possible to position recording electrodes along specific anatomic projections to record ensembles of neurons with known anatomic connectivity. Given these factors, we have used multineuron recording techniques to determine how neural activity within hippocampal circuits is integrated with behavioral and cognitive events. However, as in many brain systems, the make-up of the ensembles is at least as critical as the techniques used to analyze the ensemble data, or “codes.” In addition, the functional connectivity that gives rise to such codes may not be constant; in fact variations in functional connectivity may produce different codes for different cognitive events.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abeles, M. and Gerstein, G. L. (1988). Detecting spatiotemporal firing patterns among simultaneously recorded single neurons. J Neurosci 60:909–924.Google ScholarPubMed
Agster, K. L., Fortin, N. J., and Eichenbaum, H. (2002). The hippocampus and disambiguation of overlapping sequences. J Neurosci 22:5760–5768.CrossRefGoogle ScholarPubMed
Battaglia, F. P., Sutherland, G. R., and McNaughton, B. L. (2004). Local sensory cues and place cell directionality: additional evidence of prospective coding in the hippocampus. J Neurosci 24:4541–4550.CrossRefGoogle ScholarPubMed
Bilkey, D. K. and Clearwater, J. M. (2005). The dynamic nature of spatial encoding in the hippocampus. Behav Neurosci 119:1533–1545.CrossRefGoogle ScholarPubMed
Buzsáki, G. (2005). Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory. Hippocampus 15:827–840.CrossRefGoogle ScholarPubMed
Chapin, J. K. (2004). Using multi-neuron population recordings for neural prosthetics. Nat Neurosci 7:452–455.CrossRefGoogle ScholarPubMed
Chapin, J. K., Moxon, K. A., Markowitz, R. S., and Nicolelis, M. A. (1999). Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat Neurosci 2:664–670.CrossRefGoogle ScholarPubMed
Hoz, L., Martin, S. J., and Morris, R. G. (2004). Forgetting, reminding, and remembering: the retrieval of lost spatial memory. PLoS Biol 2:E225.CrossRefGoogle ScholarPubMed
Deadwyler, S. A. and Hampson, R. E. (1995). Ensemble activity and behavior: what's the code?Science 270:1316–1318.CrossRefGoogle ScholarPubMed
Deadwyler, S. A. and Hampson, R. E. (1997). The significance of neural ensemble codes during behavior and cognition. Annu Rev Neurosci 20:217–244.CrossRefGoogle ScholarPubMed
Deadwyler, S. A. and Hampson, R. E. (2004). Differential but complementary mnemonic functions of the hippocampus and subiculum. Neuron 42:465–476.CrossRefGoogle ScholarPubMed
Deadwyler, S. A. and Hampson, R. E. (2006). Temporal coupling between subicular and hippocampal neurons underlies retention of trial-specific events. Behav Brain Res 174:272–280.CrossRefGoogle ScholarPubMed
Deadwyler, S. A., Bunn, T., and Hampson, R. E. (1996). Hippocampal ensemble activity during spatial delayed-nonmatch-to-sample performance in rats. J Neurosci 16:354–372.CrossRefGoogle ScholarPubMed
Donoghue, J. P., Nurmikko, A., Friehs, G., and Black, M. (2004). Development of neuromotor prostheses for humans. Suppl Clin Neurophysiol 57:592–606.CrossRefGoogle ScholarPubMed
Dusek, J. A. and Eichenbaum, H. (1997). The hippocampus and memory for orderly stimulus relations. Proc Natl Acad Sci USA 94:7109–7114.CrossRefGoogle ScholarPubMed
Eichenbaum, H. (2004). Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron 44:109–120.CrossRefGoogle ScholarPubMed
Eichenbaum, H., Wiener, S. I., Shapiro, M. L., and Cohen, N. J. (1989). The organization of spatial coding in the hippocampus: a study of neural ensemble activity. J Neurosci 9:2764–2775.CrossRefGoogle ScholarPubMed
Ergorul, C. and Eichenbaum, H. (2004). The hippocampus and memory for “what,” “where,” and “when”. Learn Mem 11:397–405.CrossRefGoogle Scholar
Fenton, A. A., Csizmadia, G., and Muller, R. U. (2000). Conjoint control of hippocampal place cell firing by two visual stimuli. I. The effects of moving the stimuli on firing field positions. J Gen Physiol 116:191–209.CrossRefGoogle ScholarPubMed
