Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-01T02:40:00.577Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  13 August 2009

Bernhard Stadler
Affiliation:
Universität Bayreuth, Germany
Anthony F. G. Dixon
Affiliation:
University of East Anglia
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Mutualism
Ants and their Insect Partners
, pp. 184 - 211
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, K. I., and Green, P.. 2007. Collapse of an ant–scale mutualism in a rainforest on Christmas Island. Oikos 116:1238–1246.Google Scholar
Abrams, P. A., and Matsuda, H.. 1996. Positive indirect effects between prey species that share predators. Ecology 77:610–616.CrossRefGoogle Scholar
Abrams, P. A., and Wilson, W. G.. 2004. Coexistence of competitors in metacommunities due to spatial variation in resource growth rates; does R∗ predict the outcome of competition?Ecology Letters 7:929–940.CrossRefGoogle Scholar
Abrams, P. A., Holt, R. D., and Roth, J. D.. 1998. Apparent competition or apparent mutualism? Shared predation when populations cycle. Ecology 79:201–212.CrossRefGoogle Scholar
Addicott, J. F. 1978a. Competition for mutualists – aphids and ants. Canadian Journal of Zoology 56:2093–2096.CrossRefGoogle Scholar
Addicott, J. F. 1978b. The population dynamics of aphids on fireweed: a comparison of local populations and metapopulations. Canadian Journal of Zoology 56:2554–2564.CrossRefGoogle Scholar
Addicott, J. F. 1979. A multispecies aphid-ant association: density dependence and species-specific effects. Canadian Journal of Zoology 57:558–569.CrossRefGoogle Scholar
Addicott, J. F. 1981. Stability properties of 2-species models of mutualism: simulation studies. Oecologia 49:42–49.CrossRefGoogle ScholarPubMed
Addicott, J. F., Aho, J. M., Antolin, M. F., Padilla, D. K., Richardson, J. S., and Soluk, D. A.. 1987. Ecological neighborhoods: scaling environmental patterns. Oikos 49:340–346.CrossRefGoogle Scholar
Agrawal, A. A., and Fordyce, J. A.. 2000. Induced indirect defence in a lycaenid-ant association: the regulation of a resource in a mutualism. Proceedings of the Royal Society of London Series B 267:1857–1861.CrossRefGoogle Scholar
Agrawal, A. A., Underwood, N., and Stinchcombe, J. R.. 2004. Intraspecific variation in the strength of density dependence in aphid populations. Ecological Entomology 29:521–526.CrossRefGoogle Scholar
Albrecht, M., and Gotelli, N. J.. 2001. Spatial and temporal niche partitioning in grassland ants. Oecologia 126:134–141.CrossRefGoogle ScholarPubMed
Allee, W. C. 1938. The Social Life of Animals. Boston: Beacon Press.CrossRefGoogle Scholar
Allee, W. C. 1949. Principles of Animal Ecology. Philadelphia: W. B. Saunders Co.Google Scholar
Amarasekare, P. 1998a. Allee effects in metapopulation dynamics. American Naturalist 152:298–302.CrossRefGoogle Scholar
Amarasekare, P. 1998b. Interactions between local dynamics and dispersal: insights from single species models. Theoretical Population Biology 53:44–59.CrossRefGoogle Scholar
Amarasekare, P. 2004. Spatial dynamics of mutualistic interactions. Journal of Animal Ecology 73:128–142.CrossRefGoogle Scholar
Andersen, M. 1991. An ant-aphid interaction: Formica fusca and Aphthargelia symphoricarpi on Mount St. Helens. American Midland Naturalist 125:29–36.CrossRefGoogle Scholar
Antolin, M. F., and Addicott, J. F.. 1991. Colonization, among shoot movement, and local population neighborhoods of two aphid species. Oikos 61:45–53.CrossRefGoogle Scholar
Aoki, S. 1978. Two pemphigids with first instar larvae attacking predatory intruders (Homoptera, Aphidoidea). New Entomologist 27:7–12.Google Scholar
Ashford, D. A., Smith, W. A., and Douglas, A. E.. 2000. Living on a high sugar diet: the fate of sucrose ingested by a phloem-feeding insect, the pea aphid Acyrthosiphon pisum. Journal of Insect Physiology 46:335–341.CrossRefGoogle ScholarPubMed
Atsatt, P. R. 1981. Lycaenid butterflies and ants: selection for enemy free space. American Naturalist 118:638–654.CrossRefGoogle Scholar
Aviles, L. 1999. Cooperation and non-linear dynamics: an ecological perspective on the evolution of sociality. Evolutionary Ecology Research 1:459–477.Google Scholar
Awmack, C. S., and Leather, S. R.. 2002. Host plant quality and fecundity in herbivorous insects. Annual Review of Entomology 47:817–844.CrossRefGoogle ScholarPubMed
Axelrod, R., and Hamilton, W. D.. 1981. The evolution of cooperation. Science 211:1390–1396.CrossRefGoogle ScholarPubMed
Axen, A. H. 2000. Variation in behavior of lycaenid larvae when attended by different ant species. Evolutionary Ecology 14:611–625.CrossRefGoogle Scholar
Axen, A. H., and Pierce, N. E.. 1998. Aggregation as a cost-reducing strategy for lycaenid larvae. Behavioral Ecology 9:109–115.CrossRefGoogle Scholar
Axen, A. H., Leimar, O., and Hoffman, V.. 1996. Signalling in a mutualistic interaction. Animal Behaviour 52:321–333.CrossRefGoogle Scholar
Azcarate, F. M., Arqueros, L., Sanchez, A. M., and Peco, B.. 2005. Seed and fruit selection by harvester ants, Messor barbarus, in Mediterranean grassland and scrubland. Functional Ecology 19:273–283.CrossRefGoogle Scholar
Bach, C. E. 1991. Direct and indirect interactions between ants (Pheidole megacephala), scales (Coccus viridis) and plants (Pluches indica). Oecologia 87:233–239.CrossRefGoogle Scholar
Bartlett, B. R. 1961. The influence of ants upon parasites, predators, and scale insects. Annals of the Entomological Society of America 54:543–551.CrossRefGoogle Scholar
Baylis, M., and Pierce, N. E.. 1991. The effect of host plant quality on the survival of larvae and oviposition by adults of an ant-tended lycaenid butterfly, Jalmenus evagoras. Ecological Entomology 16:1–9.CrossRefGoogle Scholar
Beattie, A. J. 1976. Plant dispersion, pollination and gene flow in Viola. Oecologica 25:291–300.CrossRefGoogle ScholarPubMed
Beattie, A. J. 1985. The Evolutionary Ecology of Ant-Plant Mutualisms. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Becerra, J. X. I., and Venable, D. L.. 1989. Extrafloral nectaries: a defense against ant-homoptera mutualisms?Oikos 55:276–280.CrossRefGoogle Scholar
Becerra, J. X., and Venable, D. L.. 1991. The role of ant-Homoptera mutualisms in the evolution of extrafloral nectaries. Oikos 60:105–106.CrossRefGoogle Scholar
Beckerman, A., Benton, T. G., Ranta, E., Kaitala, V., and Lundberg, P.. 2002. Population dynamic consequences of delayed life-history effects. Trends in Ecology and Evolution 17:263–269.CrossRefGoogle Scholar
Bell, G. 2001. Neutral macroecology. Science 293:2413–2418.CrossRefGoogle ScholarPubMed
Bentley, B. L. 1976. Plants bearing extrafloral nectaries and the associated ant community: interhabitat differences in the reduction of herbivore damage. Ecology 57:815–820.CrossRefGoogle Scholar
Bentley, B. L. 1977. Extrafloral nectaries and protection by pugnacious bodyguards. Annual Review of Ecology and Systematics 8:407–427.CrossRefGoogle Scholar
Bergeson, E., and Messina, F. J.. 1997. Resource- versus enemy-mediated interactions between cereal aphids (Homoptera: Aphididae) on a common host plant. Annals of the Entomological Society of America 90:425–432.CrossRefGoogle Scholar
Bergeson, E., and Messina, F. J.. 1998. Effect of a co-occurring aphid on the susceptibility of the Russian wheat aphid to lacewing predators. Entomologia Experimentalis et Applicata 87:103–108.CrossRefGoogle Scholar
Berryman, A. A., Lima, M., and Hawkins, B. A.. 2002. Population regulation, emergent properties, and a requiem for density dependence. Oikos 100:600–636.CrossRefGoogle Scholar
Bhatkar, A. P., and Kloft, W. J.. 1977. Evidence, using radioactive phosphorus, of interspecific food exchange in ants. Nature 265: 140–142.CrossRefGoogle Scholar
Billick, I., and Tonkel, K.. 2003. The relative importance of spatial vs. temporal variability in generating a conditional mutualism. Ecology 84:289–295.CrossRefGoogle Scholar
Billick, I., Weidmann, M., and Reithel, J.. 2001. The relationship between ant-tending and maternal care in the treehopper Publilia modesta. Behavioral Ecology and Sociobiology 51:41–46.Google Scholar
Bishop, D. B., and Bristow, C. M.. 2001. Effect of Allegheny mound ant (Hymenoptera : Formicidae) presence on homopteran and predator populations in Michigan jack pine forests. Annals of the Entomological Society of America 94:33–40.CrossRefGoogle Scholar
Blackman, R. L. and Eastop, V. F.. 1994. Aphids on the World's Trees. Wallingford: CAB International.Google Scholar
Blossey, B., and Hunt-Joshi, T. R.. 2003. Belowground herbivory by insects: influence on plants and aboveground herbivores. Annual Review of Entomology 48:521–547.CrossRefGoogle ScholarPubMed
Blüthgen, N., and Fiedler, K.. 2004a. Competition for composition: lessons from nectar-feeding ant communities. Ecology 85:1479–1485.CrossRefGoogle Scholar
Blüthgen, N., and Fiedler, K.. 2004b. Preferences for sugars and amino acids and their conditionality in a diverse nectar-feeding ant community. Journal of Animal Ecology 73:155–166.CrossRefGoogle Scholar
Blüthgen, N., Gebauer, G., and Fiedler, K.. 2003. Disentangling a rainforest food web using stable isotopes: dietary diversity in a species-rich ant community. Oecologia 137:426–435.CrossRefGoogle Scholar
Blüthgen, N., Verhaagh, M., Goitia, W., Jaffe, K., Morawetz, W., and Barthlott, W.. 2000. How plants shape the ant community in the Amazonian rainforest canopy: the key role of extrafloral nectaries and homopteran honeydew. Oecologia 125:229–240.CrossRefGoogle ScholarPubMed
Bolton, B. 1995. A New General Catalogue of the Ants of the World. Cambridge, MA: Harvard University Press.Google Scholar
Bonabeau, E., Theraulaz, G., and Deneubourg, J. L.. 1999. Dominance orders in animal societies: the self-organization hypothesis revisited. Bulletin of Mathematical Biology 61:727–757.CrossRefGoogle ScholarPubMed
Bonabeau, E., Theraulaz, G., Deneubourg, J. L., Aron, S., and Camazine, S.. 1997. Self-organization in social insects. Trends in Ecology and Evolution 12:188–193.CrossRefGoogle ScholarPubMed
Bonkowski, M., Geoghegan, I. E., Birch, A. N. E., and Griffiths, B. S.. 2001. Effects of soil decomposer invertebrates (protozoa and earthworms) on an above-ground phytophagous insect (cereal aphid) mediated through changes in the host plant. Oikos 95:441–450.CrossRefGoogle Scholar
Bonsall, M. B., and Hassell, M. P.. 1997. Apparent competition structures ecological assemblages. Nature 388:371–373.CrossRefGoogle Scholar
Bonsall, M. B., Jansen, V. A. A., and Hassell, M. P.. 2004. Life history trade-offs assemble ecological guilds. Science 306:111–114.CrossRefGoogle ScholarPubMed
Boucher, D. H. 1985. The Biology of Mutualism. New York: Oxford University Press.Google Scholar
Boursaux-Eude, C., and Gross, R.. 2000. New insights into symbiotic associations between ants and bacteria. Research in Microbiology 151:513–519.CrossRefGoogle ScholarPubMed
Bradley, G. A., and Hinks, J. D.. 1968. Ants aphids and jack pine in Manitoba. Canadian Entomologist 100:40–50.CrossRefGoogle Scholar
Braschler, B., and Baur, B.. 2003. Effects of experimental small-scale grassland fragmentation on spatial distribution, density, and persistence of ant nests. Ecological Entomology 28:651–658.CrossRefGoogle Scholar
Braschler, B., and Baur, B.. 2005. Experimental small-scale grassland fragmentation alters competitive interactions among ant species. Oecologia 143:291–300.CrossRefGoogle ScholarPubMed
Braschler, B., Lampel, G., and Baur, B.. 2003. Experimental small-scale grassland fragmentation alters aphid population dynamics. Oikos 100:581–591.CrossRefGoogle Scholar
Braschler, B., Zschokke, S., Dolt, C., Thommen, G. H., Oggier, P., and Baur, B.. 2004. Grain-dependent relationships between plant productivity and invertebrate species richness and biomass in calcareous grasslands. Basic and Applied Ecology 5:15–24.CrossRefGoogle Scholar
Brauchli, K., Killingback, T., and Doebeli, M.. 1999. Evolution of cooperation in spatially structured populations. Journal of Theoretical Biology 200:405–417.CrossRefGoogle ScholarPubMed
Breton, L. M., and Addicott, J. F.. 1992a. Density-dependent mutualism in an aphid-ant interaction. Ecology 73:2175–2180.CrossRefGoogle Scholar
Breton, L. M., and Addicott, J. F.. 1992b. Does host plant quality mediate aphid-ant mutualism?Oikos 63:253–259.CrossRefGoogle Scholar
Bristow, C. M. 1984. Differential benefits from ant-attendance to two species of Homoptera on New York ironweed. Journal of Animal Ecology 53:715–726.CrossRefGoogle Scholar
Bristow, C. M. 1991. Why are so few aphids ant-tended? In Ant-plant Interactions, ed. Huxley, C. R. and Cutler, D. F., pp. 104–119. Oxford: Oxford University Press.Google Scholar
Brodbeck, B. V., and D. Strong. 1987. Amino acid nutrition of herbivorous insects and stress to host plants. In Insect Outbreaks: Ecological and Evolutionary Perspectives, ed. Barbosa, P. and Schultz, J., pp. 347–364. New York: Academic Press.Google Scholar
Bronstein, J. L. 1988. Mutualism, antagonism, and the fig-pollinator interaction. Ecology 69:1298–1302.CrossRefGoogle Scholar
Bronstein, J. L. 1994a. Conditional outcomes in mutualistic interactions. Trends in Ecology and Evolution 9:214–217.CrossRefGoogle Scholar
Bronstein, J. L. 1994b. Our current understanding of mutualism. Quarterly Review of Biology 69:31–51.CrossRefGoogle Scholar
Bronstein, J. L. 2001. The exploitation of mutualism. Ecology Letters 4:277–287.CrossRefGoogle Scholar
Brown, J. L. 1983. Cooperation: a biologist's dilemma. Advances in the Study of Behaviour 13:1–37.CrossRefGoogle Scholar
Brown, M. J. F., and Gordon, D. M.. 2000. How resources and encounters affect the distribution of foraging activity in a seed-harvesting ant. Behavioral Ecology and Sociobiology 47:195–203.CrossRefGoogle Scholar
Buckley, R. 1987. Ant-plant-homopteran interactions. Advances in Ecological Research 16:53–85.CrossRefGoogle Scholar
Buckley, R., and Gullan, P.. 1991. More aggressive ant species (Hymenoptera, Formicidae) provide better protection for soft scales and mealybugs (Homoptera, Coccidae, Pseudococcidae). Biotropica 23:282–286.CrossRefGoogle Scholar
Cappuccino, N. 1987. Comparative population dynamics of two goldenrod aphids: spatial patterns and temporal constancy. Ecology 68:1634–1646.CrossRefGoogle ScholarPubMed
Cappuccino, N. 1988. Spatial patterns of goldenrod aphids and the response of enemies to patch density. Oecologia 76:607–610.CrossRefGoogle ScholarPubMed
Carroll, C. R., and Janzen, D. H.. 1973. Ecology of foraging by ants. Annual Review of Ecology and Systematics 4:231–257.CrossRefGoogle Scholar
Choe, D.-H. and Rust, M. K.. 2006. Ants learn the association between homopteran cuticular chemistry and honeydew. Chemoecology 16: 175–178.CrossRefGoogle Scholar
Cocroft, R. B. 1996. Insect vibrational defence signals. Nature 382:679–680.CrossRefGoogle Scholar
Cocroft, R. B. 1999. Parent-offspring communication in response to predators in a subsocial treehopper (Hemiptera : Membracidae : Umbonia crassicornis). Ethology 105:553–568.Google Scholar
Cocroft, R. B. 2002. Antipredator defense as a limited resource: unequal predation risk in broods of an insect with maternal care. Behavioral Ecology 13:125–133.CrossRefGoogle Scholar
Cocroft, R. B., and Rodriguez, R. L.. 2005. The behavioral ecology of insect vibrational communication. BioScience 55:323–334.CrossRefGoogle Scholar
Collins, C. M., and Leather, S. R.. 2002. Ant-mediated dispersal of the black willow aphid Pterocomma salicis L.; does the ant Lasius niger L. judge aphid-host quality?Ecological Entomology 27:238–241.CrossRefGoogle Scholar
Connor, R. C. 1986. Pseudo reciprocity: investing in mutualism. Animal Behaviour 34:1562–1566.CrossRefGoogle Scholar
Connor, R. C. 1995. The benefits of mutualism: a conceptual framework. Biological Review 70:427–457.CrossRefGoogle Scholar
Costa, J. T., McDonald, J. H., and Pierce, N. E.. 1996. The effect of ant association on the population genetics of the Australian butterfly, Jalmenus evagoras (Lepidoptera: Lycaenidae). Biological Journal of the Linnean Society 58:287–306.Google Scholar
Cushman, J. H. 1991. Host-plant mediation of insect mutualisms: variable outcomes in herbivore-ant interactions. Oikos 61:138–144.CrossRefGoogle Scholar
Cushman, J. H., and Addicott, J. F.. 1989. Intra- and interspecific competition for mutualists: ants as a limited and limiting resource for aphids. Oecologia 79:315–321.CrossRefGoogle ScholarPubMed
Cushman, J. H., and Whitham, T. G.. 1989. Conditional mutualism in a membracid-ant association: temporal, age specific, and density dependent effects. Ecology, 70:1040–1047.CrossRefGoogle Scholar
Cushman, J. H., and Whitham, T. G.. 1991. Competition mediating the outcome of a mutualism – protective services of ants as a limiting resource for membracids. American Naturalist 138: 851–865.CrossRefGoogle Scholar
Cushman, J. H., Lawton, J. H., and Manly, B. F. J.. 1993. Latitudinal patterns in European ant assemblages variation is species richness and body size. Oecologia 95:30–37.CrossRefGoogle ScholarPubMed
Cushman, J. H., Rashbrook, V. K., and Beattie, A. J.. 1994. Assessing benefits to both participants in a lycaenid-ant association. Ecology 75:1031–1041.CrossRefGoogle Scholar
Darwin, C. 1890. The Origin of Species, 6th edition. London: John Murray.Google Scholar
Davidson, D. W. 1997. The role of resource imbalances in the evolutionary ecology of tropical arboreal ants. Biological Journal of the Linnean Society 61:153–181.CrossRefGoogle Scholar
Davidson, D. W. 1998. Resource discovery versus resource domination in ants: a functional mechanism for breaking the trade-off. Ecological Entomology 23:484–490.CrossRefGoogle Scholar
Davidson, D. W. 2005. Ecological stoichiometry of ants in a New World rain forest. Oecologia 142:221–231.CrossRefGoogle Scholar
Davidson, D. W., Cook, S. C., and Snelling, R. R.. 2004. Liquid-feeding performances of ants (Formicidae): ecological and evolutionary implications. Oecologia 139:255–266.CrossRefGoogle ScholarPubMed
Davidson, D. W., Cook, S. C., Snelling, R. R., and Chua, T. H.. 2003. Explaining the abundance of ants in lowland tropical rainforest canopies. Science 300:969–972.CrossRefGoogle ScholarPubMed
Dean, A. M. 1983. A simple model of mutualism. American Naturalist 121:409–417.CrossRefGoogle Scholar
DeAngelis, D. L., and Waterhouse, J. C.. 1987. Equilibrium and nonequilibrium concepts in ecological models. Ecological Monographs 57: 1–21.CrossRefGoogle Scholar
Delabie, J. H. C. 2001. Trophobiosis between Formicidae and Hemiptera (Sternorrhyncha and Auchenorrhyncha): an overview. Neotropical Entomology 30:501–516.CrossRefGoogle Scholar
Del-Claro, K., and Oliveira, P. S.. 1993. Ant-homoptera interaction: do alternative sugar sources distract tending ants?Oikos 68: 202–206.CrossRefGoogle Scholar
Del-Claro, K., and Oliveira, P. S.. 2000. Conditional outcomes in a neotropical treehopper-ant association: temporal and species-specific variation in ant protection and homopteran fecundity. Oecologia 124:156–165.CrossRefGoogle Scholar
Denno, R. F. 1994. The evolution of dispersal polymorphism in insects: the influence of habitats, host plants and mates. Research in Population Ecology Kyoto 36:127–135.CrossRefGoogle Scholar
Denno, R. F., Gratton, C., Dobel, H., and Finke, D. L.. 2003. Predation risk affects relative strength of top-down and bottom-up impacts on insect herbivores. Ecology 84:1032–1044.CrossRefGoogle Scholar
Denno, R. F., Gratton, C., Peterson, M. A., Langellotto, G. A., Finke, D. L., and Huberty, A. F.. 2002. Bottom-up forces mediate natural-enemy impact in a phytophagous insect community. Ecology 83:1443–1458.CrossRefGoogle Scholar
Denno, R. F., Olmstead, K. L., and McCloud, E. S.. 1989. Reproductive cost of flight capability: a comparison of life-history traits in wing dimorphic planthoppers. Ecological Entomology 14:31–44.CrossRefGoogle Scholar
Denno, R. F., Peterson, M. A., Gratton, C., Cheng, J. A., Langellotto, G. A., Huberty, A. F., and Finke, D. L.. 2000. Feeding-induced changes in plant quality mediate interspecific competition between sap-feeding herbivores. Ecology 81:1814–1827.CrossRefGoogle Scholar
Denno, R. F., Roderick, G. K., Olmstead, K. L., and Dobel, H. G.. 1991. Density-related migration in planthoppers (Homoptera, Delphacidae): the role of habitat persistence. American Naturalist 138:1513–1541.CrossRefGoogle Scholar
DeVries, P. J. 1991a. Evolutionary and ecological patterns in myrmecophilous riodinid butterflies. In Ant-plant Interactions, ed. Huxley, C. R. and Cutler, D. F., pp. 143–156. Oxford: Oxford University Press.Google Scholar
DeVries, P. J. 1991b. Mutualism between Thisbe irenea butterflies and ants, and the role of ant ecology in the evolution of larval ant associations. Biological Journal of the Linnean Society 43:179–195.CrossRefGoogle Scholar
DeVries, P. J. 1997. The Butterflies of Costa Rica and their Natural History. vol. II, The Riodinidae. Princeton: Princeton University Press.Google Scholar
Diamond, J. M. 1978. Niche shifts and the rediscovery of interspecific competition. American Scientist 66:322–331Google Scholar
Dietrich, C. H., and Deitz, L. L.. 1993. Superfamily Membracoidea (Homoptera, Auchenorrhyncha). 2. Cladistic-Analysis and Conclusions. Systematic Entomology 18:297–311.CrossRefGoogle Scholar
Dixon, A. F. G. 1958. The escape response shown by certain aphids to the presence of the coccinellid Adalia decempunctata (L.). Transactions of the Royal Entomological Society of London 110:319–334.CrossRefGoogle Scholar
Dixon, A. F. G. 1975. Effect of population density and food quality on autumnal reproductive activity in the sycamore aphid, Drepanosiphum platanoides (Schr.). Journal of Animal Ecology 44:297–304.CrossRefGoogle Scholar
Dixon, A. F. G. 1984. Plant architectural complexity and alary polymorphism in tree-dwelling aphids. Ecological Entomology 9:117–118.CrossRefGoogle Scholar
Dixon, A. F. G. 1998. Aphid Ecology, 2nd edition. London: Chapman and Hall.Google Scholar
Dixon, A. F. G. 2000. Insect Predator-Prey Dynamics: Ladybird Beetles and Biological Control. Cambridge: Cambridge University Press.Google Scholar
Dixon, A. F. G. 2005. Insect Herbivore-Host Dynamics: Tree-Dwelling Aphids. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Dixon, A. F. G., and Agarwala, B. K.. 1999. Ladybird-induced life-history changes in aphids. Proceedings of the Royal Society of London Series B 266:1549–1553.CrossRefGoogle Scholar
Dixon, A. F. G., and P. Kindlmann. 1998. Generation time ratio and the effectiveness of ladybirds as classical biological control agents. In Pest Management – Future Challenges, ed. Zalucki, M. P., Drew, R. A. I., and White, G. G. pp. 314–320. Proceedings of the 6th Australasian Applied Entomology and Research Conference. Brisbane: University of Queensland.
