Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-17T19:13:40.632Z Has data issue: false hasContentIssue false

7 - Varieties of silence: the impact of neuro-degenerative diseases on language systems in the brain

Published online by Cambridge University Press:  08 August 2009

Karalyn Patterson
Affiliation:
Senior Scientist MRC Cognition and Brain Science Unit University of Cambridge 15 Chaucer Road Cambridge CB2 2EF UK
Naida L. Graham
Affiliation:
MRC Cognition & Brain Science Unit 15 Chaucer Road Cambridge CB2 2EF UK
Matthew A. Lambon Ralph
Affiliation:
The University of Manchester Oxford Road Manchester M13 9PL UK
John R. Hodges
Affiliation:
MRC Cognition & Brain Sciences Unit University of Cambridge 15 Chaucer Road Cambridge CB2 2EF UK
James R. Pomerantz
Affiliation:
Rice University, Houston
Get access

Summary

Introduction

The human faculty of language is a breathtaking skill. It allows us to communicate observations, thoughts, wishes, intentions, emotions, etc., to another person in the same room (by speaking), to a person in the next room (by shouting), to someone thousands of kilometers away (by speaking on the telephone or sending a fax), and even to future generations (by writing stories, poems, books, or scientific articles). Language is characterized by almost infinite variation and creativity. Every person alive today (with the exception of pre-verbal infants and people with severely impaired language skills) probably utters a number of sentences every day that he or she has never produced before. What other form of behavior could compete with this for degree of novelty and originality?

Language is typically considered to involve a set of interacting, but somewhat separate, domains of ability or knowledge. These include the sound structure of the language (phonology); word meanings (semantics); the ways in which individual morphemes combine to create complex words (morphology); the ways in which morphologically simple or complex words combine to create phrases and sentences (syntax); and finally, at least in the relatively brief time since a substantial proportion of the world's population has become literate, knowledge of how words are written in the speaker's language (orthography).

How and where does the brain represent and process this complex set of abilities? Because language is unique to humans, we can only learn about this topic by studying humans.