Fortin, N. J., Wright, S. P., and Eichenbaum, H. (2004). Recollection-like memory retrieval in rats is dependent on the hippocampus. Nature 431:188–191.CrossRefGoogle ScholarPubMed
Frank, L. M., Brown, E. N., and Wilson, M. (2000). Trajectory encoding in the hippocampus and entorhinal cortex. Neuron 27:169–178.CrossRefGoogle ScholarPubMed
Freedman, D. J., Riesenhuber, M., Poggio, T., and Miller, E. K. (2002). Visual categorization and the primate prefrontal cortex: neurophysiology and behavior. J Neurophysiol 88:929–941.CrossRefGoogle ScholarPubMed
Friehs, G. M., Zerris, V. A., Ojakangas, C. L., Fellows, M. R., and Donoghue, J. P. (2004). Brain–machine and brain–computer interfaces. Stroke 35:2702–2705.CrossRefGoogle ScholarPubMed
Georgopoulos, A. P. (1994). Population activity in the control of movement. Int Rev Neurobiol 37:103–119.CrossRefGoogle ScholarPubMed
Georgopoulos, A. P. (2000). Neural aspects of cognitive motor control. Curr Opin Neurobiol 10:238–241.CrossRefGoogle ScholarPubMed
Georgopoulos, A. P., Schwartz, A. B., and Kettner, R. E. (1986). Neuronal population encoding of movement direction. Science 233:1416–1419.CrossRefGoogle Scholar
Georgopoulos, A. P., Lurito, J. T., Petrides, M., Schwartz, A. B., and Massey, J. T. (1989). Mental rotation of the neuronal population vector. Science 243:234–236.CrossRefGoogle ScholarPubMed
Gerstein, G. L. and Perkel, D. H. (1969). Simultaneously recorded trains of action potentials: analysis and functional interpretation. Science 164:828–830.CrossRefGoogle ScholarPubMed
Gochin, P. M., Colombo, M., Dorfman, G. A., Gerstein, G. L., and Gross, C. G. (1994). Neural ensemble coding in inferior temporal cortex. J Neurophysiol 71:2325–2337.CrossRefGoogle ScholarPubMed
Hampson, R. E. and Deadwyler, S. A. (1994). Hippocampal representations of DMS/DNMS in the rat. Behav Brain Sci 17:480–482.Google Scholar
Hampson, R. E. and Deadwyler, S. A. (1996a). Ensemble codes involving hippocampal neurons are at risk during delayed performance tests. Proc Natl Acad Sci USA 93:13 487–13 493.CrossRefGoogle ScholarPubMed
Hampson, R. E., Deadwyler, S. A. (1996b). LTP and LTD and the encoding of memory in small ensembles of hippocampal neurons. In: Long-Term Potentiation, vol. 3, ed. Baudry, M. and Davis, J., pp. 199–214. Cambridge, MA: MIT Press.Google Scholar
Hampson, R. E. and Deadwyler, S. A. (2000a). Cannabinoids reveal the necessity of hippocampal neural encoding for short-term memory in rats. J Neurosci 20:8932–8942.CrossRefGoogle ScholarPubMed
Hampson, R. E. and Deadwyler, S. A. (2000b). Differential information processing by hippocampal and subicular neurons. In: The Parahippocampal Region: Special Supplement to the Annals of the New York Academy of Sciences, ed. Witter, M. P., pp. 143–175. New York: New York Academy of Sciences.Google Scholar
Hampson, R. E. and Deadwyler, S. A. (2003). Temporal firing characteristics and the strategic role of subicular neurons in short-term memory. Hippocampus 13:529–541.CrossRefGoogle ScholarPubMed
Hampson, R. E., Heyser, C. J., and Deadwyler, S. A. (1993). Hippocampal cell firing correlates of delayed-match-to-sample performance in the rat. Behav Neurosci 107:715–739.CrossRefGoogle ScholarPubMed
Hampson, R. E., Jarrard, L. E., and Deadwyler, S. A. (1999a). Effects of ibotenate hippocampal and extrahippocampal destruction on delayed-match and -nonmatch-to-sample behavior in rats. J Neurosci 19:1492–1507.CrossRefGoogle ScholarPubMed
Hampson, R. E., Simeral, J. D., and Deadwyler, S. A. (1999b). Distribution of spatial and nonspatial Information in dorsal hippocampus. Nature 402:610–614.CrossRefGoogle ScholarPubMed
Hampson, R. E., Simeral, J. D., and Deadwyler, S. A. (2001). What ensemble recordings reveal about functional hippocampal cell encoding. Prog Brain Res 130:345–357.CrossRefGoogle ScholarPubMed