Dixon, A. F. G., and McKay, S.. 1970. Aggregation in the sycamore aphid Drepanosiphum platanoides (Schr.) (Hemiptera: Aphididae) and its relevance to the regulation of population growth. Journal of Animal Ecology 39:439–454.CrossRefGoogle Scholar
Dixon, A. F. G., Burns, M. D., and Wangboonkong, S.. 1968. Migration in aphids: response to current adversity. Nature 220:1337–1338.CrossRefGoogle ScholarPubMed
Dixon, A. F. G., Horth, S., and Kindlmann, P.. 1993. Migration in insects: cost and strategies. Journal of Animal Ecology 62:182–190.CrossRefGoogle Scholar
Dixon, A. F. G., Kindlmann, P., Leps, J., and Holman, J.. 1987. Why there are so few species of aphids, especially in the tropics? American Naturalist 129:580–592.CrossRefGoogle Scholar
Doebeli, M., and Knowlton, N.. 1998. The evolution of interspecific mutualism. Proceedings of the National Academy of Sciences of the USA 95:8676–8680.CrossRefGoogle Scholar
Donovan, T., and Welden, C. W.. 2001. Spreadsheet Exercises in Ecology and Evolution. Sunderland, MA: Sinauer Associates.Google Scholar
Douglas, A. E. 1989. Mycetocyte symbiosis in insects. Biological Review 64:409–434.CrossRefGoogle ScholarPubMed
Douglas, A. E. 1998. Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annual Review of Entomology 43:17–37.CrossRefGoogle ScholarPubMed
Douglas, A. E. 2003. The nutritional physiology of aphids. Advances in Insect Physiology 31:73–140.CrossRefGoogle Scholar
Douglas, A. E., and Prosser, W. A.. 1992. Synthesis of the essential amino acid tryptophan in the pea aphid (Acyrthosiphon pisum) symbiosis. Journal of Insect Physiology 38:565–568.CrossRefGoogle Scholar
Douglas, A. E., Minto, L. B., and Wilkinson, T. L.. 2001. Quantifying nutrient production by the microbial symbionts in an aphid. Journal of Experimental Biology 204:349–358.Google Scholar
Dugatkin, L. A. 2002. Cooperation in animals: an evolutionary overview. Biology and Philosophy 17:459–476.CrossRefGoogle Scholar
Dugatkin, L. A. and Mesterton-Gibbons, M.. 1996. Cooperation among unrelated individuals: reciprocal altruism, by-product mutualism and group selection in fishes. BioSystems 37:19–30.CrossRefGoogle ScholarPubMed
Dugatkin, L. A., and Reeve, H. K.. 1994. Behavioral ecology and level of selection: dissolving the group selection controversy. Advances in the Study of Behaviour 23:101–133.CrossRefGoogle Scholar
Eastop, V. F. 1973. Deductions from the present day host plants of aphids and related insects. In Insect-plant Relationships, ed. Emden, H. F., pp. 157–178. 6th Symposium, Royal Entomological Society of London. Oxford: Blackwell.Google Scholar
Eastwood, R., and Fraser, A. M.. 1999. Associations between lycaenid butterflies and ants in Australia. Australian Ecology 24:503–537.CrossRefGoogle Scholar
Edson, J. 1985. The influence of predation and resource subdivision on the coexistence of goldenrod aphids. Ecology 66:1736–1743.CrossRefGoogle Scholar
Eisner, T. 1957. A comparative morphological study of the proventriculus of ants (Hymenoptera: Formicidae). Bulletin of the Museum of Comparative Zoology 116: 429–490.Google Scholar
Eliot, J. N. 1973. The higher classification of the Lycaenidae (Lepidoptera): a tentative arrangement. Bulletin of the British Museum of Natural History 28:371–505.CrossRefGoogle Scholar
Elmes, G. W., Thomas, J. A., Munguira, M. L., and Fiedler, K.. 2001. Larvae of lycaenid butterflies that parasitize ant colonies provide exceptions to normal insect growth rules. Biological Journal of the Linnean Society 73:259–278.CrossRefGoogle Scholar
El-Ziady, S., and Kennedy, J. S.. 1956. Beneficial effects of the common garden ant, Lasius niger L. on the black bean aphid, Aphis fabae Scopoli. Proceedings of the Royal Entomological Society of London A. 31:61–65.CrossRefGoogle Scholar
Engel, V., Fischer, M. K., Wäckers, F. L., and Völkl, W.. 2001. Interactions between extrafloral nectaries, aphids and ants: are there competition effects between plant and homopteran sugar sources?Oecologia 129: 577–584.CrossRefGoogle ScholarPubMed
Ewald, P. W. 1994. Evolution of Infectious Disease. Oxford: Oxford University Press.Google Scholar
Ewart, W. H., and Metcalf, R. L.. 1956. Preliminary studies of sugar and amino acids in the honeydew of five species of coccids feeding on citrus in California. Annals of the Entomological Society of America 49:441–447.CrossRefGoogle Scholar
Feener, D. H. Jr. 1981. Competition between ant species: outcome controlled by parasitic flies. Science 214:815–817.CrossRefGoogle ScholarPubMed
Feinsinger, P., Spears, E. E., and Poole, R. W.. 1981. A simple measure of niche breadth. Ecology 62:27–32.CrossRefGoogle Scholar
Fellers, J. H. 1987. Interference and exploitation in a guild of woodland ants. Ecology 68:1466–1478.CrossRefGoogle Scholar
Ferriere, R., Bronstein, J. L., Rinaldi, S., Law, R., and Gauduchon, M.. 2002. Cheating and the evolutionary stability of mutualisms. Proceedings of the Royal Entomological Society of London 269:773–780.CrossRefGoogle ScholarPubMed
Fiedler, K. 1991. Systematic, evolutionary, and ecological implications of myrmecophily within Lycaenidae (Insecta: Lepidoptera: Papilionoidea). Bonner Zoological Monograph 31:5–157.Google Scholar
Fiedler, K. 1994. Lycaenid butterflies and plants: is myrmecophily associated with amplified host plant diversity?Ecological Entomology 19: 79–82.CrossRefGoogle Scholar
Fiedler, K. 1995. Lycaenid butterflies and plants: is myrmecophily associated with particular host plant preferences?Ethology Ecology and Evolution 7: 107–132.CrossRefGoogle Scholar
Fiedler, K. 1996. Host-plant relationships of lycaenid butterflies: large-scale patterns, interactions with plant chemistry, and mutualism with ants. Entomologia Experimentalis et Applicata 80:259–267.CrossRefGoogle Scholar
Fiedler, K. 1997a. Geographical patterns in life-history traits of Lycaenidae butterflies – ecological and evolutionary implications. Zoology 100:336–347.Google Scholar
Fiedler, K. 1997b. Life-history patterns of myrmecophilous butterflies and other insects: their implications on tropical species diversity. In Tropical Biodiversity and Systematics, ed. Ulrich, H., pp. 71–92. Bonn: Zoologisches Forschungsinstitut und Museum Alexander Koenig.Google Scholar
Fiedler, K. 2001. Ants that associate with Lycaenidae butterfly larvae: diversity, ecology and biogeography. Diversity and Distributions 7:45–60.CrossRefGoogle Scholar
Fiedler, K., Holldobler, B., and Seufert, P.. 1996. Butterflies and ants: the communicative domain. Experientia 52:14–24.CrossRefGoogle Scholar
Fischer, M. K., and Shingleton, A. W.. 2001. Host plant and ants influence the honeydew sugar composition of aphids. Functional Ecology 15:544–550.CrossRefGoogle Scholar
Fischer, M. K., Hoffmann, K. H., and Völkl, W.. 2001. Competition for mutualists in an ant-homopteran interaction mediated by hierarchies of ant-attendance. Oikos 92:531–541.CrossRefGoogle Scholar
Fischer, R. C., Olzant, S. M., Wanek, W., and Mayer, V.. 2005. The fate of Corydalis cava elaiosomes within an ant colony of Myrmica rubra: elaiosomes are preferentially fed to larvae. Insectes Sociaux 52:55–62.CrossRefGoogle Scholar
Fisher, D. B., Wright, J. P., and Mittler, T. E.. 1984. Osmoregulation by the aphid Myzus persicae: a physiological role for honeydew oligosaccharides. Journal of Insect Physiology 30:387–393.CrossRefGoogle Scholar
Flanders, S. E. 1957. The complete interdependence of an ant and a coccid. Ecology 38:535–536.CrossRefGoogle Scholar
Flatt, T., and Weisser, W. W.. 2000. The effects of mutualistic ants on aphid life history traits. Ecology 81:3522–3529.CrossRefGoogle Scholar
Fowler, H. G. 1993. Differential recruitment in Camponotus rufipes (Hymenoptera: Formicidae) to protein and carbohydrate resources. Naturalia 18:9–13.Google Scholar
Fraser, A. M., Axen, A. H., and Pierce, N. E.. 2001. Assessing the quality of different ant species as partners of a myrmecophilous butterfly. Oecologia 129:452–460.CrossRefGoogle ScholarPubMed
Fraser, A. M., Tregenza, T., Wedell, N., Elgar, M. A., and Pierce, N. E.. 2002. Oviposition tests of ant preference in a myrmecophilous butterfly. Journal of Evolutionary Biology 15:861–870.CrossRefGoogle Scholar
Freitas, A. V. L., and Oliveira, P. S.. 1992. Biology and behaviour of the neotropical butterfly Eunica bechina (Nymphalidae) with special reference to larval defence against ant predation. Journal of Research on the Lepidoptera 31:1–11.Google Scholar
Freitas, A. V. L., and Oliveira, P. S.. 1996. Ants as selective agents on herbivore biology: effects on the behaviour of a non-myrmecophilous butterfly. Journal of Animal Ecology 65:205–210.CrossRefGoogle Scholar
Gaume, L., Matile-Ferrero, D., and McKey, D.. 2000. Colony formation and acquisition of coccoid trophobionts by Aphomomyrmex afer (Formicinae): co-dispersal of queens and phoretic mealybugs in an ant-plant-homopteran mutualism?Insectes Sociaux 47: 84–91.CrossRefGoogle Scholar
Gaume, L., McKey, D., and Terrin, S.. 1998. Ant-plant-homopteran mutualism: how the third partner affects the interaction between a plant-specialist ant and its myrmecophyte host. Proceedings of the Royal Society of London Series B 265:569–575.CrossRefGoogle Scholar
Gish, M., and Inbar, M.. 2006. Host location by apterous aphids after escape dropping from the plant. Journal of Insect Behavior 19: 143–153.CrossRefGoogle Scholar
Goidanich, A. 1956. Stomaphis quercus and ants. Bulletin of the Institite of Entomology of the University of Bologna 23:93–131.Google Scholar
Gonzales, W. L., Fuentes-Contreras, E., and Niemeyer, H. M.. 2002. Host plant and natural enemy impact on cereal aphid competition in a seasonal environment. Oikos 96:481–491.CrossRefGoogle Scholar
Goodchild, A. J. P. 1966. Evolution of the alimentary canal in the Hemiptera. Biological Reviews 41:97–140.CrossRefGoogle Scholar
Gösswald, K. 1938. Über den Einfluß von verschiedenen Temperaturen und Luftfeuchtigkeit auf die Lebensäusserungen der Ameisen. 1. Die Lebensdauer ökologisch verschiedener Ameisenarten unter dem Einfluß bestimmter Luftfeuchtigkeit und Temperatur. Zeitschrift für wissenschaftliche Zoologie (A):247–344.Google Scholar
Gösswald, K. 1941. Rassenstudien an der roten Waldameise Formica rufa L. auf systematischer, ökologischer, physiologischer und biologischer Grundlage. Zeitschrift für angewandte Entomologie 28:62–124.CrossRefGoogle Scholar
Gösswald, K. 1989a. Die Waldameise im Ökosystem Wald, Nutzen und Hege. Wiesbaden: Aula Verlag.Google Scholar
Gösswald, K. 1989b. Die Waldameise: Biologische Grundlagen, Ökologie und Verhalten. Wiesbaden: Aula Verlag.Google Scholar
Gotelli, N. J. 1996. Ant community structure: effects of predatory ant lions. Ecology 77:630–638.CrossRefGoogle Scholar
Gotelli, N. J., and Arnett, A. E.. 2000. Biogeographic effects of red fire ant invasion. Ecology Letters 3:257–261.CrossRefGoogle Scholar
Gotelli, N. J., and Ellison, A. M.. 2002. Assembly rules for New England ant assemblages. Oikos 99:591–599.CrossRefGoogle Scholar
Gould, S. J. 1988 Kropotkin was no crackpot. Natural History 7: 12–21.Google Scholar
Graham, M. H., and Dayton, P. K.. 2002. On the evolution of ecological ideas: paradigms and scientific progress. Ecology 83:1481–1489.CrossRefGoogle Scholar
Grassé, P.-P. 1951. Traité de Zoologie: Anatomie, Systematique, Biologie. Tome X, Fascicule II, Insectes Supérieurs et Hémiptéroïdes. Paris: Masson.Google Scholar
Greathead, D. J. 1990. Crawler behaviour and dispersal. In World Crop Pests. Armored Scale Insects: Their Biology, Natural Enemies and Control, ed. Rosen, D., pp. 305–308. Amsterdam: Elsevier.Google Scholar
Greene, C. M. 2003. Habitat selection reduces extinction of populations subject to Allee effects. Theoretical Population Biology 64:1–10.CrossRefGoogle ScholarPubMed
Greene, C. M., and Stamps, J. A.. 2001. Habitat selection at low population densities. Ecology 82:2091–2100.CrossRefGoogle Scholar
Gruppe, A., and Römer, P.. 1988. The lupin aphid (Macrosiphum albifrons Essig, 1911) (Hom, Aphididae) in West Germany: its occurrence, host plants and natural enemies. Journal of Applied Entomology 106:135–143.CrossRefGoogle Scholar
Gullan, P. 1997. Relationships with ants. In Soft Scale Insects: Their Biology, Natural Enemies and Control, ed. Ben-Dov, Y. and Hodgson, C. J., pp. 351–373. Amsterdam: Elsevier.Google Scholar
Gullan, P. J., and Kosztarab, M.. 1997. Adaptations in scale insects. Annual Review of Entomology 42:23–50.CrossRefGoogle ScholarPubMed
Gullan, P., and J. H. Martin. 2003. Sternorrhyncha (jumping plant lice, whiteflies, aphids, and scale insects). In Encyclopedia of Insects, ed. Resh, V. H. and Crade, R. T., pp. 1079–1089. Amsterdam: Elsevier Academic Press.Google Scholar
Hairston, G., Smith, F. E., and Slobodkin, L. B.. 1960. Community structure, population control, and competition. American Naturalist 64:421–425.CrossRefGoogle Scholar
Hajek, A. E., and Dahlsten, D. L.. 1986. Coexistence of three species of leaf-feeding aphids (Homoptera) on Betula pendula. Oecologia 68:380–386.CrossRefGoogle Scholar
Hale, B. K., Bale, J. S., Pritchard, J., Masters, G. J., and Brown, V. K.. 2003. Effects of host plant drought stress on the performance of the bird cherry-oat aphid, Rhopalosiphum padi (L.): a mechanistic analysis. Ecological Entomology 28:666–677.CrossRefGoogle Scholar
Hamilton, W. D., and May, R. M.. 1977. Dispersal in stable habitats. Nature 269:578–581.CrossRefGoogle Scholar
Hanks, L. M., and R. F. Denno. 1993. The role of demic adaptation in colonization and spread of scale insect populations. In Evolution of Insect Pests: Patterns of Variation, ed. Kim, K. C. and McPheron, B. A., pp. 393–411. New York: Wiley & Sons.Google Scholar
Hanski, I. 1998. Metapopulation Ecology. Oxford: Oxford University Press.Google Scholar
Hanski, I., and Gilpin, M. E.. 1997. Metapopulation Biology: Ecology, Genetics and Evolution. London: Academic Press.Google Scholar
Harmon, J. P., and Andow, D. A.. 2007. Behavioral mechanism underlying ants' density-dependent deterence of aphid-eating predators. Oikos 116: 1030–1036.Google Scholar
Hanski, I., and Woiwod, I. P.. 1993. Spatial synchrony in the dynamics of moth and aphid populations. Journal of Animal Ecology 62:656–668.CrossRefGoogle Scholar
Hay, M. E., Parker, J. D., Burkepile, D. E., Caudill, C. C., Wilson, A. E., Hallinan, Z. P., and Chequer, A. D.. 2004. Mutualism and aquatic community structure: the enemy of my enemy is my friend. Annual Review of Ecology, Evolution, and Systematics 35:175–197.CrossRefGoogle Scholar
Hayamizu, E. 1982. Comparative studies on aggregations among aphids in relation to population dynamics. 1. Colony formation and aggregation behavior of Brevicoryne brassicae L. and Myzus persicae (Sulzer) (Homoptera, Aphididae). Applied Entomology and Zoology 17:519–529.CrossRefGoogle Scholar
Heinsohn, R., and Packer, C.. 1995. Complex cooperative strategies in group-territorial African lions. Science 269:1260–1262.CrossRefGoogle ScholarPubMed
Heinze, J. 1995. Reproductive skew and genetic relatedness in Leptothorax ants. Proceedings of the Royal Society of London Series B 261:375–379.CrossRefGoogle Scholar
Heithaus, E. R., Culver, D. C., and Beattie, A. J.. 1980. Models of some ant-plant mutualisms. American Naturalist 16:347–361.CrossRefGoogle Scholar
Helms, K. R., and Vinson, S. B.. 2002. Widespread association of the invasive ant Solenopsis invicta with an invasive mealybug. Ecology 83:2425–2438.CrossRefGoogle Scholar
Hennig, W. 1969. Die Stammesgeschichte der Insekten. Frankfurt a. Main: Senkenberg, Naturforschende Gesellschaft.