Type
Chapter
Information
Topics in Integrative Neuroscience
From Cells to Cognition
, pp. 181 - 205
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bak, T. H., O'Donovan, D. G., Xuereb, J. H., Boniface, S., and Hodges, J. R. (2001). Selective impairment of verb processing associated with pathological changes in Brodmann areas 44 and 45 in the motor neurone disease/dementia/aphasia syndrome. Brain, 124, 102–24.CrossRefGoogle ScholarPubMed
Bird, H., Ralph, Lambon M. A., Patterson, K., and Hodges, J. R. (2000). The rise and fall of frequency and imageability: noun and verb production in semantic dementia. Brain and Language, 73, 17–49.CrossRefGoogle ScholarPubMed
Bishop, D. (1989). Test for the Reception of Grammar. London: Medical Research Council.Google Scholar
Blumstein, S. E. (1994). Impairments of speech production and speech perception in aphasia. Philosophical Transactions of the Royal Society of London B, 346, 29–36.CrossRefGoogle ScholarPubMed
Breedin, S. and Saffran, E. M. (1999). Sentence processing in the face of semantic loss: a case study. Journal of Experimental Psychology: General, 128, 547–62.CrossRefGoogle ScholarPubMed
Broca, P. (1861). Remarques sur la siege de la faculté du langage articule, suivies d'une observation d'aphemie (perte de la parole). Bulletin de la Societé d'Anatomie (Paris), 36, 330–57.Google Scholar
Brodmann, K. (1909). Vergleichende Lokalisations lehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: Barth. English version: Localisation in the Cerebral Cortex. London: Smith-Gordon, 1994.Google Scholar
Chiacchio, L., Grossi, D., Stanzione, M., and Trojano, L. (1993). Slowly progressive aphasia associated with surface dyslexia. Cortex, 29, 145–52.CrossRefGoogle ScholarPubMed
Croot, K., Patterson, K., and Hodges, J. R. (1998). Single word production in nonfluent progressive aphasia. Brain and Language, 61, 226–73.CrossRefGoogle ScholarPubMed
Croot, K., Patterson, K., and Hodges, J. R. (1999). Familial progressive aphasia: insights into the nature and deterioration of single word processing. Cognitive Neuropsychology, 16, 705–47.CrossRefGoogle Scholar
Fushimi, T., Komori, K., Ikeda, M., et al. (2003). Surface dyslexia in a Japanese patient with semantic dementia: evidence for similarity-based orthography-to-phonology translation. Neuropsychologia, 41, 1644–58.CrossRefGoogle Scholar
Gainotti, G., Silveri, M. C., Daniele, A., and Giustolisi, L. (1995). Neuroanatomical correlates of category specific semantic disorders: a critical survey. Memory, 3, 247–64.CrossRefGoogle ScholarPubMed
Gardner, H. and Zurif, E. (1975). BEE but not BE: oral reading of single words in aphasia and alexia. Neuropsychologia, 13, 181–90.CrossRefGoogle Scholar
Gloor, P. (1997). The Temporal Lobe and Limbic System. New York/Oxford: Oxford University Press.Google Scholar
Goodglass, H. and Kaplan, E. (1983). The Assessment of Aphasia and Related Disorders. Philadelphia: Lea and Febiger.Google Scholar
Graham, K. S., Patterson, K., and Hodges, J. R. (1995). Progressive pure anomia: insufficient activation of phonology by meaning. Neurocase, 1, 25–39.CrossRefGoogle Scholar
Graham, K. S., Patterson, K., Pratt, K., and Hodges, J. R. (1999). Relearning and subsequent forgetting of semantic category exemplars in a case of semantic dementia. Neuropsychology, 13, 359–80.CrossRefGoogle Scholar
Graham, N. L., Patterson, K., and Hodges, J. R. (2000). The impact of semantic memory impairment on spelling: evidence from semantic dementia. Neuropsychologia, 38, 143–63.CrossRefGoogle ScholarPubMed
Graham, N. L., Patterson, K., and Hodges, J. R. (2004). When more yields less: speaking and writing in nonfluent progressive aphasia. Neurocase, 10, 141–55.CrossRefGoogle ScholarPubMed
Hodges, J. L., Graham, N., and Patterson, K. (1995). Charting the progression in semantic dementia: implications for the organisation of semantic memory. Memory, 3, 463–95.CrossRefGoogle ScholarPubMed
Hodges, J. R. and Patterson, K. (1996). Nonfluent progressive aphasia and dementia: a comparative neuropsychological study. Journal of the International Neuropsychological Society, 2, 511–24.CrossRefGoogle ScholarPubMed
Hodges, J. R., Patterson, K., Oxbury, S., and Funnell, E. (1992). Semantic dementia: progressive fluent aphasia with temporal lobe atrophy. Brain, 115, 1783–806.CrossRefGoogle ScholarPubMed
Hodges, J. R., Patterson, K., and Tyler, L. K. (1994). Loss of semantic memory: implications for the modularity of mind. Cognitive Neuropsychology, 11, 505–42.CrossRefGoogle Scholar
Howard, D. and Patterson, K. (1992). Pyramids and Palm Trees: A Test of Semantic Access from Pictures and Words. Bury St Edmunds, UK: Thames Valley Test Company.Google Scholar
Knott, R., Patterson, K., and Hodges, J. R. (1997). Lexical and semantic binding effects in short-term memory: evidence from semantic dementia. Cognitive Neuropsychology, 14, 1165–216.CrossRefGoogle Scholar
Ralph, Lambon M. A., McClelland, J. L., Patterson, K., Galton, C. J., and Hodges, J. R. (2001). No right to speak? The relationship between object naming and semantic impairment. Journal of Cognitive Neuroscience, 13, 341–56.CrossRefGoogle Scholar
Lee, A. C. H., Graham, K. S., Simons, J. S., et al. (2002). Regional brain activations differ for semantic features but not categories. NeuroReport, 13, 1497–501.CrossRefGoogle Scholar
Levy, D. A., Bayley, P. J., and Squire, L. R. (2004). The anatomy of semantic knowledge: medial vs. lateral temporal lobe. Proceedings of the National Academy of Sciences, 101, 6710–15.CrossRefGoogle ScholarPubMed
Martin, N. and Saffran, E. M. (1997). Language and auditory verbal short-term memory impairment: evidence for common underlying processes. Cognitive Neuropsychology, 14, 641–82.Google Scholar