Hampson, R. E., Simeral, J. D., and Deadwyler, S. A. (2002). “Keeping on track”: firing of hippocampal neurons during delayed-nonmatch-to-sample performance. J Neurosci 22:RC198.CrossRefGoogle ScholarPubMed
Hampson, R. E., Pons, T. P., Stanford, T. R., and Deadwyler, S. A. (2004). Categorization in the monkey hippocampus: a possible mechanism for encoding information into memory. Proc Natl Acad Sci USA 101:3184–3189.CrossRefGoogle ScholarPubMed
Hampson, R. E., Simeral, J. D., and Deadwyler, S. A. (2005). Cognitive processes in replacement brain parts: a code for all reasons. In: Toward Replacement Parts for the Brain: Implantable Biomimetic Electronics as Neural Prosthesis, ed. Berger, T. W. and Glanzman, D. L., pp. 111–128. Cambridge, MA: MIT Press.Google Scholar
Huxter, J., Burgess, N., and O'Keefe, J. (2003). Independent rate and temporal coding in hippocampal pyramidal cells. Nature 425:828–832.CrossRefGoogle ScholarPubMed
Jensen, O. and Lisman, J. E. (2000). Position reconstruction from an ensemble of hippocampal place cells: contribution of theta phase coding. J Neurophysiol 83:2602–2609.CrossRefGoogle ScholarPubMed
Knierim, J. J. and Rao, G. (2003). Distal landmarks and hippocampal place cells: effects of relative translation versus rotation. Hippocampus 13:604–617.CrossRefGoogle ScholarPubMed
Laubach, M., Wessberg, J., and Nicolelis, M. A. (2000). Cortical ensemble activity increasingly predicts behaviour outcomes during learning of a motor task. Nature 405:567–571.CrossRefGoogle ScholarPubMed
Lebedev, M. A., Carmena, J. M., O'Doherty, J. E., et al. (2005). Cortical ensemble adaptation to represent velocity of an artificial actuator controlled by a brain–machine interface. J Neurosci 25:4681–4693.CrossRefGoogle ScholarPubMed
Lee, D., Port, N. P., Kruse, W., and Georgopoulos, A. P. (1998). Neuronal population coding: multielectrode recording in primate cerebral cortex. In: Neuronal Ensembles: Strategies for Recording and Decoding, ed. Eichenbaum, H. and Davis, J., pp. 239–254. New York: John Wiley.Google Scholar
Lee, I., Yoganarasimha, D., Rao, G., and Knierim, J. J. (2004). Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3. Nature 430:456–459.CrossRefGoogle ScholarPubMed
Leutgeb, S., Leutgeb, J. K., Barnes, C. A., et al. (2005a). Independent codes for spatial and episodic memory in hippocampal neuronal ensembles. Science 309:619–623.CrossRefGoogle ScholarPubMed
Leutgeb, S., Leutgeb, J. K., Moser, M. B., and Moser, E. I. (2005b). Place cells, spatial maps and the population code for memory. Curr Opin Neurobiol 15:738–746.CrossRefGoogle ScholarPubMed
Louie, K. and Wilson, M. A. (2001). Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron 29:145–156.CrossRefGoogle ScholarPubMed
Moran, D. W. and Schwartz, A. B. (1999). Motor cortical activity during drawing movements: population representation during spiral tracing. J Neurophysiol 82:2693–2704.CrossRefGoogle ScholarPubMed
Moser, M. B. and Moser, E. I. (1998). Distributed encoding and retrieval of spatial memory in the hippocampus. J Neurosci 18:7535–7542.CrossRefGoogle ScholarPubMed
Nicolelis, M. A. (2001). Actions from thoughts. Nature 409(Suppl):403–407.CrossRefGoogle ScholarPubMed
Nicolelis, M. A. (2005). Computing with thalamocortical ensembles during different behavioural states. J Physiol 566:37–47.CrossRefGoogle ScholarPubMed
Nicolelis, M. A. and Chapin, J. K. (2002). Controlling robots with the mind. Sci Am 287:46–53.CrossRefGoogle ScholarPubMed
Otto, T. and Eichenbaum, H. (1992). Neuronal activity in the hippocampus during delayed non-match to sample performance in rats: evidence for hippocampal processing in recognition memory. Hippocampus 2:323–334.CrossRefGoogle ScholarPubMed
Paninski, L., Shoham, S., Fellows, M. R., Hatsopoulos, N. G., and Donoghue, J. P. (2004). Superlinear population encoding of dynamic hand trajectory in primary motor cortex. J Neurosci 24:8551–8561.CrossRefGoogle ScholarPubMed