Herre, E. A., Knowlton, N., Mueller, U. G., and Rehner, S. A.. 1999. The evolution of mutualisms: exploring the paths between conflict and cooperation. Trends in Ecology and Evolution 14:49–53.CrossRefGoogle ScholarPubMed
Hill, M. G., and Blackmore, P. J. M.. 1980. Interactions between ants and the coccid Icerya seychellarum on Aldabra Atoll. Oecologia 45:360–365.CrossRefGoogle ScholarPubMed
Hixon, M. A., Pacala, S. W., and Sandin, S. A.. 2002. Population regulation: historical context and contemporary challenges of open vs. closed systems. Ecology 83:1490–1508.CrossRefGoogle Scholar
Hochberg, M. E., Clarke, R. T., Elmes, G. W., and Thomas, J. A.. 1994. Population dynamic consequences of direct and indirect interactions involving a large blue butterfly and its plant and red ant hosts. Journal of Animal Ecology 63:375–391.CrossRefGoogle Scholar
Hochberg, M. E., Gomulkiewicz, R., Holt, R. D., and Thompson, J. N.. 2000. Weak sinks could cradle mutualistic symbioses – strong sources should harbour parasitic symbioses. Journal of Evolutionary Biology 13:213–222.CrossRefGoogle Scholar
Hoeksema, J. D., and Bruna, E. M.. 2000. Pursuing the big questions about interspecific mutualism: a review of theoretical approaches. Oecologia 125:321–330.CrossRefGoogle ScholarPubMed
Hoeksema, J. D., and Schwartz, M. W.. 2002. Expanding comparative-advantage biological market models: contingency of mutualism on partners' resource requirements and acquisition trade-offs. Proceedings of the Royal Entomological Society of London Series B. 270:913–990.CrossRefGoogle Scholar
Hol, W. H. G., and Van, J. A. Veen. 2002. Pyrrolizidine alkaloids from Senecio jacobaea affect fungal growth. Journal of Chemical Ecology 28:1763–1772.CrossRefGoogle ScholarPubMed
Hol, W. H. G., Vrieling, K., and Veen, J. A.. 2003. Nutrients decrease pyrrolizidine alkaloid concentrations in Senecio jacobaea. New Phytologist 158:175–181.CrossRefGoogle Scholar
Holland, J. N., DeAngelis, D. L., and Bronstein, J. L.. 2002. Population dynamics and mutualism: functional responses of benefits and costs. American Naturalist 159:231–244.CrossRefGoogle ScholarPubMed
Holland, J. N., J. H. Ness, A. Boyle, and J. L. Bronstein. 2005. Mutualisms as consumer-resource interactions. In Ecology of Predator-Prey Interactions ed. Barbosa, P. and Castellanos, I.. Oxford: Oxford University Press. pp. 17–33.
Hölldobler, B., and Wilson, E. O.. 1990. The Ants. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Holt, R. D. 1977. Predation, apparent competition, and structure of prey communities. Theoretical Population Biology 12:197–229.CrossRefGoogle ScholarPubMed
Holt, R. D. 2002. Food webs in space: on the interplay of dynamic instability and spatial processes. Ecological Research 17:261–273.CrossRefGoogle Scholar
Holt, R. D., and Lawton, J. H.. 1994. The ecological consequences of shared natural enemies. Annual Review of Ecology and Systematics 25:495–520.CrossRefGoogle Scholar
Holway, D. A., and Suarez, A. V.. 2004. Colony-structure variation and interspecific competitive ability in the invasive Argentine ant. Oecologia 138:216–222.CrossRefGoogle ScholarPubMed
Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D., and Case, T. J.. 2002a. The causes and consequences of ant invasions. Annual Review of Ecology and Systematics 33:181–233.CrossRefGoogle Scholar
Holway, D. A., Suarez, A. V., and Case, T. J.. 2002b. Role of abiotic factors in governing susceptibility to invasion: a test with argentine ants. Ecology 83:1610–1619.CrossRefGoogle Scholar
Honek, A. 1991. Environment stress, plant quality and abundance of cereal aphids (Hom., Aphididae) on winter wheat. Journal of Applied Entomology 112:65–70.CrossRefGoogle Scholar
Hopkins, G. W., and Dixon, A. F. G.. 1997. Enemy-free space and the feeding niche of an aphid. Ecological Entomology 22:271–274.CrossRefGoogle Scholar
Hopkins, G. W., and Thacker, J. I.. 1999. Ants and habitat specificity in aphids. Journal of Insect Conservation 3:25–31.CrossRefGoogle Scholar
Hopkins, G. W., Thacker, J. I., and Dixon, A. F. G.. 1998. Limits to the abundance of rare species: an experimental test with a tree aphid. Ecological Entomology 23:386–390.CrossRefGoogle Scholar
Howe, H. F. 1984. Constraints on the evolution of mutualism. American Naturalist 123:764–777.CrossRefGoogle Scholar
Hsiao, T. C. 1973. Plant responses to water stress. Annual Review of Plant Physiology 24:519–570.CrossRefGoogle Scholar
Hubbell, S. P. 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton: Princeton University Press.Google Scholar
Huberty, A. F., and Denno, R. F.. 2004. Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology 85:1383–1398.CrossRefGoogle Scholar
Hunter, M. D. 2002. Maternal effects and the population dynamics of insects on plants. Agricultural and Forest Entomology 4:1–9.CrossRefGoogle Scholar
Hunter, M. D., and Price, P. W.. 1998. Cycles in insect populations: delayed density dependence or exogenous driving variables?Ecological Entomology 23:216–222.CrossRefGoogle Scholar
Hunter, M. D., and Price, P. W.. 2000. Detecting cycles and delayed density dependence: a reply to Turchin and Berryman. Ecological Entomology 25:122–124.CrossRefGoogle Scholar
Huxley, T. H. 1888. The struggle for existence in human society. Nineteenth Century.
Inbar, M., Doostdar, H., and Mayer, R. T.. 2001. Suitability of stressed and vigorous plants to various insect herbivores. Oikos 94:228–235.CrossRefGoogle Scholar
Ingram, K. K. 2002a. Flexibility in nest density and social structure in invasive populations of the Argentine ant, Linepithema humile. Oecologia 133:492–500.CrossRefGoogle Scholar
Ingram, K. K. 2002b. Plasticity in queen number and social structure in the invasive Argentine ant (Linepithema humile). Evolution 56:2008–2016.CrossRefGoogle Scholar
Ives, A. R., Kareiva, P., and Perry, R.. 1993. Responses of a predator to variation in prey density at three hierarchical scales: lady beetles feeding on aphids. Ecology 74:1929–1938.CrossRefGoogle Scholar
Janzen, D. H. 1977. What are dandelions and aphids?American Naturalist 111: 586–589.CrossRefGoogle Scholar
Janzen, D. H. 1985. The natural history of mutualisms. In The Biology of Mutualism: Ecology and Evolution, ed. Boucher, D. H., pp. 40–99. New York: Oxford University Press.Google Scholar
Johnson, B. 1959. Ants and form reversal in aphids. Nature 184:740–741.CrossRefGoogle Scholar
Johnson, S. N., Douglas, A. E., Woodward, S., and Hartley, S. E.. 2003a. Microbial impacts on plant-herbivore interactions: the indirect effects of a birch pathogen on a birch aphid. Oecologia 134:388–396.CrossRefGoogle Scholar
Johnson, S. N., Elston, D. A., and Hartley, S. E.. 2003b. Influence of host plant heterogeneity on the distribution of a birch aphid. Ecological Entomology 28:533–541.CrossRefGoogle Scholar
Johnstone, R. A., and Bshary, R.. 2002. From parasitism to mutualism: partner control in asymmetric interactions. Ecology Letters 5:634–639.CrossRefGoogle Scholar
Jordano, D., Rodriguez, J., Thomas, C. D., and Haeger, J. F.. 1992. The distribution and density of a lycaenid butterfly in relation to Lasius ants. Oecologia 91:439–446.CrossRefGoogle ScholarPubMed
Jordano, D., and Thomas, C. D.. 1992. Specificity of an ant-lycaenid interaction. Oecologia 91:431–438.CrossRefGoogle ScholarPubMed
Kainulainen, P., Holopainen, J., Palomäki, V., and Holopainen, T.. 1996. Effects of nitrogen fertilization on secondary chemistry and ectomycorrhizal state of Scots pine seedlings and on growth of grey pine aphid. Journal of Chemical Ecology 22:617–636.CrossRefGoogle ScholarPubMed
Kaneko, S. 2002. Aphid-attending ants increase the number of emerging adults of the aphid's primary parasitoid and hyperparasitoids by repelling intraguild predators. Entomological Science 5:131–146.Google Scholar
Kaplan, I., and Eubanks, M. D.. 2002. Disruption of cotton aphid (Homoptera: Aphididae) – Natural enemy dynamics by red imported fire ants (Hymenoptera: Formicidae). Environmental Entomology 31:1175–1183.CrossRefGoogle Scholar
Kareiva, P. 1987. Habitat fragmentation and the stability of predator-prey interactions. Nature 326:388–390.CrossRefGoogle Scholar
Karsai, I., and Wenzel, J. W.. 1998. Productivity, individual-level and colony-level flexibility, and organization of work as consequences of colony size. Proceedings of the National Academy of Sciences 95:8665–8669.CrossRefGoogle ScholarPubMed
Kaspari, M., and Vargo, E. L.. 1995. Colony size as a buffer against seasonality – Bergmanns rule in social insects. American Naturalist 145:610–632.CrossRefGoogle Scholar
Kaspari, M., Alonso, L., and O'Donnell, S.. 2000a. Three energy variables predict ant abundance at a geographical scale. Proceedings of the Royal Society of London Series B 267:485–489.CrossRefGoogle Scholar
Kaspari, M., O'Donnell, S., and Kercher, J. R.. 2000b. Energy, density, and constraints to species richness: ant assemblages along a productivity gradient. American Naturalist 155:280–293.CrossRefGoogle Scholar
Katayama, N., and Suzuki, N.. 2002. Cost and benefit of ant-attendance for Aphis craccivora (Hemiptera: Aphididae) with reference to aphid colony size. Canadian Entomologist 134:241–249.CrossRefGoogle Scholar
Kay, A. 2004. The relative availabilities of complementary resources affect the feeding preferences of ant colonies. Behavioral Ecology 15:63–70.CrossRefGoogle Scholar
Keddy, P. 1990. Is mutualism really irrelevant to ecology?Bulletin of the Ecological Society of America 71:101–102.Google Scholar
Keeler, K. H. 1979. Distribution of ants with extrafloral nectaries and ants at two elevations in Jamaica. Biotropica 11:152–154.CrossRefGoogle Scholar
Keeler, K. H. 1981. A model of selection for facultative nonsymbiotic mutualism. American Naturalist 118:488–498.CrossRefGoogle Scholar
Keeler, K. H. 1985. Extrafloral nectaries on plants in communities without ants: Hawaii. Oikos 44:407–414.CrossRefGoogle Scholar
Keller, L., and Chapuisat, M.. 1999. Cooperation among selfish individuals in insect societies. BioScience 49:899–909.CrossRefGoogle Scholar
Keller, L., and Reeve, H. K.. 1994. Partitioning of reproduction in animal societies. Trends in Ecology and Evolution 9:98–102.CrossRefGoogle ScholarPubMed
Kennedy, J. S. and Booth, C. O. 1959. Responses of Aphis fabae Scop to water shortage in host plants in the field. Entomologia Experimentalis et Applicata 2:1–11.CrossRefGoogle Scholar
Kennedy, J. S., Lamb, K. P. and Booth, C. O.. 1958. Responses of Aphis fabae Scop. to water shortage in host plants in pots. Entomologia Experimentalis et Applicata 1: 274–279.CrossRefGoogle Scholar
Killingback, T., Doebeli, M., and Knowlton, N.. 1999. Variable investment, the Continuous Prisoner's Dilemma, and the origin of cooperation. Proceedings of the Royal Society of London Series B 266:1723–1728.CrossRefGoogle ScholarPubMed
Kindlmann, P. and Dixon, A. F. G.. 1999. Generation time ratios – determinants of prey abundance in insect predator–prey interactions. Biological Control 16:133–138.CrossRefGoogle Scholar
Kindlmann, P., Hulle, M., and Stadler, B.. 2007. Timing of dispersal: effects of ants on aphids. Oecologia 152:625–631.CrossRefGoogle ScholarPubMed
Kingsland, S. 1995. Modeling Nature: Episodes in the History of Population Ecology, 2nd edition. Chicago: University of Chicago Press.Google Scholar
Kiss, A. 1981. Melezitose, aphids and ants. Oikos 37:382.CrossRefGoogle Scholar
Kitching, R. L. 1981. Egg clustering and the southern hemisphere lycaenids: comments. American Naturalist 118:423–425.CrossRefGoogle Scholar
Kloft, W. J. 1959. Versuch einer Analyse der trophobiotischen Beziehungen von Ameisen zu Aphiden. Biologisches Zentralblatt 78:863–870.Google Scholar
Kneitel, J. M., and Chase, J. M.. 2004. Trade-offs in community ecology: linking spatial scales and species coexistence. Ecology Letters 7:69–80.CrossRefGoogle Scholar
Koptur, S. 1991. Extrafloral nectaries of herbs and trees: modeling the interaction with ants and parasitoids. In Ant-plant Interactions, ed. Huxley, C. R. and Cutler, D. F., pp. 213–230. Oxford: Oxford University Press.Google Scholar
Koricheva, J., Larsson, S., and Haukioja, E.. 1998. Insect performance on experimentally stressed woody plants: a meta-analysis. Annual Review of Entomology 43:195–216.CrossRefGoogle ScholarPubMed
Koteja, J. 1985. Essay on the prehistory of the scale insects (Homoptera, Coccinea). Annales Zoologici (Wars.) 38:461–504.Google Scholar
Kropotkin, P. A. 1902. Mutual Aid: A Factor of Evolution. London: William Heinemann. Also, 1998. London: Freedom Press.Google Scholar
Kruess, A., and Tscharntke, T.. 1994. Habitat fragmentation, species loss, and biological control. Science 264:1581–1584.CrossRefGoogle ScholarPubMed
Kundu, R., and Dixon, A. F. G.. 1995. Evolution of complex life cycles in aphids. Journal of Animal Ecology 64:245.CrossRefGoogle Scholar
Kunert, G., and Weisser, W. W.. 2003. The interplay between density- and trait mediated effects in predator-prey interactions: a case study in aphid wing polymorphism. Oecologia 135:304–312.CrossRefGoogle ScholarPubMed
Kunkel, H., W. J. Kloft, and A. Fossel. 1985. Die Honigtau-Erzeuger des Waldes. In Waldtracht und Waldhonig in der Imkerei, ed. Kloft, W. J. and Kunkel, H., pp. 48–265. Munich: Ehrenwirth.Google Scholar
Labandeira, C. C. 1997. Insect mouthparts: ascertaining the paleobiology of insect feeding strategies. Annual Review of Ecology and Systematics 28:153–193.CrossRefGoogle Scholar
Larsson, S. 1989. Stressful times for the plant-insect performance hypothesis. Oikos 56:277–283.CrossRefGoogle Scholar
Larsson, S., and Bjorkman, C.. 1993. Performance of chewing and phloem-feeding insects on stressed trees. Scandinavian Journal of Forest Research 8:550–559.CrossRefGoogle Scholar
Lees, A. D. 1967. The production of the apterous and alatae forms in the aphid Megoura viciae (Buckton), with special reference to the role of crowding. Journal of Insect Physiology 13:289–318.CrossRefGoogle Scholar
Leibold, M. A., Holyoak, M., Mouquet, N.et al. 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7:601–613.CrossRefGoogle Scholar
Leimar, O., and Axen, A. H.. 1993. Strategic behavior in an interspecific mutualism: interactions between lycaenid larvae and ants. Animal Behaviour 46:1177–1182.CrossRefGoogle Scholar
Levieux, J. 1977. La nutrition des fourmis tropicales – V. Eléments de synthèse. Les modes d'exploitation de la biocoenose. Insectes Sociaux 24:235–260.CrossRefGoogle Scholar
Levieux, J., and Louis, D.. 1975. La nutrition des fourmis tropicales – II. Comportement alimentaire et régime de Camponotus vividus (Smith) (Hymenoptera Formicidae). Insectes Sociaux 22:391–404.CrossRefGoogle Scholar
Levin, S. A. 1992. The problem of pattern and scale in ecology. Ecology 73:1943–1967.CrossRefGoogle Scholar
Levins, R., and Culver, D.. 1971. Regional coexistence of species and competition between rare species. Proceedings of the National Academy of Sciences 68:1246–1248.CrossRefGoogle ScholarPubMed
Lin, C. P., Danforth, B. N., and Wood, T. K.. 2004. Molecular phylogenetics and evolution of maternal care in Membracine treehoppers. Systematic Biology 53:400–421.CrossRefGoogle ScholarPubMed
Loreau, M. 1995. Consumers as maximizers of matter and energy flow in ecosystems. American Naturalist 145:22–42.CrossRefGoogle Scholar
Loreau, M., Mouquet, N., and Holt, R. D.. 2003. Meta-ecosystems: a theoretical framework for a spatial ecosystem ecology. Ecology Letters 6:673–679.CrossRefGoogle Scholar
Lotka, A. J. 1925. Elements of Physiological Biology. New York: Dover Publication (1956).Google Scholar
Mackauer, M., and Völkl, W.. 1993. Regulation of aphid populations by aphid wasps: does parasitoid foraging behaviour or hyperparasitism limit impact?Oecologia 94:339–350.CrossRefGoogle ScholarPubMed
Malicky, H. 1969. Versuch einer Analyse der ökologischen Beziehungen zwischen Lycaeniden (Lepidoptera) und Formiciden (Hymenoptera). Tijdschrift voor Entomologie 112:85–90.Google Scholar
Malicky, H. 1970. New aspects of the association between lycaenid larvae (Lycaenidae) and ants (Formicidae; Hymenoptera). Journal of the Lepidopterists' Society 24:190–202.Google Scholar
Maschwitz, U., Dumpert, K., and Tuck, K. R.. 1986. Ants feeding on anal exudate from tortricid larvae: a new type of trophobiosis. Journal of Natural History 20:1041–1050.CrossRefGoogle Scholar
Maschwitz, U., Fiala, B., and Dolling, W. R.. 1987. New trophobiotic symbioses of ants with South-East-Asian bugs. Journal of Natural History 21:1097–1107.CrossRefGoogle Scholar
Mattson, J. W. 1980. Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics 11:119–161.CrossRefGoogle Scholar
Mattson, J. W., and R. A. Haack. 1987. The role of drought stress in provoking outbreaks of phytophagous insects. In Insect Outbreaks: Ecological and Evolutionary Perspectives, ed. Barbosa, P. and Schultz, J., pp. 365–407. New York: Academic Press.Google Scholar
Maurer, B. A. 1999. Untangling Ecological Complexity: The Macroscopic Perspective. Chicago: University of Chicago Press.Google Scholar
May, R. M. 1972. Will a larger complex system be stable?Nature 238:413–417.CrossRefGoogle Scholar
May, R. M. 1973. Stability and Complexity in Model Ecosystems. Princeton: Princeton University Press.Google ScholarPubMed
May, R. M. and Seger, J. (1986) Ideas in ecology. American Scientist 74: 256–267.Google Scholar
MacArthur, R. H. 1972. Geographical Ecology. New York: Harper & Row.Google Scholar
MacArthur, R. H., and Wilson, O. E.. 1967. The Theory of Island Biogeography. Princeton: Princeton University Press.Google Scholar
McClure, M. S. 1980. Foliar nitrogen: a basis for host suitability for elongate hemlock scale, Fiorinia externa (Homoptera, Diaspididae). Ecology 61:72–79.CrossRefGoogle Scholar
McEvoy, P. B. 1979. Advantages and disadvantages to group living in treehoppers (Homoptera: Membracidae). Miscellaneous Publications of the Entomological Society of America 11:1–13.Google Scholar
McGlynn, T. P. 1999. The worldwide transfer of ants: geographical distribution and ecological invasions. Journal of Biogeography 26: 535–548.CrossRefGoogle Scholar
McIver, J. D., and Loomis, C.. 1993. A size-distance relation in Homoptera-tending thatch ants (Formica obscuripes, Formica planipilis). Insectes Sociaux 40:207–218.CrossRefGoogle Scholar
McKamey, S. H. 1998. Taxonomic catalogue of the Membracoidea (exclusive of leafhoppers): second supplement to Fascicle I: Membracidae of the general catalogue of the Hemiptera. Memoirs of the American Entomological Institute 60:1–377.Google Scholar
McKamey, S. H., and Deitz, L. L.. 1996. Generic revision of the new world tribe Hoplophorionini (Hemiptera: Membracidae: Membracinae). Systematic Entomology 21:295–342.CrossRefGoogle Scholar
Messina, F. J. 1981. Plant protection as a consequence of an ant-membracid mutualism: interactions on Goldenrod (Solidago sp.). Ecology 62: 1433–1440.CrossRefGoogle Scholar