McCarthy, R. and Warrington, E. K. (1986). Phonological reading: phenomena and paradoxes. Cortex, 22, 359–80.CrossRefGoogle ScholarPubMed
Mesulam, M. M. (1982). Slowly progressive aphasia without generalized dementia. Annals of Neurology, 11, 592–8.CrossRefGoogle ScholarPubMed
Mummery, C. J., Patterson, K., Price, C. J., et al. (2000). A voxel-based morphometry study of semantic dementia: relationship between temporal lobe atrophy and semantic memory. Annals of Neurology, 47, 36–45.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Mummery, C. J., Patterson, K., Wise, R. J. S., et al. (1999). Disrupted temporal lobe connections in semantic dementia. Brain, 122, 61–73.CrossRefGoogle ScholarPubMed
Nestor, P. J., Graham, N. L., Fryer, T. D., et al. (2003). Progressive non-fluent aphasia is associated with hypometabolism centred on the left anterior insula. Brain, 126, 2406–18.CrossRefGoogle ScholarPubMed
Papagno, C. and Capitani, E. (2001). Slowly progressive aphasia: a four-year follow-up study. Neuropsychologia, 39, 678–86.CrossRefGoogle ScholarPubMed
Parkin, A. (1993). Progressive aphasia without dementia: a clinical and cognitive neuropsychological analysis. Brain and Language, 44, 201–20.CrossRefGoogle ScholarPubMed
Patterson, K., Graham, N., and Hodges, J. R. (1994). The impact of semantic memory loss on phonological representations. Journal of Cognitive Neuroscience, 6, 57–69.CrossRefGoogle ScholarPubMed
Patterson, K., Graham, N. L., Hodges, J. R., and Ralph, Lambon M. A. (2006). Progressive non-fluent aphasia is not a progressive version of non-fluent (post-stroke) aphasia. Aphasiology, 20, 1018–34.CrossRefGoogle Scholar
Patterson, K. and Hodges, J. R. (1992). Deterioration of word meaning: implications for reading. Neuropsychologia, 30, 1025–40.CrossRefGoogle ScholarPubMed
Patterson, K., Ralph, Lambon M. A., Jefferies, E., et al. (2006). “Pre-semantic” cognition in semantic dementia: six deficits in search of an explanation. Journal of Cognitive Neuroscience, 18, 169–83.CrossRefGoogle Scholar
Patterson, K. and MacDonald, M. C. (2006). Sweet nothings: narrative speech in semantic dementia. In Andrews, S., ed., From Inkmarks to Ideas: Current Issues in Lexical Processing. Hove: Psychology Press, pp. 299–317.Google Scholar
Patterson, K., Suzuki, T., Wydell, T., and Sasanuma, S. (1995). Progressive aphasia and surface alexia in Japanese. Neurocase, 1, 155–65.CrossRefGoogle Scholar
Pick, A. (1904). Zur Symptomatologie der linksseitigen Schläfenlappenatrophie. Monatschrift für Psychiatrie und Neurologie, 16, 378–88. English translation: Girling, D. M. and Berrios, G. E. [1997]. On the symptomatology of left-sided temporal lobe atrophy. History of Psychiatry, 8, 149–59.CrossRefGoogle Scholar
Plaut, D. C., McClelland, J. L., Seidenberg, M. S., and Patterson, K. (1996). Understanding normal and impaired word reading: computational principles in quasi-regular domains. Psychological Review, 103, 56–115.CrossRefGoogle ScholarPubMed
Price, C. J. (1998). The functional anatomy of word comprehension. Trends in Cognitive Sciences, 2, 281–8.CrossRefGoogle ScholarPubMed
Pulvermüller, F., Haerle, M., and Hummel, F. (2001). Walking or talking? Behavioural and electrophysiological correlates of action verb processing. Brain and Language, 78, 143–68.CrossRefGoogle ScholarPubMed
Pulvermüller, F. and Preissl, H. (1991). A cell assembly model of language. Network: Computation in Neural Systems, 2, 455–68.CrossRefGoogle Scholar
Rogers, T. T., Ralph, Lambon M. A., Garrard, P., et al. (2004). The structure and deterioration of semantic memory: a neuropsychological and computational investigation. Psychological Review, 111, 205–35.CrossRefGoogle ScholarPubMed
Schwartz, M. F., Marin, O. S. M., and Saffran, E. M. (1979). Dissociations of language function in dementia: a case study. Brain and Language, 7, 277–306.CrossRefGoogle ScholarPubMed
Seeley, W. W., Bauer, A. M., Miller, B. L., et al. (2005). The natural history of temporal variant frontotemporal dementia. Neurology, 64, 1384–90.CrossRefGoogle ScholarPubMed
Snodgrass, J. S. and Vanderwart, M. (1980). A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity. Journal of Experimental Psychology: Human Learning and Memory, 6, 174–215.Google ScholarPubMed
Snowden, J. S., Goulding, P. J., and Neary, D. (1989). Semantic dementia: a form of circumscribed cerebral atrophy. Behavioural Neurology, 2, 167–82.Google Scholar
Snowden, J. S., Neary, D., and Mann, D. M. A. (1996). Frontotemporal Lobar Degeneration: Frontotemporal Dementia, Progressive Aphasia, Semantic Dementia. New York: Churchill Livingstone.Google Scholar
Studholme, C., Cardenas, V., Blumenfeld, R., et al. (2004). Deformation tensor morphomotry of semantic dementia with quantitative validation. NeuroImage, 21, 1387–98.CrossRefGoogle ScholarPubMed
Tatsumi, I., Fushimi, T., Sadato, N., et al. (1999). Verb generation in Japanese – a multicenter PET activation study. NeuroImage, 9, 154–64.CrossRefGoogle ScholarPubMed
Tranel, D., Damasio, H., and Damasio, A. R. (1997). A neural basis for the retrieval of conceptual knowledge. Neuropsychologia, 35, 1319–27.CrossRefGoogle ScholarPubMed
Warburton, E., Wise, R. J. S., Price, C. J., et al. (1996). Noun and verb retrieval by normal subjects: studies with PET. Brain, 119, 159–79.CrossRefGoogle ScholarPubMed
Warrington, E. K. (1975). Selective impairment of semantic memory. Quarterly Journal of Experimental Psychology, 27, 635–57.CrossRefGoogle ScholarPubMed
Wernicke, C. (1874). Der aphasische Symptomencomplex. Eine psychologische Studie auf anatomischer Basis. English translation: Eggert, G. H. [1977]. Wernicke's Works on Aphasia: A Sourcebook and Review. New York: Mouton.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×