Pouget, A., Dayan, P., and Zemel, R. S. (2003). Inference and computation with population codes. Annu Rev Neurosci 26:381–410.CrossRefGoogle ScholarPubMed
Redish, A. D., Battaglia, F. P., Chawla, M. K., et al. (2001). Independence of firing correlates of anatomically proximate hippocampal pyramidal cells. J Neurosci 21:1–6.CrossRefGoogle ScholarPubMed
Ribeiro, S. and Nicolelis, M. A. (2004). Reverberation, storage, and postsynaptic propagation of memories during sleep. Learn Mem 11:686–696.CrossRefGoogle ScholarPubMed
Rolls, E. T. (1999). Spatial view cells and the representation of place in the primate hippocampus. Hippocampus 9:467–480.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Rolls, E. T., Xiang, J., and Franco, L. (2005). Object, space, and object–space representations in the primate hippocampus. J Neurophysiol 94:833–844.CrossRefGoogle ScholarPubMed
Schwartz, A. B. and Moran, D. W. (1999). Motor cortical activity during drawing movements: population representation during lemniscate tracing. J Neurophysiol 82:2705–2718.CrossRefGoogle ScholarPubMed
Shapiro, M. (2001). Plasticity, hippocampal place cells, and cognitive maps. Arch Neurol 58:874–881.CrossRefGoogle ScholarPubMed
Simeral, J. D., Hampson, R. E., and Deadwyler, S. A. (2006). Behaviorally relevant neural codes in hippocampal ensembles: detection on single trials. In: Synaptic Plasticity: From Basic Mechanisms to Clinical Applications, ed. Baudry, M., Bi, X., and Schreiber, S., pp. 278–291. Cambridge, MA: MIT Press.Google Scholar
Sirota, A., Csicsvari, J., Buhl, D., and Buzsáki, G. (2003). Communication between neocortex and hippocampus during sleep in rodents. Proc Natl Acad Sci USA 100:2065–2069.CrossRefGoogle ScholarPubMed
Stepniewska, I., Fang, P. C., and Kaas, J. H. (2005). Microstimulation reveals specialized subregions for different complex movements in posterior parietal cortex of prosimian galagos. Proc Natl Acad Sci USA 102:4878–4883.CrossRefGoogle ScholarPubMed
Stevens, J. (2002). Applied Multivariate Statistics for the Social Sciences. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Suzuki, W. A., Miller, E. K., and Desimone, R. (1997). Object and place memory in the macaque entorhinal cortex. J Neurophysiol 78:1062–1081.CrossRefGoogle ScholarPubMed
Talwar, S. K., Xu, S., Hawley, E. S., et al. (2002). Rat navigation guided by remote control. Nature 417:37–38.CrossRefGoogle ScholarPubMed
Touretzky, D. S., Weisman, W. E., Fuhs, M. C., et al. (2005). Deforming the hippocampal map. Hippocampus 15:41–55.CrossRefGoogle ScholarPubMed
Wallenstein, G. V., Eichenbaum, H., and Hasselmo, M. E. (1998). The hippocampus as an associator of discontiguous events. Trends Neurosci 21:317–323.CrossRefGoogle ScholarPubMed
Wallis, J. D. and Miller, E. K. (2003). Neuronal activity in primate dorsolateral and orbital prefrontal cortex during performance of a reward preference task. Eur J Neurosci 18:2069–2081.CrossRefGoogle ScholarPubMed
Wessberg, J. and Nicolelis, M. A. (2004). Optimizing a linear algorithm for real-time robotic control using chronic cortical ensemble recordings in monkeys. J Cogn Neurosci 16:1022–1035.CrossRefGoogle ScholarPubMed
Wilson, I. A., Ikonen, S., Gurevicius, K., et al. (2005). Place cells of aged rats in two visually identical compartments. Neurobiol Aging 26:1099–1106.CrossRefGoogle ScholarPubMed
Wood, E. R., Dudchenko, P. A., Robitsek, R. J., and Eichenbaum, H. (2000). Hippocampal neurons encode information about different types of memory episodes occurring in the same location. Neuron 27:623–633.CrossRefGoogle ScholarPubMed
Wood, E. R., Dudchenko, P. A., and Eichenbaum, H. (2001). Cellular correlates of behavior. Int Rev Neurobiol 45:293–312.CrossRefGoogle ScholarPubMed
Zhang, K., Ginzburg, I., McNaughton, B. L., and Sejnowski, T. J. (1998). Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells. J Neurophysiol 79:1017–1044.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×