Mesterton-Gibbons, M., and Dugatkin, L. A.. 1992. Cooperation among unrelated individuals: evolutionary factors. Quarterly Review of Biology 67:267–281.CrossRefGoogle Scholar
Miles, P. W., Aspinall, D., and Rosenberg, L.. 1982. Performance of the cabbage aphid, Brevicoryne brassicae (L), on water-stressed rape plants, in relation to changes in their chemical composition. Australian Journal of Zoology 30:337–345.CrossRefGoogle Scholar
Miller, D. R., and Kosztarab, M.. 1979. Recent advances in the study of scale insects. Annual Review of Entomology 24:1–27.CrossRefGoogle Scholar
Mittler, T. E. 1958. Studies on the feeding and nutrition of Tuberolachnus salignus (Gmelin) (Homoptera, Aphididae). 11. The nitrogen and sugar composition of ingested phloem sap and excreted honeydew. Journal of Experimental Biology. 35: 74–84.Google Scholar
Mole, S., and Zera, A. J.. 1993. Differential allocation of resources underlies the dispersal-reproduction trade-off in the wing-dimorphic cricket, Gryllus rubens. Oecologia 93:121–127.CrossRefGoogle ScholarPubMed
Mole, S., and Zera, A. J.. 1994. Differential resource consumption obviates a potential flight fecundity trade-off in the sand cricket (Gryllus firmus). Functional Ecology 8:573–580.CrossRefGoogle Scholar
Molyneux, R. J., Campbell, B. C., and Dreyer, D. L.. 1990. Honeydew analysis for detecting phloem transport of plant natural products: implications for host plant resistance to sap sucking insects. Journal of Chemical Ecology 16:1899–1909.CrossRefGoogle ScholarPubMed
Mondor, E. B., Roitberg, B. D., and Stadler, B.. 2002. Cornicle length in Macrosiphini aphids: a comparison of ecological traits. Ecological Entomology 27:758–762.CrossRefGoogle Scholar
Montllor, C. B. 1991. The influence of plant chemistry on aphid feeding behavior. In Insect Plant Interactions, ed. Bernays, E., pp. 125–173. Boston: CRC Press.Google Scholar
Mooney, K. A. and Tillberg, C. V.. 2005. Temporal and spatial variation to ant omnivory in pine forests. Ecology 86:1225–1235.CrossRefGoogle Scholar
Morales, M. A. 2000a. Mechanisms and density dependence of benefit in an ant-membracid mutualism. Ecology 81:482–489.Google Scholar
Morales, M. A. 2000b. Survivorship of an ant-tended membracid as a function of ant recruitment. Oikos 90:469–476.CrossRefGoogle Scholar
Morales, M. A. 2002. Ant-dependent oviposition in the membracid Publilia concava. Ecological Entomology 27:247–250.CrossRefGoogle Scholar
Moran, N. 1992. The evolution of aphid life cycles. Annual Review of Entomology 37:321–348.CrossRefGoogle Scholar
Morris, W. F., Bronstein, J. L., and Wilson, W. G.. 2003. Three-way coexistence in obligate mutualist-exploiter interactions: the potential role of competition. American Naturalist 161:860–875.CrossRefGoogle Scholar
Morrison, L. W. 2002. Island biogeography and metapopulation dynamics of Bahamian ants. Journal of Biogeography 29:387–394.CrossRefGoogle Scholar
Mouquet, N., and Loreau, M.. 2002. Coexistence in metacommunities: the regional similarity hypothesis. American Naturalist 159:420–426.CrossRefGoogle ScholarPubMed
Mouquet, N., and Loreau, M.. 2003. Community patterns in source-sink metacommunities. American Naturalist 162:544–557.CrossRefGoogle ScholarPubMed
Mousseau, T. A., and Dingle, H.. 1991. Maternal effects in insect life histories. Annual Review of Entomology 36:511–534.CrossRefGoogle Scholar
Mousseau, T. A., and Fox, C. W.. 1998. The adaptive significance of maternal effects. Trends in Ecology and Evolution 13:403–407.CrossRefGoogle ScholarPubMed
Mueller, U. G., Schultz, T. R., Currie, C. R., Adams, R. M. M., and Malloch, D.. 2001. The origin of the attine ant-fungus mutualism. Quarterly Review of Biology 76:169–197.CrossRefGoogle ScholarPubMed
Müller, C. B., and Godfray, H. C. J.. 1997. Apparent competition between two aphid species. Journal of Animal Ecology 66:57–64.CrossRefGoogle Scholar
Müller, C. B., and Godfray, H. C. J.. 1999. Predators and mutualists influence the exclusion of aphid species from natural communities. Oecologia 119:120–125.Google ScholarPubMed
Muller-Landau, H. C., Levin, S. A., and Keymer, J. E.. 2003. Theoretical perspectives on evolution of long-distance dispersal and the example of specialized pests. Ecology 84:1957–1967.CrossRefGoogle Scholar
Murdoch, W. W. 1994. Population regulation in theory and practice. Ecology 75:271–287.CrossRefGoogle Scholar
Murdoch, W. W., Briggs, C. J., and Nisbet, R. M.. 2003. Consumer-Resource Dynamics. Oxford: Princeton University Press.Google Scholar
Murray, B. G. 1999. Can the population regulation controversy be buried and forgotten?Oikos 84:148–152.CrossRefGoogle Scholar
Nee, S., and May, R. M.. 1992. Dynamics of metapopulations: habitat destruction and competitive coexistence. Journal of Animal Ecology 61:37–40.CrossRefGoogle Scholar
Neuhauser, C., and Fargione, J. E.. 2004. A mutualism-parasitism continuum model and its application to plant-mycorrhizae interactions. Ecological Modelling 177:337–352.CrossRefGoogle Scholar
Nice, C. C., Fordyce, J. A., Shapiro, A. M., and Ffrench-Constant, R.. 2002. Lack of evidence for reproductive isolation among ecologically specialised lycaenid butterflies. Ecological Entomology 27:702–712.CrossRefGoogle Scholar
Nicholson, A. J. 1933. The balance of animal populations. Journal of Animal Ecology 38:131–178.CrossRefGoogle Scholar
Nicholson, A. J., and Bailey, V. A.. 1935. The balance of animal populations. Proceedings of the Zoological Society of London 3:551–598.CrossRefGoogle Scholar
Nixon, G. E. J. 1951. The Association of Ants with Aphids and Coccids. London: Commonwealth Institute of Entomology.Google Scholar
Noe, R., and Hammerstein, P.. 1994. Biological markets: supply and demand determine the effect of partner choice in cooperation, mutualism and mating. Behavioral Ecology and Sociobiology 35:1–11.CrossRefGoogle Scholar
Noe, R., and Hammerstein, P.. 1995. Biological markets. Trends in Ecology and Evolution 10:336–339.CrossRefGoogle ScholarPubMed
Nonacs, P., and Calabi, P.. 1992. Competition and predation risk: their perception alone affects ant colony growth. Proceedings of the Royal Entomological Society of London Series B 249:95–99.CrossRefGoogle Scholar
Nonacs, P., and Dill, L. M.. 1990. Mortality risk vs. food quality trade-offs in a common currency: ant patch preferences. Ecology 71:1886–1892.CrossRefGoogle Scholar
Nonacs, P., and Dill, L. M.. 1991. Mortality risk versus food quality trade-offs in ants: patch use over time. Ecological Entomology 16:73–80.CrossRefGoogle Scholar
Nowak, M. A., and May, R. M.. 1992. Evolutionary games and spatial chaos. Nature 359:826–829.CrossRefGoogle Scholar
Nowak, M. A., Bonhoeffer, S., and May, R. M.. 1994. Spatial games and the maintenance of cooperation. Proceedings of the National Academy of Sciences 91:4877–4881.CrossRefGoogle ScholarPubMed
Nuismer, S. L., Gomulkiewicz, R., and Morgan, M. T.. 2003. Coevolution in temporally variable environments. American Naturalist 162:195–204.CrossRefGoogle ScholarPubMed
O'Dowd, D. J., and Catchpole, E. A.. 1983. Ants and extrafloral nectaries: no evidence for plant protection in Helichrysum spp. – ant interactions. Oecologia 59:191–200.CrossRefGoogle ScholarPubMed
Offenberg, J. 2000. Correlated evolution of the association between aphids and ants and the association between aphids and plants with extrafloral nectaries. Oikos 91:146–152.CrossRefGoogle Scholar
Offenberg, J. 2001. Balancing between mutualism and exploitation: the symbiotic interaction between Lasius ants and aphids. Behavioral Ecology and Sociobiology 49:304–310.CrossRefGoogle Scholar
Oliveira, P. S., and Freitas, A. V. L.. 2004. Ant-plant-herbivore interactions in the neotropical cerrado savanna. Naturwissenschaften 91:557–570.CrossRefGoogle ScholarPubMed
Olmstead, K. L., and Wood, T. K.. 1990. The effect of clutch size and ant-attendance on egg guarding by Entylia bactriana (Homoptera: Membracidae). Psyche 97:111–119.CrossRefGoogle Scholar
Osborn, F., and Jaffe, K.. 1997. Cooperation vs. exploitation: interactions between Lycaenid (Lepidoptera: Lycaenidae) larvae and ants. Journal of Research on the Lepidoptera 34:69–82.Google Scholar
Oster, G. F., and Wilson, E. O.. 1978. Caste and Ecology in the Social Insects. Princeton: Princton University Press.Google ScholarPubMed
Parvinen, K., Dieckmann, U., Gyllenberg, M., and Metz, J. A. J.. 2003. Evolution of dispersal in metapopulations with local density dependence and demographic stochasticity. Journal of Evolutionary Biology 16:143–153.CrossRefGoogle ScholarPubMed
Pemberton, R. W. 1998. The occurrence and abundance of plants with extrafloral nectaries, the basis for antiherbivore defensive mutualisms, along a latitudinal gradient in east Asia. Journal of Biogeography 25:661–668.CrossRefGoogle Scholar
Petersen, M. K., and Sandström, J. P.. 2001. Outcome of indirect competition between two aphid species mediated by responses in their common host plant. Functional Ecology 15:525–534.CrossRefGoogle Scholar
Peterson, M. A. 1995. Unpredictability in the facultative association between larvae of Euphilotes enoptes (Lepidoptera: Lycaenidae) and ants. Biological Journal of the Linnean Scociety. 55:209–223.Google Scholar
Pierce, N. E. 1985. Lycaenid butterflies and ants: selection for nitrogen-fixing and other protein rich food plants. American Naturalist 125:888–895.CrossRefGoogle Scholar
Pierce, N. E. 1987. The evolution of biogeography of associations between lycaenid butterflies and ants. In Oxford Surveys in Evolutionary Biology, vol. 4, ed. Harvey, P. H. and Partridge, L., pp. 89–116. Oxford: Oxford University Press.Google Scholar
Pierce, N. E., and Easteal, S.. 1986. The selective advantage of attendant ants for the larvae of a lycaenid butterfly, Glaucopsyche lygdamus. Journal of Animal Ecology 55:451–462.CrossRefGoogle Scholar
Pierce, N. E., and Elgar, M. A.. 1985. The influence of ants on host plant selection by Jalmenus evagoras, a myrmecophilous lycaenid butterfly. Behavioral Ecology and Sociobiology 16:209–222.CrossRefGoogle Scholar
Pierce, N. E., and Young, W. R.. 1986. Lycaenid butterflies and ants. Two-species stable equilibria in mutualistic, commensal, and parasitic interactions. American Naturalist 128:216–227.CrossRefGoogle Scholar
Pierce, N. E., Braby, M. F., Heath, A., Lohman, D. J., Mathew, J., Rand, D. B., and Travassos, M. A.. 2002. The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annual Review of Entomology 47:733–771.CrossRefGoogle Scholar
Pierce, N. E., Kitching, R. L., Buckley, R. C., Taylor, M. F. J., and Benbow, K. F.. 1987. The costs and benefits of cooperation between the Australian lycaenid butterfly, Jalmenus evagoras, and its attendant ants. Behavioral Ecology and Sociobiology 21:237–248.CrossRefGoogle Scholar
Plantegenest, M., and Kindlmann, P.. 1999. Evolutionarily stable strategies of migration in heterogeneous environments. Evolutionary Ecology 13:229–244.CrossRefGoogle Scholar
Poethke, H. J., and Hovestadt, T.. 2002. Evolution of density-and patch-size-dependent dispersal rates. Proceedings of the Royal Society of London Series B 269:637–645.CrossRefGoogle ScholarPubMed
Polis, G. A., Anderson, W. B., and Holt, R. D.. 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics 28:289–316.CrossRefGoogle Scholar
Ponsen, M. B. 1991. Structure of the digestive system of aphids. Wageningen Agricultural University Papers 91:1–61.Google Scholar
Pontin, A. J. 1978. The number and distribution of subterranean aphids and their exploitation by the ant Lasius flavus (Fabr.). Ecological Entomology 3:203–207.CrossRefGoogle Scholar
Porter, S. D., and Savignano, D. A.. 1990. Invasion of polygyne fire ants decimates native ants and disrupts arthropod community. Ecology 71:2095–2106.CrossRefGoogle Scholar
Portha, S., Deneubourg, J.-L., and Detrain, C.. 2002. Self-organized asymmetries in ant foraging: a functional response to food type and colony needs. Behavioural Ecology 13:776–781.CrossRefGoogle Scholar
Portha, S., Deneubourg, J. L., and Detrain, C.. 2004. How food type and brood influence foraging decisions of Lasius niger scouts. Animal Behaviour 68:115–122.CrossRefGoogle Scholar
Poveda, K., Steffan-Dewenter, I., Scheu, S., and Tscharntke, T.. 2005. Effects of decomposers and herbivores on plant performance and aboveground plant-insect interactions. Oikos 108:503–510.CrossRefGoogle Scholar
Power, M. E. 1992. Top-down and bottom-up forces in food webs: do plants have primacy?Ecology 73:733–746.CrossRefGoogle Scholar
Prado, E., and Tjallingii, W. F.. 1997. Effects of previous plant infestation on sieve element acceptance by two aphids. Entomologia Experimentalis et Applicata 82:189–200.CrossRefGoogle Scholar
Price, P. W. 1991. The plant vigor hypothesis and herbivore attack. Oikos 62:244–251.CrossRefGoogle Scholar
Price, P. W. 1997. Insect Ecology, 3rd edition. New York: Wiley & Sons.Google Scholar
Price, P. W. 2002. Resource-driven terrestrial interaction webs. Ecological Research 17:241–247.CrossRefGoogle Scholar
Prins, A. H., Vrieling, K., Klinkhamer, P. G. L., and Jong, T. J.. 1990. Flowering behaviour of Senecio jacobaea: effects of nutrient availability and size-dependent vernalization. Oikos 59:248–252.CrossRefGoogle Scholar
Punttila, P. 1996. Succession, forest fragmentation, and the distribution of wood ants. Oikos 75:291–298.CrossRefGoogle Scholar
Punttila, P., Haila, Y., Pajunen, T., and Tukia, H.. 1991. Colonization of clear-cut forests by ants in the Southern Finnish Taiga – a quantitative survey. Oikos 61:250–262.CrossRefGoogle Scholar
Rai, B., Freedman, H. I., and Addicott, J. F.. 1983. Analysis of three species models of mutualism in predator-prey and competitive systems. Mathematical Biosciences 65:13–50.CrossRefGoogle Scholar
Rankin, M. A., and Burchsted, J. C. A.. 1992. The cost of migration in insects. Annual Review of Entomology 37:533–559.CrossRefGoogle Scholar
Raven, J. A. 1983. Phytophages of xylem and phloem: a comparison of animal and plant sap-feeders. Advances in Ecological Research 13:136–234.Google Scholar
Remaudière, G., and Remaudière, M.. 1997. Catalogue of the World's Aphididae. Paris: INRA.Google Scholar
Renault, C. K., Buffa, L. M., and Delfino, M. A.. 2005. An aphid-ant interaction: effects on different trophic levels. Ecological Research 20:71–74.CrossRefGoogle Scholar
Retana, J., Cerda, X., Alsina, A., and Bosch, J.. 1988. Field observations of the ant Camponotus sylvaticus (Hym., Formicidae): diet and activity patterns. Acta Oecologica 9:101–109.Google Scholar
Rhodes, J. D., Croghan, P. C., and Dixon, A. F. G.. 1996. Uptake, excretion and respiration of sucrose and amino acids by the pea aphid Acyrthosiphon pisum. Journal of Experimental Biology 199:1269–1276.Google ScholarPubMed
Rhodes, J. D., Croghan, P. C., and Dixon, A. F. G.. 1997. Dietary sucrose and oligosaccharide synthesis in relation to osmoregulation in the pea aphid, Acyrthosiphon pisum. Physiological Entomology 22:373–379.CrossRefGoogle Scholar
Ricker, W. E. 1954. Stock and recruitment. Journal of the FisheriesBoard of Canada 11:559–623.Google Scholar
Rissing, S., Pollock, G., Higgins, M., Hagen, R. and Smith, D.. 1989. Foraging specialization without relatedness or dominance among co-founding ant queens. Nature 338: 420–422.CrossRefGoogle Scholar
Ritchie, M. G., Butlin, R. K., and Hewitt, G. M.. 1987. Causation, fitness effects and morphology of macropterism in Chorthippus parallelus (Orthoptera: Acrididae). Ecological Entomology 12:209–218.CrossRefGoogle Scholar
Robbins, R. K. 1991. Cost and evolution of a facultative mutualism between ants and lycaenid larvae (Lepidoptera). Oikos 62:363–369.CrossRefGoogle Scholar
Roche, R. K., and Wheeler, D. A.. 1997. Morphological specialization of the digestive tract of Zacryptocerus rohweri (Hymenoptera: Formicidae). Journal of Morphology 234:253–262.3.0.CO;2-A>CrossRefGoogle Scholar
Roff, D. A. 1984. The cost of being able to fly: a study of wing polymorphism in two species of crickets. Oecologia 63:30–37.CrossRefGoogle ScholarPubMed
Roff, D. A. 1986. The evolution of wing dimorphism in insects. Evolution 40:1009–1020.CrossRefGoogle ScholarPubMed
Roff, D. A. 1990. The evolution of flightlessness in insects. Ecological Monographs 60:389–421.CrossRefGoogle Scholar
Roff, D. A. 1994. Habitat persistence and the evolution of wing dimorphism in insects. American Naturalist 144:772–798.CrossRefGoogle Scholar
Rosengren, R., and Pamilo, P.. 1983. The evolution of polygyny and polydomy in mound building Formica ants. Acta Entomologica Fennici 42:65–77.Google Scholar
Rosengren, R., and L. Sundström. 1991. The interaction between red wood ants, Cinara aphids, and pines. A ghost of mutualism past? In Ant-plant Interactions, ed. Huxley, C. R. and Cutler, D. F., pp. 81–91. Oxford: Oxford University Press.Google Scholar
Rosenzweig, M. L. 1995. Species Diversity in Space and Time. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Ruf, C., Freese, A., and Fiedler, K.. 2003. Larval sociality in three species of central-place foraging lappet moths (Lepidoptera: Lasiocampidae): a comparative survey. Zoologischer Anzeiger 242:209–222.CrossRefGoogle Scholar
Sakata, H. 1994. How an ant decides to prey on or attend aphids. Researches on Population Ecology. 36:45–51.CrossRefGoogle Scholar
Sakata, H. 1995. Density-dependent predation of the ant Lasius niger (Hymenoptera: Formicidae) on two attended aphids Lachnus tropicalis and Myzocallis kuricola (Homoptera: Aphididae). Researches on Population Ecology 37:159–164.CrossRefGoogle Scholar
Sakata, H. 1999. Indirect interactions between two aphid species in relation to ant-attendance. Ecological Research 14:329–340.CrossRefGoogle Scholar
Sakata, H., and Hashimoto, Y.. 2000. Should aphids attract or repel ants? Effect of rival aphids and extrafloral nectaries on ant-aphid interactions. Population Ecology 42:171–178.CrossRefGoogle Scholar
Sandström, J. P., and Moran, N. A.. 2001. Amino acid budgets in three aphid species using the same host plant. Physiological Entomology 26:202–211.CrossRefGoogle Scholar
Sandström, J., Telang, A., and Moran, N. A.. 2000. Nutritional enhancement of host plants by aphids: a comparison of three aphid species on grasses. Journal of Insect Physiology 46:33–40.CrossRefGoogle ScholarPubMed
Scheu, S., Theenhaus, A., and Jones, T. H.. 1999. Links between the detritivore and the herbivore system: effects of earthworms and Collembola on plant growth and aphid development. Oecologia 119:541–551.CrossRefGoogle ScholarPubMed
Schmidt, M. H., Lauer, A., Purtauf, T., Thies, C., Schaefer, M., and Tscharntke, T.. 2003. Relative importance of predators and parasitoids for cereal aphid control. Proceedings of the Royal Society of London Series B-Biological Sciences 270:1905–1909.CrossRefGoogle ScholarPubMed
Schoener, T. W. 1986. Mechanistic approaches to community ecology: a new reductionism. American Zoologist 26:81–106.CrossRefGoogle Scholar
Seppa, P., Sundstrom, L., and Punttila, P.. 1995. Facultative polygyny and habitat succession in boreal ants. Biological Journal of the Linnean Society 56:533–551.CrossRefGoogle Scholar
Seufert, P., and Fiedler, K.. 1996a. The influence of ants on patterns of colonization and establishment within a set of coexisting lycaenid butterflies in a south-east Asian tropical rain forest. Oecologia 106:127–136.CrossRefGoogle Scholar
Seufert, P., and Fiedler, K.. 1996b. Life-history diversity and local co-existence of three closely related lycaenid butterflies (Lepidoptera: Lycaenidae) in Malaysian rainforests. Zoologischer Anzeiger 234:229–239.Google Scholar
Seufert, P., and Fiedler, K.. 1999. Myrmecophily and parasitoid infestation of south-east Asian lycaenid butterfly larvae. Ecotropica 5: 59–64.Google Scholar
Shenk, T. M., White, G. C., and Burnham, K. P.. 1998. Sampling-variance effects on detecting density dependence from temporal trends in natural populations. Ecological Monographs 68:445–463.CrossRefGoogle Scholar
Shields, O. 1989. World numbers of butterflies. Journal of the Lepidopterists' Society 43:178–183.Google Scholar
Shingleton, A. W., and Foster, W. A.. 2000. Ant tending influences soldier production in a social aphid. Proceedings of the Royal Society of London Series B 267:1863–1868.CrossRefGoogle Scholar
Shingleton, A. W., and Stern, D. L.. 2003. Molecular phylogenetic evidence for multiple gains or losses of ant mutualism within the aphid genus Chaitophorus. Molecular Phylogenetics and Evolution 26:26–35.CrossRefGoogle ScholarPubMed
Shingleton, A. W., Stern, D. L., and Foster, W. A.. 2005. The origin of a mutualism: a morphological trait promoting the evolution of ant-aphid mutualisms. Evolution 59:921–926.CrossRefGoogle ScholarPubMed
Skinner, G. J., and Whittaker, J. B.. 1981. An experimental investigation of interrelationships between the wood-ant (Formica rufa) and some tree canopy herbivores. Journal of Animal Ecology 50:313–326.CrossRefGoogle Scholar
Sloggett, J. J., and Majerus, M. E. N. 2000. Habitat preferences and diet in the predatory Coccinellidae: an evolutionary perspective. Biological Journal of the Linnean Society 70:63–88.CrossRefGoogle Scholar
Sloggett, J. J., and Majerus, M. E. N.. 2003. Adaptations of Coccinella magnifica, a myrmecophilous coccinellid to aggression by wood ants (Formica rufa group). II. Larval behaviour, and ladybird oviposition location. European Journal of Entomology 100:337–344.CrossRefGoogle Scholar
Sloggett, J. J., Wood, R. A., and Majerus, M.. 1998. Adaptation of Cocinella magnifica Redtenbacher, a myrmecophilous coccinellid, to aggression by wood ants (Formica rufa group). I. Adult behavioral adaptation, its ecological context and evolution. Journal of Insect Behaviour 11:889–904.CrossRefGoogle Scholar
Smiley, J. T., Atsatt, P. R., and Pierce, N. E.. 1988. Local distribution of the lycaenid butterfly, Jalmenus evagoras, in response to host ants and plants. Oecologia 76:416–422.CrossRefGoogle ScholarPubMed
Sober, E. and Wilson, D. S. 1998. Unto Others. Cambridge, MA: Harvard University Press.Google Scholar
Solbreck, C. 1986. Wing and flight muscle polymorphism in a lygaeid bug, Horvathiolus gibbicollis: determinants and life-history consequences. Ecological Entomology 11:435–444.CrossRefGoogle Scholar
Southwood, T. R. E. 1962. Migration of terrestrial arthropods in relation to habitat. Biological Reviews of the Cambridge Philosophical Society 37: 171–214.CrossRefGoogle Scholar
Stachowicz, J. J. 2001. Mutualism, facilitation, and the structure of ecological communities. BioScience 51:235–246.CrossRefGoogle Scholar
Stacy, P. B., V. A. Johnson, and M. L. Taper. 1997. Migration within metapopulations: the impact upon local population dynamics. In Metapopulation Biology, ed. Hanski, I. A. and Gilpin, M. E., pp. 267–291. San Diego: Academic Press.Google Scholar
Stadler, B. 1995. Adaptive allocation of resources and life-history trade-offs in aphids relative to plant quality. Oecologia 102:246–254.CrossRefGoogle ScholarPubMed
Stadler, B. 2002. Determinants of the size of aphid-parasitoid assemblages. Journal of Applied Entomology 126:258–264.CrossRefGoogle Scholar
Stadler, B. 2004. Wedged between bottom-up and top-down processes: aphids on tansy. Ecological Entomology 29:106–116.CrossRefGoogle Scholar
Stadler, B., and Dixon, A. F. G.. 1998a. Costs of ant-attendance for aphids. Journal of Animal Ecology 67:454–459.CrossRefGoogle Scholar
Stadler, B., and A. F. G. Dixon. 1998b. Why are obligate mutualistic interactions between aphids and ants so rare? In Aphids in Natural and Managed Ecosystems, ed. NietoNafria, J. M. and Dixon, A. F. G., pp. 271–278. Leon: University of Leon.Google Scholar
Stadler, B., and Dixon, A. F. G.. 2005. Ecology and evolution of aphid-ant interactions. Annual Review of Ecology, Evolution and Systematics 36:345–372.CrossRefGoogle Scholar
Stadler, B., Dixon, A. F. G., and Kindlmann, P.. 2002. Relative fitness of aphids: effects of plant quality and ants. Ecology Letters 5:216–222.CrossRefGoogle Scholar
Stadler, B., Fiedler, K., Kawecki, T. J., and Weisser, W. W.. 2001. Costs and benefits for phytophagous myrmecophiles: when ants are not always available. Oikos 92:467–478.CrossRefGoogle Scholar
Stadler, B., Kindlmann, P., Šmilauer, P., and Fiedler, K.. 2003. A comparative analysis of morphological and ecological characters of European aphids and lycaenids in relation to ant-attendance. Oecologia 135:422–430.CrossRefGoogle ScholarPubMed
Stadler, B., Michalzik, B., and Müller, T.. 1998. Linking aphid ecology with nutrient fluxes in a coniferous forest. Ecology 79:1514–1525.CrossRefGoogle Scholar
Stadler, B, Müller, T., and Orwig, D.. 2006a. The ecology of energy and nutrient fluxes in hemlock forest invaded by hemlock woolly adelgid. Ecology, 87: 1792–1804.CrossRefGoogle Scholar
Stadler, B., Schramm, A., and Kalbitz, K.. 2006b. Ant-mediated effects on spruce litter decomposition, solution chemistry, and microbial activity. Soil Biology Biochemistry 38:561–572.CrossRefGoogle Scholar
Stanton, M. L. 2003. Interacting guilds: moving beyond the pairwise perspective on mutualisms. American Naturalist 162:S10–S23.CrossRefGoogle ScholarPubMed
Stanton, M. L., Palmer, T. M., and Young, T. P.. 2002. Competition-colonization trade-offs in a guild of African Acacia ants. Ecological Monographs 72:347–363.Google Scholar
Stern, D. L., and Foster, W. A.. 1996. The evolution of soldiers in aphids. Biological Review 71:29–79.CrossRefGoogle ScholarPubMed
Stern, D. L., and W. A. Foster. 1997. The evolution of sociality in aphids: a clone's-eye view. In The Evolution of Social Behavior in Insects and Arachnids, ed. Choe, J. and Crespi, B., pp. 150–165. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stern, D. L., Aoki, S., and Kurosu, D. U.. 1995. The life-cycle and natural history of the tropical aphid Cerataphis fransseni (Homoptera, Aphididae, Hormaphidinae), with reference to the evolution of host alternation in aphids. Journal of Natural History 29:231–242.CrossRefGoogle Scholar
Stradling, D. J. 1987. Nutritional ecology of ants. In Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates, ed. Slansky, F. and Rodriguez, J. G., pp. 927–969. New York: Wiley-Interscience.Google Scholar
Strauss, S. Y. 1987. Direct and indirect effects of host-plant fertilization on an insect community. Ecology 68:1670–1678.CrossRefGoogle ScholarPubMed
Straw, N. A., and Green, G.. 2001. Interactions between green spruce aphid Elatobium abietinum (Walker) and Norway and Sitka spruce under high and low nutrient conditions. Agricultural and Forest Entomology 3:263–274.CrossRefGoogle Scholar
Sudd, J. H. 1983. The distribution of foraging wood-ants (Formica lugubris Zett) in relation to the distribution of aphids. Insectes Sociaux 30: 298–307.CrossRefGoogle Scholar
Sudd, J. H., and Sudd, M. E.. 1985. Seasonal changes in the response of wood-ants (Formica lugubris) to sucrose baits. Ecological Entomology 10:89–97.CrossRefGoogle Scholar
Szentesi, A., and Wink, M.. 1991. Fate of quinolizidine alkaloids through 3 trophic levels – Laburnum anagyroides (Leguminosae) and associated organisms. Journal of Chemical Ecology 17:1557–1573.CrossRefGoogle ScholarPubMed
Takada, H., and Hashimoto, Y.. 1985. Association of the root aphid parasitoids Aclitus sappaphis and Paralipsis eikoae (Hymenoptera, Aphidiidae) with the aphid-attending ants Pheidole fervida and Lasius niger (Hymenoptera, Formicidae). Kontyu, Tokyo 53:150–160.Google Scholar
Taylor, F. 1977. Foraging behaviour of ants: experiments with two species of myrmecine ants. Behavioral Ecology and Sociobiology 2:147–167.CrossRefGoogle Scholar
Taylor, R. W. 1978. Nothomyrmecia macrops: a living-fossil ant rediscovered. Science 201: 979–985.CrossRefGoogle ScholarPubMed
Telang, A., Sandstrom, J., Dyreson, E., and Moran, N. A.. 1999. Feeding damage by Diuraphis noxia results in a nutritionally enhanced phloem diet. Entomologia Experimentalis et Applicata 91:403–412.CrossRefGoogle Scholar
Thomas, J. A., Elmes, G. W., Clarke, R. T., Kim, K. G., Munguira, M. L., and Hochberg, M. E.. 1997. Field evidence and model predictions of butterfly-mediated apparent competition between gentian plants and red ants. Acta Oecologica-International Journal of Ecology 18:671–684.CrossRefGoogle Scholar
Thompson, J. N. 1994. The Coevolutionary Process. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Thompson, J. N. 1997. Evaluating the dynamics of coevolution among geographically structured populations. Ecology 78:1619–1623.CrossRefGoogle Scholar
Thompson, J. N. 1999. Specific hypotheses on the geographic mosaic of coevolution. American Naturalist 153:S1–S14.CrossRefGoogle Scholar
Thompson, J. N., and Cunningham, B. M.. 2002. Geographic structure and dynamics of coevolutionary selection. Nature 417:735–738.CrossRefGoogle ScholarPubMed
Thompson, W. R. 1924. La theory mathematique de l'action des parasites entomophages et le facteur du hassard. Annales Faculté des Sciences de Marseille 2:69–89.Google Scholar
Tilman, D. 1994. Competition and biodiversity in spatially structured habitats. Ecology 75:2–16.CrossRefGoogle Scholar
Tobin, J. E. 1991. A neotropical rainforest canopy, ant community: some ecological considerations, In Ant-plant Interactions, ed. Huxley, C. R. and Cutler, D. F., pp. 536–538. Oxford: Oxford University Press.Google Scholar
Tobin, J. E. 1993. Ants as primary consumers: diet and abundance in the Formicidae. In Nourishment and Evolution in Insect Societies, ed. Hunt, J. A. and Nalepa, C. A., pp. 279–307. Boulder, CO: Westview Press.Google Scholar
Todes, D. P. 1987. Darwin's Malthusian Metaphor and Russian evolutionary thought, 1859–1917. Isis 78: 537–551.CrossRefGoogle ScholarPubMed
Toft, S. 1995. Value of the aphid Rhopalosiphum padi as food for cereal spiders. Journal of Applied Ecology 32:552–560.CrossRefGoogle Scholar
Tremblay, E. 1989. Coccoidea endocytobiosis. In Insect Endocytobiosis: Morphology, Physiology, Genetics, Evolution, ed. Schwemmler, W. and Gassner, G., pp. 145–173. Boca Raton: CRC Press.CrossRef
Trivers, R. 1971. The evolution of reciprocal altruism. Quarterly Review of Biology 46:35–57.CrossRefGoogle Scholar
Tscharntke, T., and Brandl, R.. 2004. Plant-insect interactions in fragmented landscapes. Annual Review of Entomology 49:405–430.CrossRefGoogle ScholarPubMed
Tsutsui, N. D., and Suarez, A. V.. 2003. The colony structure and population biology of invasive ants. Conservation Biology 17:48–58.CrossRefGoogle Scholar
Turchin, P. 1999. Population regulation: a synthetic view. Oikos, 84: 153–159.CrossRefGoogle Scholar
Turchin, P. 2001. Does population ecology have general laws?Oikos 94:17–26.CrossRefGoogle Scholar
Turchin, P. 2003. Complex Population Dynamics. Princeton: Princeton University Press.Google Scholar
Turchin, P., and Berryman, A. A.. 2000. Detecting cycles and delayed density dependence: a comment on Hunter & Price (1998). Ecological Entomology 25:119–121.CrossRefGoogle Scholar
Vandermeer, J. H. and Goldberg, D. E.. 2003. Population Ecology. Princeton: Princeton University Press.Google Scholar
Ham, R., Kamerbeek, J., Palacios, C., et al. 2003. Reductive genome evolution in Buchnera aphidicola. Proceedings of the National Academy of Sciences 100:581–586.Google ScholarPubMed
Vepsalainen, K., and Savolainen, R.. 1990. The effect of interference by Formicine ants on the foraging of Myrmica. Journal of Animal Ecology 59:643–654.CrossRefGoogle Scholar
Vepsalainen, K., Savolainen, R., Tiainen, J., and Vilen, J.. 2000. Successional changes of ant assemblages: from virgin and ditched bogs to forests. Annales Zoologici Fennici 37:135–149.Google Scholar
Verhulst, P. F. 1838. Notices sur la loi que la population suit dans son croissement. Correspondance Mathématique et Physique 10:113–121.Google Scholar
Völkl, W. 1992. Aphids or their parasitoids: who actually benefits from ant-attendance?Journal of Animal Ecology 61:273–281.CrossRefGoogle Scholar
Völkl, W. 1995. Behavioral and morphological adaptations of the coccinellid, Platynaspis luteorubra for exploiting ant-attended resources (Coleoptera: Coccinellidae). Journal of Insect Behaviour 8:653–670.CrossRefGoogle Scholar
Völkl, W., and Vohland, K.. 1996. Wax covers in larvae of two Scymnus species: do they enhance coccinellid larval survival?Oecologia 107:498–503.CrossRefGoogle ScholarPubMed
Völkl, W., Woodring, J., Fischer, M., Lorenz, M. W., and Hoffmann, K. H.. 1999. Ant-aphid mutualisms: the impact of honeydew production and honeydew sugar composition on ant preferences. Oecologia 118:483–491.Google ScholarPubMed
Volterra, V. 1926. Fluctuation in the abundance of a species considered mathematically. Nature 118:558–560.CrossRefGoogle Scholar
Dohlen, C. D., and Moran, N. A.. 1995. Molecular phylogeny of the Homoptera: a paraphyletic taxon. Journal of Molecular Evolution 41:211–223.CrossRefGoogle Scholar
Vrieling, K., Smit, W. and Vandermeijden, E.. 1991. Tritrophic interactions between aphids (Aphis jacobaeae Schrank), ant species, Tyria jacobaeae L., and Senecio jacobaea L. lead to maintenance of genetic variation in pyrrolizidine alkaloid concentration. Oecologia, 86: 177–182.CrossRefGoogle Scholar
Wagner, D. 1993. Species-specific effects of tending ants on the development of lycaenid butterfly larvae. Oecologia 96:276–281.CrossRefGoogle ScholarPubMed
Wagner, D. L., and Liebherr, J. K.. 1992. Flightlessness in Insects. Trends in Ecology and Evolution 7:216–220.CrossRefGoogle ScholarPubMed
Waloff, N. 1983. Absence of wing polymorphism in the arboreal, phytophagous species of some taxa of temperate Hemiptera: an hypothesis. Ecological Entomology 8:229–232.CrossRefGoogle Scholar
Walters, K. F. A., and Dixon, A. F. G.. 1983. Migratory urge and reproductive investment in aphids: variation within clones. Oecologia 58:70–75.CrossRefGoogle ScholarPubMed
Ward, S. A., Leather, S. R., Pickup, J. and Harrington, R.. 1998. Mortality during dispersal and the cost of host-specificity in parasites: how many aphids find hosts?Journal of Animal Ecology 67:763–773.CrossRefGoogle Scholar
Wardle, D. A. 2002. Communities and Ecosystems: Linking the Aboveground and Belowground Components. Princeton: Princeton University Press.Google Scholar
Watt, A. D., and Dixon, A. F. G.. 1981. The role of cereal growth stages and crowding in the induction of alatae in Sitobion avenae and its consequences for population growth. Ecological Entomology 6:441–447.CrossRefGoogle Scholar
Way, M. J. 1963. Mutualism between ants and honeydew-producing Homoptera. Annual Review of Entomology 8:307–344.CrossRefGoogle Scholar
Weisser, W. W. 2000. Metapopulation dynamics in an aphid-parasitoid system. Entomologia Experimentalis et Applicata 97:83–92.CrossRefGoogle Scholar
Weisser, W. W., Braendle, C., and Minoretti, N.. 1999. Predator-induced morphological shift in the pea aphid. Proceedings of the Royal Society of London Series B 266:1175–1181.CrossRefGoogle Scholar
Wheeler, W. M. 1910. Ants: Their structure, Development and Behaviour. New York: Columbia University Press.Google Scholar
White, T. C. R. 1969. An index to measure weather-induced stress of trees associated with outbreaks of psyllids in Australia. Ecology 50:905–909.CrossRefGoogle Scholar
White, T. C. R. 1978. The importance of relative shortage of food in animal ecology. Oecologia 33:71–86.CrossRefGoogle ScholarPubMed
White, T. C. R. 1984. The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia 63:90–105.CrossRefGoogle ScholarPubMed
White, T. C. R. 2004. Limitation of populations by weather-driven changes in food: a challenge to density-dependent regulation. Oikos 105:664–666.CrossRefGoogle Scholar
Wiens, J. A. 1977. On competition and variable environments. American Scientist 65:590–597.Google Scholar
Wilkinson, T. L., Fukatsu, T., and Ishikawa, H.. 2003. Transmission of symbiotic bacteria Buchnera to parthenogenetic embryos in the aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea). Arthropod Structure and Development 32:241–245.CrossRefGoogle Scholar
Williams, G. C. 1966. Adaptation and Natural Selection. Princeton: Princeton University Press.Google Scholar
Wilson, D. S. 1975. Theory of group selection. Proceedings of the National Academy of Sciences 72:143–146.CrossRefGoogle ScholarPubMed
Wilson, D. S. 1983. The group selection controversy: history and current status. Annual Review of Ecology and Systematics 14:159–187.CrossRefGoogle Scholar
Wilson, D. S. 1992. Complex interactions in metacommunities, with implications for biodiversity and higher levels of selection. Ecology 73:1984–2000.CrossRefGoogle Scholar
Wilson, E. O. 1987. Causes of ecological success: the case of the ants. Journal of Animal Ecology 56:1–9.CrossRefGoogle Scholar
Wilson, E. O. 1990. Success and Dominance in Ecosystems: The Case of Social Insects. Nordbünte: Ecological Institute.Google Scholar
Wilson, E. O., and Hölldobler, B.. 2005. The rise of the ants: a phylogenetic and ecological explanation. Proceedings of the National Academy of Sciences 102:7411–7414.CrossRefGoogle ScholarPubMed
Wimp, G. M., and Whitham, T. G.. 2001. Biodiversity consequences of predation and host plant hybridization on an aphid-ant mutualism. Ecology 82:440–452.Google Scholar
Wink, M., and Römer, P.. 1986. Acquired toxicity: the advantages of specializing on alkaloid-rich lupins to Macrosiphon albifrons (Aphidae). Naturwissenschaften 73:210–212.CrossRefGoogle Scholar
Wink, M., and Witte, L.. 1991. Storage of quinolizidine alkaloids in Macrosiphum albifrons and Aphis genistae (Homoptera: Aphididae). Entomologia Generalis 15:237–254.CrossRefGoogle Scholar
Wolin, C. L. 1985. The population dynamics of mutualistic systems. In The Biology of Mutualism, ed. Boucher, D. H., pp. 248–269. New York: Oxford University Press.
Wolin, C. L., and Lawlor, L. R.. 1984. Models of facultative mutualism: density effects. American Naturalist 124:843–862.CrossRefGoogle Scholar
Wood, T. K. 1977. Role of parent females and attendant ants in the maturation of the treehopper, Entylia bactriana (Homoptera: Membracidae). Sociobiology 2:257–272.Google Scholar
Wood, T. K. 1982. Ant-attended nymphal aggregations in the Enchenopa binotata complex (Homoptera: Membracidae). Annals of the Entomological Society of America 75:649–653.CrossRefGoogle Scholar
Wood, T. K. 1993. Diversity in the new-world Membracidae. Annual Review of Entomology 38:409–435.CrossRefGoogle Scholar
Woodring, J., Wiedemann, R., Fischer, M. K., Hoffmann, K. H., and Volkl, W.. 2004. Honeydew amino acids in relation to sugars and their role in the establishment of ant-attendance hierarchy in eight species of aphids feeding on tansy (Tanacetum vulgare). Physiological Entomology 29:311–319.CrossRefGoogle Scholar
Wootton, J. T. 1994. The nature and consequences of indirect effects in ecological communities. Annual Review of Ecology and Systematics 25:443–466.CrossRefGoogle Scholar
Wright, D. H. 1989. A simple, stable model of mutualism incorporating handling time. American Naturalist 134:664–667.CrossRefGoogle Scholar
Wright, S. 1978. Evolution and Genetics of Populations. Chicago: University of Chicago Press.Google Scholar
Yamamura, N., Higashi, M., Behera, N., and Wakano, J. Y.. 2004. Evolution of mutualism through spatial effects. Journal of Theoretical Biology 226:421–428.CrossRefGoogle ScholarPubMed
Yao, I., and Akimoto, S.. 2001. Ant attendance changes the sugar composition of the honeydew of the drepanosiphid aphid Tuberculatus quercicola. Oecologia 128:36–43.CrossRefGoogle ScholarPubMed
Yao, I., and Akimoto, S.. 2002. Flexibility in the composition and concentration of amino acids in honeydew of the drepanosiphid aphid Tuberculatus quercicola. Ecological Entomology 27:745–752.CrossRefGoogle Scholar
Yao, I., Shibao, H., and Akimato, S.. 2000. Costs and benefits of ant-attendance to the drepanosiphid aphid Tuberculatus quercicola. Oikos 89:3–10.CrossRefGoogle Scholar
Yu, D. W. 2001. Parasites of mutualisms. Biological Journal of the Linnean Society 72:529–546.CrossRefGoogle Scholar
Yu, D. W., and Wilson, H. B.. 2001. The competition-colonization trade-off is dead; long live the competition-colonization trade-off. American Naturalist 158:49–63.Google ScholarPubMed
Yu, D. W., Wilson, H. B., and Pierce, N. E.. 2001. An empirical model of species coexistence in a spatially structured environment. Ecology 82:1761–1771.CrossRefGoogle Scholar
Zera, A. J., and Mole, S.. 1994. The physiological costs of flight capability in wing-dimorphic crickets. Researches on Population Ecology 36:151–156.CrossRefGoogle Scholar
Zera, A. J., Mole, S., and Rokke, K.. 1994. Lipid, carbohydrate and nitrogen-content of long-winged and short-winged Gryllus firmus – implications for the physiological cost of flight capability. Journal of Insect Physiology 40:1037–1044.CrossRefGoogle Scholar
Zhang, Z. B. 2003. Mutualism or cooperation among competitors promotes coexistence and competitive ability. Ecological Modelling 164:271–282.CrossRefGoogle Scholar
Zink, A. G. 2003. Quantifying the costs and benefits of parental care in female treehoppers. Behavioral Ecology 14:687–693.CrossRefGoogle Scholar
Zschokke, S., Dolt, C., Rusterholz, H. P., et al. 2000. Short-term responses of plants and invertebrates to experimental small-scale grassland fragmentation. Oecologia 125:559–572.CrossRefGoogle ScholarPubMed
Abbott, K. I., and Green, P.. 2007. Collapse of an ant–scale mutualism in a rainforest on Christmas Island. Oikos 116:1238–1246.Google Scholar
Abrams, P. A., and Matsuda, H.. 1996. Positive indirect effects between prey species that share predators. Ecology 77:610–616.CrossRefGoogle Scholar
Abrams, P. A., and Wilson, W. G.. 2004. Coexistence of competitors in metacommunities due to spatial variation in resource growth rates; does R∗ predict the outcome of competition?Ecology Letters 7:929–940.CrossRefGoogle Scholar
Abrams, P. A., Holt, R. D., and Roth, J. D.. 1998. Apparent competition or apparent mutualism? Shared predation when populations cycle. Ecology 79:201–212.CrossRefGoogle Scholar
Addicott, J. F. 1978a. Competition for mutualists – aphids and ants. Canadian Journal of Zoology 56:2093–2096.CrossRefGoogle Scholar
Addicott, J. F. 1978b. The population dynamics of aphids on fireweed: a comparison of local populations and metapopulations. Canadian Journal of Zoology 56:2554–2564.CrossRefGoogle Scholar
Addicott, J. F. 1979. A multispecies aphid-ant association: density dependence and species-specific effects. Canadian Journal of Zoology 57:558–569.CrossRefGoogle Scholar
Addicott, J. F. 1981. Stability properties of 2-species models of mutualism: simulation studies. Oecologia 49:42–49.CrossRefGoogle ScholarPubMed
Addicott, J. F., Aho, J. M., Antolin, M. F., Padilla, D. K., Richardson, J. S., and Soluk, D. A.. 1987. Ecological neighborhoods: scaling environmental patterns. Oikos 49:340–346.CrossRefGoogle Scholar
Agrawal, A. A., and Fordyce, J. A.. 2000. Induced indirect defence in a lycaenid-ant association: the regulation of a resource in a mutualism. Proceedings of the Royal Society of London Series B 267:1857–1861.CrossRefGoogle Scholar
Agrawal, A. A., Underwood, N., and Stinchcombe, J. R.. 2004. Intraspecific variation in the strength of density dependence in aphid populations. Ecological Entomology 29:521–526.CrossRefGoogle Scholar
Albrecht, M., and Gotelli, N. J.. 2001. Spatial and temporal niche partitioning in grassland ants. Oecologia 126:134–141.CrossRefGoogle ScholarPubMed
Allee, W. C. 1938. The Social Life of Animals. Boston: Beacon Press.CrossRefGoogle Scholar
Allee, W. C. 1949. Principles of Animal Ecology. Philadelphia: W. B. Saunders Co.Google Scholar
Amarasekare, P. 1998a. Allee effects in metapopulation dynamics. American Naturalist 152:298–302.CrossRefGoogle Scholar
Amarasekare, P. 1998b. Interactions between local dynamics and dispersal: insights from single species models. Theoretical Population Biology 53:44–59.CrossRefGoogle Scholar
Amarasekare, P. 2004. Spatial dynamics of mutualistic interactions. Journal of Animal Ecology 73:128–142.CrossRefGoogle Scholar
Andersen, M. 1991. An ant-aphid interaction: Formica fusca and Aphthargelia symphoricarpi on Mount St. Helens. American Midland Naturalist 125:29–36.CrossRefGoogle Scholar
Antolin, M. F., and Addicott, J. F.. 1991. Colonization, among shoot movement, and local population neighborhoods of two aphid species. Oikos 61:45–53.CrossRefGoogle Scholar
Aoki, S. 1978. Two pemphigids with first instar larvae attacking predatory intruders (Homoptera, Aphidoidea). New Entomologist 27:7–12.Google Scholar
Ashford, D. A., Smith, W. A., and Douglas, A. E.. 2000. Living on a high sugar diet: the fate of sucrose ingested by a phloem-feeding insect, the pea aphid Acyrthosiphon pisum. Journal of Insect Physiology 46:335–341.CrossRefGoogle ScholarPubMed
Atsatt, P. R. 1981. Lycaenid butterflies and ants: selection for enemy free space. American Naturalist 118:638–654.CrossRefGoogle Scholar
Aviles, L. 1999. Cooperation and non-linear dynamics: an ecological perspective on the evolution of sociality. Evolutionary Ecology Research 1:459–477.Google Scholar
Awmack, C. S., and Leather, S. R.. 2002. Host plant quality and fecundity in herbivorous insects. Annual Review of Entomology 47:817–844.CrossRefGoogle ScholarPubMed
Axelrod, R., and Hamilton, W. D.. 1981. The evolution of cooperation. Science 211:1390–1396.CrossRefGoogle ScholarPubMed
Axen, A. H. 2000. Variation in behavior of lycaenid larvae when attended by different ant species. Evolutionary Ecology 14:611–625.CrossRefGoogle Scholar
Axen, A. H., and Pierce, N. E.. 1998. Aggregation as a cost-reducing strategy for lycaenid larvae. Behavioral Ecology 9:109–115.CrossRefGoogle Scholar
Axen, A. H., Leimar, O., and Hoffman, V.. 1996. Signalling in a mutualistic interaction. Animal Behaviour 52:321–333.CrossRefGoogle Scholar
Azcarate, F. M., Arqueros, L., Sanchez, A. M., and Peco, B.. 2005. Seed and fruit selection by harvester ants, Messor barbarus, in Mediterranean grassland and scrubland. Functional Ecology 19:273–283.CrossRefGoogle Scholar
Bach, C. E. 1991. Direct and indirect interactions between ants (Pheidole megacephala), scales (Coccus viridis) and plants (Pluches indica). Oecologia 87:233–239.CrossRefGoogle Scholar
Bartlett, B. R. 1961. The influence of ants upon parasites, predators, and scale insects. Annals of the Entomological Society of America 54:543–551.CrossRefGoogle Scholar
Baylis, M., and Pierce, N. E.. 1991. The effect of host plant quality on the survival of larvae and oviposition by adults of an ant-tended lycaenid butterfly, Jalmenus evagoras. Ecological Entomology 16:1–9.CrossRefGoogle Scholar
Beattie, A. J. 1976. Plant dispersion, pollination and gene flow in Viola. Oecologica 25:291–300.CrossRefGoogle ScholarPubMed
Beattie, A. J. 1985. The Evolutionary Ecology of Ant-Plant Mutualisms. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Becerra, J. X. I., and Venable, D. L.. 1989. Extrafloral nectaries: a defense against ant-homoptera mutualisms?Oikos 55:276–280.CrossRefGoogle Scholar
Becerra, J. X., and Venable, D. L.. 1991. The role of ant-Homoptera mutualisms in the evolution of extrafloral nectaries. Oikos 60:105–106.CrossRefGoogle Scholar
Beckerman, A., Benton, T. G., Ranta, E., Kaitala, V., and Lundberg, P.. 2002. Population dynamic consequences of delayed life-history effects. Trends in Ecology and Evolution 17:263–269.CrossRefGoogle Scholar
Bell, G. 2001. Neutral macroecology. Science 293:2413–2418.CrossRefGoogle ScholarPubMed
Bentley, B. L. 1976. Plants bearing extrafloral nectaries and the associated ant community: interhabitat differences in the reduction of herbivore damage. Ecology 57:815–820.CrossRefGoogle Scholar
Bentley, B. L. 1977. Extrafloral nectaries and protection by pugnacious bodyguards. Annual Review of Ecology and Systematics 8:407–427.CrossRefGoogle Scholar
Bergeson, E., and Messina, F. J.. 1997. Resource- versus enemy-mediated interactions between cereal aphids (Homoptera: Aphididae) on a common host plant. Annals of the Entomological Society of America 90:425–432.CrossRefGoogle Scholar
Bergeson, E., and Messina, F. J.. 1998. Effect of a co-occurring aphid on the susceptibility of the Russian wheat aphid to lacewing predators. Entomologia Experimentalis et Applicata 87:103–108.CrossRefGoogle Scholar
Berryman, A. A., Lima, M., and Hawkins, B. A.. 2002. Population regulation, emergent properties, and a requiem for density dependence. Oikos 100:600–636.CrossRefGoogle Scholar
Bhatkar, A. P., and Kloft, W. J.. 1977. Evidence, using radioactive phosphorus, of interspecific food exchange in ants. Nature 265: 140–142.CrossRefGoogle Scholar
Billick, I., and Tonkel, K.. 2003. The relative importance of spatial vs. temporal variability in generating a conditional mutualism. Ecology 84:289–295.CrossRefGoogle Scholar
Billick, I., Weidmann, M., and Reithel, J.. 2001. The relationship between ant-tending and maternal care in the treehopper Publilia modesta. Behavioral Ecology and Sociobiology 51:41–46.Google Scholar
Bishop, D. B., and Bristow, C. M.. 2001. Effect of Allegheny mound ant (Hymenoptera : Formicidae) presence on homopteran and predator populations in Michigan jack pine forests. Annals of the Entomological Society of America 94:33–40.CrossRefGoogle Scholar
Blackman, R. L. and Eastop, V. F.. 1994. Aphids on the World's Trees. Wallingford: CAB International.Google Scholar
Blossey, B., and Hunt-Joshi, T. R.. 2003. Belowground herbivory by insects: influence on plants and aboveground herbivores. Annual Review of Entomology 48:521–547.CrossRefGoogle ScholarPubMed
Blüthgen, N., and Fiedler, K.. 2004a. Competition for composition: lessons from nectar-feeding ant communities. Ecology 85:1479–1485.CrossRefGoogle Scholar
Blüthgen, N., and Fiedler, K.. 2004b. Preferences for sugars and amino acids and their conditionality in a diverse nectar-feeding ant community. Journal of Animal Ecology 73:155–166.CrossRefGoogle Scholar
Blüthgen, N., Gebauer, G., and Fiedler, K.. 2003. Disentangling a rainforest food web using stable isotopes: dietary diversity in a species-rich ant community. Oecologia 137:426–435.CrossRefGoogle Scholar
Blüthgen, N., Verhaagh, M., Goitia, W., Jaffe, K., Morawetz, W., and Barthlott, W.. 2000. How plants shape the ant community in the Amazonian rainforest canopy: the key role of extrafloral nectaries and homopteran honeydew. Oecologia 125:229–240.CrossRefGoogle ScholarPubMed
Bolton, B. 1995. A New General Catalogue of the Ants of the World. Cambridge, MA: Harvard University Press.Google Scholar
Bonabeau, E., Theraulaz, G., and Deneubourg, J. L.. 1999. Dominance orders in animal societies: the self-organization hypothesis revisited. Bulletin of Mathematical Biology 61:727–757.CrossRefGoogle ScholarPubMed
Bonabeau, E., Theraulaz, G., Deneubourg, J. L., Aron, S., and Camazine, S.. 1997. Self-organization in social insects. Trends in Ecology and Evolution 12:188–193.CrossRefGoogle ScholarPubMed
Bonkowski, M., Geoghegan, I. E., Birch, A. N. E., and Griffiths, B. S.. 2001. Effects of soil decomposer invertebrates (protozoa and earthworms) on an above-ground phytophagous insect (cereal aphid) mediated through changes in the host plant. Oikos 95:441–450.CrossRefGoogle Scholar
Bonsall, M. B., and Hassell, M. P.. 1997. Apparent competition structures ecological assemblages. Nature 388:371–373.CrossRefGoogle Scholar
Bonsall, M. B., Jansen, V. A. A., and Hassell, M. P.. 2004. Life history trade-offs assemble ecological guilds. Science 306:111–114.CrossRefGoogle ScholarPubMed
Boucher, D. H. 1985. The Biology of Mutualism. New York: Oxford University Press.Google Scholar
Boursaux-Eude, C., and Gross, R.. 2000. New insights into symbiotic associations between ants and bacteria. Research in Microbiology 151:513–519.CrossRefGoogle ScholarPubMed
Bradley, G. A., and Hinks, J. D.. 1968. Ants aphids and jack pine in Manitoba. Canadian Entomologist 100:40–50.CrossRefGoogle Scholar
Braschler, B., and Baur, B.. 2003. Effects of experimental small-scale grassland fragmentation on spatial distribution, density, and persistence of ant nests. Ecological Entomology 28:651–658.CrossRefGoogle Scholar
Braschler, B., and Baur, B.. 2005. Experimental small-scale grassland fragmentation alters competitive interactions among ant species. Oecologia 143:291–300.CrossRefGoogle ScholarPubMed
Braschler, B., Lampel, G., and Baur, B.. 2003. Experimental small-scale grassland fragmentation alters aphid population dynamics. Oikos 100:581–591.CrossRefGoogle Scholar
Braschler, B., Zschokke, S., Dolt, C., Thommen, G. H., Oggier, P., and Baur, B.. 2004. Grain-dependent relationships between plant productivity and invertebrate species richness and biomass in calcareous grasslands. Basic and Applied Ecology 5:15–24.CrossRefGoogle Scholar
Brauchli, K., Killingback, T., and Doebeli, M.. 1999. Evolution of cooperation in spatially structured populations. Journal of Theoretical Biology 200:405–417.CrossRefGoogle ScholarPubMed
Breton, L. M., and Addicott, J. F.. 1992a. Density-dependent mutualism in an aphid-ant interaction. Ecology 73:2175–2180.CrossRefGoogle Scholar
Breton, L. M., and Addicott, J. F.. 1992b. Does host plant quality mediate aphid-ant mutualism?Oikos 63:253–259.CrossRefGoogle Scholar
Bristow, C. M. 1984. Differential benefits from ant-attendance to two species of Homoptera on New York ironweed. Journal of Animal Ecology 53:715–726.CrossRefGoogle Scholar
Bristow, C. M. 1991. Why are so few aphids ant-tended? In Ant-plant Interactions, ed. Huxley, C. R. and Cutler, D. F., pp. 104–119. Oxford: Oxford University Press.Google Scholar
Brodbeck, B. V., and D. Strong. 1987. Amino acid nutrition of herbivorous insects and stress to host plants. In Insect Outbreaks: Ecological and Evolutionary Perspectives, ed. Barbosa, P. and Schultz, J., pp. 347–364. New York: Academic Press.Google Scholar
Bronstein, J. L. 1988. Mutualism, antagonism, and the fig-pollinator interaction. Ecology 69:1298–1302.CrossRefGoogle Scholar
Bronstein, J. L. 1994a. Conditional outcomes in mutualistic interactions. Trends in Ecology and Evolution 9:214–217.CrossRefGoogle Scholar
Bronstein, J. L. 1994b. Our current understanding of mutualism. Quarterly Review of Biology 69:31–51.CrossRefGoogle Scholar
Bronstein, J. L. 2001. The exploitation of mutualism. Ecology Letters 4:277–287.CrossRefGoogle Scholar
Brown, J. L. 1983. Cooperation: a biologist's dilemma. Advances in the Study of Behaviour 13:1–37.CrossRefGoogle Scholar
Brown, M. J. F., and Gordon, D. M.. 2000. How resources and encounters affect the distribution of foraging activity in a seed-harvesting ant. Behavioral Ecology and Sociobiology 47:195–203.CrossRefGoogle Scholar
Buckley, R. 1987. Ant-plant-homopteran interactions. Advances in Ecological Research 16:53–85.CrossRefGoogle Scholar
Buckley, R., and Gullan, P.. 1991. More aggressive ant species (Hymenoptera, Formicidae) provide better protection for soft scales and mealybugs (Homoptera, Coccidae, Pseudococcidae). Biotropica 23:282–286.CrossRefGoogle Scholar
Cappuccino, N. 1987. Comparative population dynamics of two goldenrod aphids: spatial patterns and temporal constancy. Ecology 68:1634–1646.CrossRefGoogle ScholarPubMed
Cappuccino, N. 1988. Spatial patterns of goldenrod aphids and the response of enemies to patch density. Oecologia 76:607–610.CrossRefGoogle ScholarPubMed
Carroll, C. R., and Janzen, D. H.. 1973. Ecology of foraging by ants. Annual Review of Ecology and Systematics 4:231–257.CrossRefGoogle Scholar
Choe, D.-H. and Rust, M. K.. 2006. Ants learn the association between homopteran cuticular chemistry and honeydew. Chemoecology 16: 175–178.CrossRefGoogle Scholar
Cocroft, R. B. 1996. Insect vibrational defence signals. Nature 382:679–680.CrossRefGoogle Scholar
Cocroft, R. B. 1999. Parent-offspring communication in response to predators in a subsocial treehopper (Hemiptera : Membracidae : Umbonia crassicornis). Ethology 105:553–568.Google Scholar
Cocroft, R. B. 2002. Antipredator defense as a limited resource: unequal predation risk in broods of an insect with maternal care. Behavioral Ecology 13:125–133.CrossRefGoogle Scholar
Cocroft, R. B., and Rodriguez, R. L.. 2005. The behavioral ecology of insect vibrational communication. BioScience 55:323–334.CrossRefGoogle Scholar
Collins, C. M., and Leather, S. R.. 2002. Ant-mediated dispersal of the black willow aphid Pterocomma salicis L.; does the ant Lasius niger L. judge aphid-host quality?Ecological Entomology 27:238–241.CrossRefGoogle Scholar
Connor, R. C. 1986. Pseudo reciprocity: investing in mutualism. Animal Behaviour 34:1562–1566.CrossRefGoogle Scholar
Connor, R. C. 1995. The benefits of mutualism: a conceptual framework. Biological Review 70:427–457.CrossRefGoogle Scholar
Costa, J. T., McDonald, J. H., and Pierce, N. E.. 1996. The effect of ant association on the population genetics of the Australian butterfly, Jalmenus evagoras (Lepidoptera: Lycaenidae). Biological Journal of the Linnean Society 58:287–306.Google Scholar
Cushman, J. H. 1991. Host-plant mediation of insect mutualisms: variable outcomes in herbivore-ant interactions. Oikos 61:138–144.CrossRefGoogle Scholar
Cushman, J. H., and Addicott, J. F.. 1989. Intra- and interspecific competition for mutualists: ants as a limited and limiting resource for aphids. Oecologia 79:315–321.CrossRefGoogle ScholarPubMed
Cushman, J. H., and Whitham, T. G.. 1989. Conditional mutualism in a membracid-ant association: temporal, age specific, and density dependent effects. Ecology, 70:1040–1047.CrossRefGoogle Scholar
Cushman, J. H., and Whitham, T. G.. 1991. Competition mediating the outcome of a mutualism – protective services of ants as a limiting resource for membracids. American Naturalist 138: 851–865.CrossRefGoogle Scholar
Cushman, J. H., Lawton, J. H., and Manly, B. F. J.. 1993. Latitudinal patterns in European ant assemblages variation is species richness and body size. Oecologia 95:30–37.CrossRefGoogle ScholarPubMed
Cushman, J. H., Rashbrook, V. K., and Beattie, A. J.. 1994. Assessing benefits to both participants in a lycaenid-ant association. Ecology 75:1031–1041.CrossRefGoogle Scholar
Darwin, C. 1890. The Origin of Species, 6th edition. London: John Murray.Google Scholar
Davidson, D. W. 1997. The role of resource imbalances in the evolutionary ecology of tropical arboreal ants. Biological Journal of the Linnean Society 61:153–181.CrossRefGoogle Scholar
Davidson, D. W. 1998. Resource discovery versus resource domination in ants: a functional mechanism for breaking the trade-off. Ecological Entomology 23:484–490.CrossRefGoogle Scholar
Davidson, D. W. 2005. Ecological stoichiometry of ants in a New World rain forest. Oecologia 142:221–231.CrossRefGoogle Scholar
Davidson, D. W., Cook, S. C., and Snelling, R. R.. 2004. Liquid-feeding performances of ants (Formicidae): ecological and evolutionary implications. Oecologia 139:255–266.CrossRefGoogle ScholarPubMed
Davidson, D. W., Cook, S. C., Snelling, R. R., and Chua, T. H.. 2003. Explaining the abundance of ants in lowland tropical rainforest canopies. Science 300:969–972.CrossRefGoogle ScholarPubMed
Dean, A. M. 1983. A simple model of mutualism. American Naturalist 121:409–417.CrossRefGoogle Scholar
DeAngelis, D. L., and Waterhouse, J. C.. 1987. Equilibrium and nonequilibrium concepts in ecological models. Ecological Monographs 57: 1–21.CrossRefGoogle Scholar
Delabie, J. H. C. 2001. Trophobiosis between Formicidae and Hemiptera (Sternorrhyncha and Auchenorrhyncha): an overview. Neotropical Entomology 30:501–516.CrossRefGoogle Scholar
Del-Claro, K., and Oliveira, P. S.. 1993. Ant-homoptera interaction: do alternative sugar sources distract tending ants?Oikos 68: 202–206.CrossRefGoogle Scholar
Del-Claro, K., and Oliveira, P. S.. 2000. Conditional outcomes in a neotropical treehopper-ant association: temporal and species-specific variation in ant protection and homopteran fecundity. Oecologia 124:156–165.CrossRefGoogle Scholar
Denno, R. F. 1994. The evolution of dispersal polymorphism in insects: the influence of habitats, host plants and mates. Research in Population Ecology Kyoto 36:127–135.CrossRefGoogle Scholar
Denno, R. F., Gratton, C., Dobel, H., and Finke, D. L.. 2003. Predation risk affects relative strength of top-down and bottom-up impacts on insect herbivores. Ecology 84:1032–1044.CrossRefGoogle Scholar
Denno, R. F., Gratton, C., Peterson, M. A., Langellotto, G. A., Finke, D. L., and Huberty, A. F.. 2002. Bottom-up forces mediate natural-enemy impact in a phytophagous insect community. Ecology 83:1443–1458.CrossRefGoogle Scholar
Denno, R. F., Olmstead, K. L., and McCloud, E. S.. 1989. Reproductive cost of flight capability: a comparison of life-history traits in wing dimorphic planthoppers. Ecological Entomology 14:31–44.CrossRefGoogle Scholar
Denno, R. F., Peterson, M. A., Gratton, C., Cheng, J. A., Langellotto, G. A., Huberty, A. F., and Finke, D. L.. 2000. Feeding-induced changes in plant quality mediate interspecific competition between sap-feeding herbivores. Ecology 81:1814–1827.CrossRefGoogle Scholar
Denno, R. F., Roderick, G. K., Olmstead, K. L., and Dobel, H. G.. 1991. Density-related migration in planthoppers (Homoptera, Delphacidae): the role of habitat persistence. American Naturalist 138:1513–1541.CrossRefGoogle Scholar
DeVries, P. J. 1991a. Evolutionary and ecological patterns in myrmecophilous riodinid butterflies. In Ant-plant Interactions, ed. Huxley, C. R. and Cutler, D. F., pp. 143–156. Oxford: Oxford University Press.Google Scholar
DeVries, P. J. 1991b. Mutualism between Thisbe irenea butterflies and ants, and the role of ant ecology in the evolution of larval ant associations. Biological Journal of the Linnean Society 43:179–195.CrossRefGoogle Scholar
DeVries, P. J. 1997. The Butterflies of Costa Rica and their Natural History. vol. II, The Riodinidae. Princeton: Princeton University Press.Google Scholar
Diamond, J. M. 1978. Niche shifts and the rediscovery of interspecific competition. American Scientist 66:322–331Google Scholar
Dietrich, C. H., and Deitz, L. L.. 1993. Superfamily Membracoidea (Homoptera, Auchenorrhyncha). 2. Cladistic-Analysis and Conclusions. Systematic Entomology 18:297–311.CrossRefGoogle Scholar
Dixon, A. F. G. 1958. The escape response shown by certain aphids to the presence of the coccinellid Adalia decempunctata (L.). Transactions of the Royal Entomological Society of London 110:319–334.CrossRefGoogle Scholar
Dixon, A. F. G. 1975. Effect of population density and food quality on autumnal reproductive activity in the sycamore aphid, Drepanosiphum platanoides (Schr.). Journal of Animal Ecology 44:297–304.CrossRefGoogle Scholar
Dixon, A. F. G. 1984. Plant architectural complexity and alary polymorphism in tree-dwelling aphids. Ecological Entomology 9:117–118.CrossRefGoogle Scholar
Dixon, A. F. G. 1998. Aphid Ecology, 2nd edition. London: Chapman and Hall.Google Scholar
Dixon, A. F. G. 2000. Insect Predator-Prey Dynamics: Ladybird Beetles and Biological Control. Cambridge: Cambridge University Press.Google Scholar
Dixon, A. F. G. 2005. Insect Herbivore-Host Dynamics: Tree-Dwelling Aphids. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Dixon, A. F. G., and Agarwala, B. K.. 1999. Ladybird-induced life-history changes in aphids. Proceedings of the Royal Society of London Series B 266:1549–1553.CrossRefGoogle Scholar
Dixon, A. F. G., and P. Kindlmann. 1998. Generation time ratio and the effectiveness of ladybirds as classical biological control agents. In Pest Management – Future Challenges, ed. Zalucki, M. P., Drew, R. A. I., and White, G. G. pp. 314–320. Proceedings of the 6th Australasian Applied Entomology and Research Conference. Brisbane: University of Queensland.
Dixon, A. F. G., and McKay, S.. 1970. Aggregation in the sycamore aphid Drepanosiphum platanoides (Schr.) (Hemiptera: Aphididae) and its relevance to the regulation of population growth. Journal of Animal Ecology 39:439–454.CrossRefGoogle Scholar
Dixon, A. F. G., Burns, M. D., and Wangboonkong, S.. 1968. Migration in aphids: response to current adversity. Nature 220:1337–1338.CrossRefGoogle ScholarPubMed
Dixon, A. F. G., Horth, S., and Kindlmann, P.. 1993. Migration in insects: cost and strategies. Journal of Animal Ecology 62:182–190.CrossRefGoogle Scholar
Dixon, A. F. G., Kindlmann, P., Leps, J., and Holman, J.. 1987. Why there are so few species of aphids, especially in the tropics? American Naturalist 129:580–592.CrossRefGoogle Scholar
Doebeli, M., and Knowlton, N.. 1998. The evolution of interspecific mutualism. Proceedings of the National Academy of Sciences of the USA 95:8676–8680.CrossRefGoogle Scholar
Donovan, T., and Welden, C. W.. 2001. Spreadsheet Exercises in Ecology and Evolution. Sunderland, MA: Sinauer Associates.Google Scholar
Douglas, A. E. 1989. Mycetocyte symbiosis in insects. Biological Review 64:409–434.CrossRefGoogle ScholarPubMed
Douglas, A. E. 1998. Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annual Review of Entomology 43:17–37.CrossRefGoogle ScholarPubMed
Douglas, A. E. 2003. The nutritional physiology of aphids. Advances in Insect Physiology 31:73–140.CrossRefGoogle Scholar
Douglas, A. E., and Prosser, W. A.. 1992. Synthesis of the essential amino acid tryptophan in the pea aphid (Acyrthosiphon pisum) symbiosis. Journal of Insect Physiology 38:565–568.CrossRefGoogle Scholar
Douglas, A. E., Minto, L. B., and Wilkinson, T. L.. 2001. Quantifying nutrient production by the microbial symbionts in an aphid. Journal of Experimental Biology 204:349–358.Google Scholar
Dugatkin, L. A. 2002. Cooperation in animals: an evolutionary overview. Biology and Philosophy 17:459–476.CrossRefGoogle Scholar
Dugatkin, L. A. and Mesterton-Gibbons, M.. 1996. Cooperation among unrelated individuals: reciprocal altruism, by-product mutualism and group selection in fishes. BioSystems 37:19–30.CrossRefGoogle ScholarPubMed
Dugatkin, L. A., and Reeve, H. K.. 1994. Behavioral ecology and level of selection: dissolving the group selection controversy. Advances in the Study of Behaviour 23:101–133.CrossRefGoogle Scholar
Eastop, V. F. 1973. Deductions from the present day host plants of aphids and related insects. In Insect-plant Relationships, ed. Emden, H. F., pp. 157–178. 6th Symposium, Royal Entomological Society of London. Oxford: Blackwell.Google Scholar
Eastwood, R., and Fraser, A. M.. 1999. Associations between lycaenid butterflies and ants in Australia. Australian Ecology 24:503–537.CrossRefGoogle Scholar
Edson, J. 1985. The influence of predation and resource subdivision on the coexistence of goldenrod aphids. Ecology 66:1736–1743.CrossRefGoogle Scholar
Eisner, T. 1957. A comparative morphological study of the proventriculus of ants (Hymenoptera: Formicidae). Bulletin of the Museum of Comparative Zoology 116: 429–490.Google Scholar
Eliot, J. N. 1973. The higher classification of the Lycaenidae (Lepidoptera): a tentative arrangement. Bulletin of the British Museum of Natural History 28:371–505.CrossRefGoogle Scholar
Elmes, G. W., Thomas, J. A., Munguira, M. L., and Fiedler, K.. 2001. Larvae of lycaenid butterflies that parasitize ant colonies provide exceptions to normal insect growth rules. Biological Journal of the Linnean Society 73:259–278.CrossRefGoogle Scholar
El-Ziady, S., and Kennedy, J. S.. 1956. Beneficial effects of the common garden ant, Lasius niger L. on the black bean aphid, Aphis fabae Scopoli. Proceedings of the Royal Entomological Society of London A. 31:61–65.CrossRefGoogle Scholar
Engel, V., Fischer, M. K., Wäckers, F. L., and Völkl, W.. 2001. Interactions between extrafloral nectaries, aphids and ants: are there competition effects between plant and homopteran sugar sources?Oecologia 129: 577–584.CrossRefGoogle ScholarPubMed
Ewald, P. W. 1994. Evolution of Infectious Disease. Oxford: Oxford University Press.Google Scholar
Ewart, W. H., and Metcalf, R. L.. 1956. Preliminary studies of sugar and amino acids in the honeydew of five species of coccids feeding on citrus in California. Annals of the Entomological Society of America 49:441–447.CrossRefGoogle Scholar
Feener, D. H. Jr. 1981. Competition between ant species: outcome controlled by parasitic flies. Science 214:815–817.CrossRefGoogle ScholarPubMed
Feinsinger, P., Spears, E. E., and Poole, R. W.. 1981. A simple measure of niche breadth. Ecology 62:27–32.CrossRefGoogle Scholar
Fellers, J. H. 1987. Interference and exploitation in a guild of woodland ants. Ecology 68:1466–1478.CrossRefGoogle Scholar
Ferriere, R., Bronstein, J. L., Rinaldi, S., Law, R., and Gauduchon, M.. 2002. Cheating and the evolutionary stability of mutualisms. Proceedings of the Royal Entomological Society of London 269:773–780.CrossRefGoogle ScholarPubMed
Fiedler, K. 1991. Systematic, evolutionary, and ecological implications of myrmecophily within Lycaenidae (Insecta: Lepidoptera: Papilionoidea). Bonner Zoological Monograph 31:5–157.Google Scholar
Fiedler, K. 1994. Lycaenid butterflies and plants: is myrmecophily associated with amplified host plant diversity?Ecological Entomology 19: 79–82.CrossRefGoogle Scholar
Fiedler, K. 1995. Lycaenid butterflies and plants: is myrmecophily associated with particular host plant preferences?Ethology Ecology and Evolution 7: 107–132.CrossRefGoogle Scholar
Fiedler, K. 1996. Host-plant relationships of lycaenid butterflies: large-scale patterns, interactions with plant chemistry, and mutualism with ants. Entomologia Experimentalis et Applicata 80:259–267.CrossRefGoogle Scholar
Fiedler, K. 1997a. Geographical patterns in life-history traits of Lycaenidae butterflies – ecological and evolutionary implications. Zoology 100:336–347.Google Scholar
Fiedler, K. 1997b. Life-history patterns of myrmecophilous butterflies and other insects: their implications on tropical species diversity. In Tropical Biodiversity and Systematics, ed. Ulrich, H., pp. 71–92. Bonn: Zoologisches Forschungsinstitut und Museum Alexander Koenig.Google Scholar
Fiedler, K. 2001. Ants that associate with Lycaenidae butterfly larvae: diversity, ecology and biogeography. Diversity and Distributions 7:45–60.CrossRefGoogle Scholar
Fiedler, K., Holldobler, B., and Seufert, P.. 1996. Butterflies and ants: the communicative domain. Experientia 52:14–24.CrossRefGoogle Scholar
Fischer, M. K., and Shingleton, A. W.. 2001. Host plant and ants influence the honeydew sugar composition of aphids. Functional Ecology 15:544–550.CrossRefGoogle Scholar
Fischer, M. K., Hoffmann, K. H., and Völkl, W.. 2001. Competition for mutualists in an ant-homopteran interaction mediated by hierarchies of ant-attendance. Oikos 92:531–541.CrossRefGoogle Scholar
Fischer, R. C., Olzant, S. M., Wanek, W., and Mayer, V.. 2005. The fate of Corydalis cava elaiosomes within an ant colony of Myrmica rubra: elaiosomes are preferentially fed to larvae. Insectes Sociaux 52:55–62.CrossRefGoogle Scholar
Fisher, D. B., Wright, J. P., and Mittler, T. E.. 1984. Osmoregulation by the aphid Myzus persicae: a physiological role for honeydew oligosaccharides. Journal of Insect Physiology 30:387–393.CrossRefGoogle Scholar
Flanders, S. E. 1957. The complete interdependence of an ant and a coccid. Ecology 38:535–536.CrossRefGoogle Scholar
Flatt, T., and Weisser, W. W.. 2000. The effects of mutualistic ants on aphid life history traits. Ecology 81:3522–3529.CrossRefGoogle Scholar
Fowler, H. G. 1993. Differential recruitment in Camponotus rufipes (Hymenoptera: Formicidae) to protein and carbohydrate resources. Naturalia 18:9–13.Google Scholar
Fraser, A. M., Axen, A. H., and Pierce, N. E.. 2001. Assessing the quality of different ant species as partners of a myrmecophilous butterfly. Oecologia 129:452–460.CrossRefGoogle ScholarPubMed
Fraser, A. M., Tregenza, T., Wedell, N., Elgar, M. A., and Pierce, N. E.. 2002. Oviposition tests of ant preference in a myrmecophilous butterfly. Journal of Evolutionary Biology 15:861–870.CrossRefGoogle Scholar
Freitas, A. V. L., and Oliveira, P. S.. 1992. Biology and behaviour of the neotropical butterfly Eunica bechina (Nymphalidae) with special reference to larval defence against ant predation. Journal of Research on the Lepidoptera 31:1–11.Google Scholar
Freitas, A. V. L., and Oliveira, P. S.. 1996. Ants as selective agents on herbivore biology: effects on the behaviour of a non-myrmecophilous butterfly. Journal of Animal Ecology 65:205–210.CrossRefGoogle Scholar
Gaume, L., Matile-Ferrero, D., and McKey, D.. 2000. Colony formation and acquisition of coccoid trophobionts by Aphomomyrmex afer (Formicinae): co-dispersal of queens and phoretic mealybugs in an ant-plant-homopteran mutualism?Insectes Sociaux 47: 84–91.CrossRefGoogle Scholar
Gaume, L., McKey, D., and Terrin, S.. 1998. Ant-plant-homopteran mutualism: how the third partner affects the interaction between a plant-specialist ant and its myrmecophyte host. Proceedings of the Royal Society of London Series B 265:569–575.CrossRefGoogle Scholar
Gish, M., and Inbar, M.. 2006. Host location by apterous aphids after escape dropping from the plant. Journal of Insect Behavior 19: 143–153.CrossRefGoogle Scholar
Goidanich, A. 1956. Stomaphis quercus and ants. Bulletin of the Institite of Entomology of the University of Bologna 23:93–131.Google Scholar
Gonzales, W. L., Fuentes-Contreras, E., and Niemeyer, H. M.. 2002. Host plant and natural enemy impact on cereal aphid competition in a seasonal environment. Oikos 96:481–491.CrossRefGoogle Scholar
Goodchild, A. J. P. 1966. Evolution of the alimentary canal in the Hemiptera. Biological Reviews 41:97–140.CrossRefGoogle Scholar
Gösswald, K. 1938. Über den Einfluß von verschiedenen Temperaturen und Luftfeuchtigkeit auf die Lebensäusserungen der Ameisen. 1. Die Lebensdauer ökologisch verschiedener Ameisenarten unter dem Einfluß bestimmter Luftfeuchtigkeit und Temperatur. Zeitschrift für wissenschaftliche Zoologie (A):247–344.Google Scholar
Gösswald, K. 1941. Rassenstudien an der roten Waldameise Formica rufa L. auf systematischer, ökologischer, physiologischer und biologischer Grundlage. Zeitschrift für angewandte Entomologie 28:62–124.CrossRefGoogle Scholar
Gösswald, K. 1989a. Die Waldameise im Ökosystem Wald, Nutzen und Hege. Wiesbaden: Aula Verlag.Google Scholar
Gösswald, K. 1989b. Die Waldameise: Biologische Grundlagen, Ökologie und Verhalten. Wiesbaden: Aula Verlag.Google Scholar
Gotelli, N. J. 1996. Ant community structure: effects of predatory ant lions. Ecology 77:630–638.CrossRefGoogle Scholar
Gotelli, N. J., and Arnett, A. E.. 2000. Biogeographic effects of red fire ant invasion. Ecology Letters 3:257–261.CrossRefGoogle Scholar
Gotelli, N. J., and Ellison, A. M.. 2002. Assembly rules for New England ant assemblages. Oikos 99:591–599.CrossRefGoogle Scholar
Gould, S. J. 1988 Kropotkin was no crackpot. Natural History 7: 12–21.Google Scholar
Graham, M. H., and Dayton, P. K.. 2002. On the evolution of ecological ideas: paradigms and scientific progress. Ecology 83:1481–1489.CrossRefGoogle Scholar
Grassé, P.-P. 1951. Traité de Zoologie: Anatomie, Systematique, Biologie. Tome X, Fascicule II, Insectes Supérieurs et Hémiptéroïdes. Paris: Masson.Google Scholar
Greathead, D. J. 1990. Crawler behaviour and dispersal. In World Crop Pests. Armored Scale Insects: Their Biology, Natural Enemies and Control, ed. Rosen, D., pp. 305–308. Amsterdam: Elsevier.Google Scholar
Greene, C. M. 2003. Habitat selection reduces extinction of populations subject to Allee effects. Theoretical Population Biology 64:1–10.CrossRefGoogle ScholarPubMed
Greene, C. M., and Stamps, J. A.. 2001. Habitat selection at low population densities. Ecology 82:2091–2100.CrossRefGoogle Scholar
Gruppe, A., and Römer, P.. 1988. The lupin aphid (Macrosiphum albifrons Essig, 1911) (Hom, Aphididae) in West Germany: its occurrence, host plants and natural enemies. Journal of Applied Entomology 106:135–143.CrossRefGoogle Scholar
Gullan, P. 1997. Relationships with ants. In Soft Scale Insects: Their Biology, Natural Enemies and Control, ed. Ben-Dov, Y. and Hodgson, C. J., pp. 351–373. Amsterdam: Elsevier.Google Scholar
Gullan, P. J., and Kosztarab, M.. 1997. Adaptations in scale insects. Annual Review of Entomology 42:23–50.CrossRefGoogle ScholarPubMed
Gullan, P., and J. H. Martin. 2003. Sternorrhyncha (jumping plant lice, whiteflies, aphids, and scale insects). In Encyclopedia of Insects, ed. Resh, V. H. and Crade, R. T., pp. 1079–1089. Amsterdam: Elsevier Academic Press.Google Scholar
Hairston, G., Smith, F. E., and Slobodkin, L. B.. 1960. Community structure, population control, and competition. American Naturalist 64:421–425.CrossRefGoogle Scholar
Hajek, A. E., and Dahlsten, D. L.. 1986. Coexistence of three species of leaf-feeding aphids (Homoptera) on Betula pendula. Oecologia 68:380–386.CrossRefGoogle Scholar
Hale, B. K., Bale, J. S., Pritchard, J., Masters, G. J., and Brown, V. K.. 2003. Effects of host plant drought stress on the performance of the bird cherry-oat aphid, Rhopalosiphum padi (L.): a mechanistic analysis. Ecological Entomology 28:666–677.CrossRefGoogle Scholar
Hamilton, W. D., and May, R. M.. 1977. Dispersal in stable habitats. Nature 269:578–581.CrossRefGoogle Scholar
Hanks, L. M., and R. F. Denno. 1993. The role of demic adaptation in colonization and spread of scale insect populations. In Evolution of Insect Pests: Patterns of Variation, ed. Kim, K. C. and McPheron, B. A., pp. 393–411. New York: Wiley & Sons.Google Scholar
Hanski, I. 1998. Metapopulation Ecology. Oxford: Oxford University Press.Google Scholar
Hanski, I., and Gilpin, M. E.. 1997. Metapopulation Biology: Ecology, Genetics and Evolution. London: Academic Press.Google Scholar
Harmon, J. P., and Andow, D. A.. 2007. Behavioral mechanism underlying ants' density-dependent deterence of aphid-eating predators. Oikos 116: 1030–1036.Google Scholar
Hanski, I., and Woiwod, I. P.. 1993. Spatial synchrony in the dynamics of moth and aphid populations. Journal of Animal Ecology 62:656–668.CrossRefGoogle Scholar
Hay, M. E., Parker, J. D., Burkepile, D. E., Caudill, C. C., Wilson, A. E., Hallinan, Z. P., and Chequer, A. D.. 2004. Mutualism and aquatic community structure: the enemy of my enemy is my friend. Annual Review of Ecology, Evolution, and Systematics 35:175–197.CrossRefGoogle Scholar
Hayamizu, E. 1982. Comparative studies on aggregations among aphids in relation to population dynamics. 1. Colony formation and aggregation behavior of Brevicoryne brassicae L. and Myzus persicae (Sulzer) (Homoptera, Aphididae). Applied Entomology and Zoology 17:519–529.CrossRefGoogle Scholar
Heinsohn, R., and Packer, C.. 1995. Complex cooperative strategies in group-territorial African lions. Science 269:1260–1262.CrossRefGoogle ScholarPubMed
Heinze, J. 1995. Reproductive skew and genetic relatedness in Leptothorax ants. Proceedings of the Royal Society of London Series B 261:375–379.CrossRefGoogle Scholar
Heithaus, E. R., Culver, D. C., and Beattie, A. J.. 1980. Models of some ant-plant mutualisms. American Naturalist 16:347–361.CrossRefGoogle Scholar
Helms, K. R., and Vinson, S. B.. 2002. Widespread association of the invasive ant Solenopsis invicta with an invasive mealybug. Ecology 83:2425–2438.CrossRefGoogle Scholar
Hennig, W. 1969. Die Stammesgeschichte der Insekten. Frankfurt a. Main: Senkenberg, Naturforschende Gesellschaft.
Herre, E. A., Knowlton, N., Mueller, U. G., and Rehner, S. A.. 1999. The evolution of mutualisms: exploring the paths between conflict and cooperation. Trends in Ecology and Evolution 14:49–53.CrossRefGoogle ScholarPubMed
Hill, M. G., and Blackmore, P. J. M.. 1980. Interactions between ants and the coccid Icerya seychellarum on Aldabra Atoll. Oecologia 45:360–365.CrossRefGoogle ScholarPubMed
Hixon, M. A., Pacala, S. W., and Sandin, S. A.. 2002. Population regulation: historical context and contemporary challenges of open vs. closed systems. Ecology 83:1490–1508.CrossRefGoogle Scholar
Hochberg, M. E., Clarke, R. T., Elmes, G. W., and Thomas, J. A.. 1994. Population dynamic consequences of direct and indirect interactions involving a large blue butterfly and its plant and red ant hosts. Journal of Animal Ecology 63:375–391.CrossRefGoogle Scholar
Hochberg, M. E., Gomulkiewicz, R., Holt, R. D., and Thompson, J. N.. 2000. Weak sinks could cradle mutualistic symbioses – strong sources should harbour parasitic symbioses. Journal of Evolutionary Biology 13:213–222.CrossRefGoogle Scholar
Hoeksema, J. D., and Bruna, E. M.. 2000. Pursuing the big questions about interspecific mutualism: a review of theoretical approaches. Oecologia 125:321–330.CrossRefGoogle ScholarPubMed
Hoeksema, J. D., and Schwartz, M. W.. 2002. Expanding comparative-advantage biological market models: contingency of mutualism on partners' resource requirements and acquisition trade-offs. Proceedings of the Royal Entomological Society of London Series B. 270:913–990.CrossRefGoogle Scholar
Hol, W. H. G., and Van, J. A. Veen. 2002. Pyrrolizidine alkaloids from Senecio jacobaea affect fungal growth. Journal of Chemical Ecology 28:1763–1772.CrossRefGoogle ScholarPubMed
Hol, W. H. G., Vrieling, K., and Veen, J. A.. 2003. Nutrients decrease pyrrolizidine alkaloid concentrations in Senecio jacobaea. New Phytologist 158:175–181.CrossRefGoogle Scholar
Holland, J. N., DeAngelis, D. L., and Bronstein, J. L.. 2002. Population dynamics and mutualism: functional responses of benefits and costs. American Naturalist 159:231–244.CrossRefGoogle ScholarPubMed
Holland, J. N., J. H. Ness, A. Boyle, and J. L. Bronstein. 2005. Mutualisms as consumer-resource interactions. In Ecology of Predator-Prey Interactions ed. Barbosa, P. and Castellanos, I.. Oxford: Oxford University Press. pp. 17–33.
Hölldobler, B., and Wilson, E. O.. 1990. The Ants. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Holt, R. D. 1977. Predation, apparent competition, and structure of prey communities. Theoretical Population Biology 12:197–229.CrossRefGoogle ScholarPubMed
Holt, R. D. 2002. Food webs in space: on the interplay of dynamic instability and spatial processes. Ecological Research 17:261–273.CrossRefGoogle Scholar
Holt, R. D., and Lawton, J. H.. 1994. The ecological consequences of shared natural enemies. Annual Review of Ecology and Systematics 25:495–520.CrossRefGoogle Scholar
Holway, D. A., and Suarez, A. V.. 2004. Colony-structure variation and interspecific competitive ability in the invasive Argentine ant. Oecologia 138:216–222.CrossRefGoogle ScholarPubMed
Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D., and Case, T. J.. 2002a. The causes and consequences of ant invasions. Annual Review of Ecology and Systematics 33:181–233.CrossRefGoogle Scholar
Holway, D. A., Suarez, A. V., and Case, T. J.. 2002b. Role of abiotic factors in governing susceptibility to invasion: a test with argentine ants. Ecology 83:1610–1619.CrossRefGoogle Scholar
Honek, A. 1991. Environment stress, plant quality and abundance of cereal aphids (Hom., Aphididae) on winter wheat. Journal of Applied Entomology 112:65–70.CrossRefGoogle Scholar
Hopkins, G. W., and Dixon, A. F. G.. 1997. Enemy-free space and the feeding niche of an aphid. Ecological Entomology 22:271–274.CrossRefGoogle Scholar
Hopkins, G. W., and Thacker, J. I.. 1999. Ants and habitat specificity in aphids. Journal of Insect Conservation 3:25–31.CrossRefGoogle Scholar
Hopkins, G. W., Thacker, J. I., and Dixon, A. F. G.. 1998. Limits to the abundance of rare species: an experimental test with a tree aphid. Ecological Entomology 23:386–390.CrossRefGoogle Scholar
Howe, H. F. 1984. Constraints on the evolution of mutualism. American Naturalist 123:764–777.CrossRefGoogle Scholar
Hsiao, T. C. 1973. Plant responses to water stress. Annual Review of Plant Physiology 24:519–570.CrossRefGoogle Scholar
Hubbell, S. P. 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton: Princeton University Press.Google Scholar
Huberty, A. F., and Denno, R. F.. 2004. Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology 85:1383–1398.CrossRefGoogle Scholar
Hunter, M. D. 2002. Maternal effects and the population dynamics of insects on plants. Agricultural and Forest Entomology 4:1–9.CrossRefGoogle Scholar
Hunter, M. D., and Price, P. W.. 1998. Cycles in insect populations: delayed density dependence or exogenous driving variables?Ecological Entomology 23:216–222.CrossRefGoogle Scholar
Hunter, M. D., and Price, P. W.. 2000. Detecting cycles and delayed density dependence: a reply to Turchin and Berryman. Ecological Entomology 25:122–124.CrossRefGoogle Scholar
Huxley, T. H. 1888. The struggle for existence in human society. Nineteenth Century.
Inbar, M., Doostdar, H., and Mayer, R. T.. 2001. Suitability of stressed and vigorous plants to various insect herbivores. Oikos 94:228–235.CrossRefGoogle Scholar
Ingram, K. K. 2002a. Flexibility in nest density and social structure in invasive populations of the Argentine ant, Linepithema humile. Oecologia 133:492–500.CrossRefGoogle Scholar
Ingram, K. K. 2002b. Plasticity in queen number and social structure in the invasive Argentine ant (Linepithema humile). Evolution 56:2008–2016.CrossRefGoogle Scholar
Ives, A. R., Kareiva, P., and Perry, R.. 1993. Responses of a predator to variation in prey density at three hierarchical scales: lady beetles feeding on aphids. Ecology 74:1929–1938.CrossRefGoogle Scholar
Janzen, D. H. 1977. What are dandelions and aphids?American Naturalist 111: 586–589.CrossRefGoogle Scholar
Janzen, D. H. 1985. The natural history of mutualisms. In The Biology of Mutualism: Ecology and Evolution, ed. Boucher, D. H., pp. 40–99. New York: Oxford University Press.Google Scholar
Johnson, B. 1959. Ants and form reversal in aphids. Nature 184:740–741.CrossRefGoogle Scholar
Johnson, S. N., Douglas, A. E., Woodward, S., and Hartley, S. E.. 2003a. Microbial impacts on plant-herbivore interactions: the indirect effects of a birch pathogen on a birch aphid. Oecologia 134:388–396.CrossRefGoogle Scholar
Johnson, S. N., Elston, D. A., and Hartley, S. E.. 2003b. Influence of host plant heterogeneity on the distribution of a birch aphid. Ecological Entomology 28:533–541.CrossRefGoogle Scholar
Johnstone, R. A., and Bshary, R.. 2002. From parasitism to mutualism: partner control in asymmetric interactions. Ecology Letters 5:634–639.CrossRefGoogle Scholar
Jordano, D., Rodriguez, J., Thomas, C. D., and Haeger, J. F.. 1992. The distribution and density of a lycaenid butterfly in relation to Lasius ants. Oecologia 91:439–446.CrossRefGoogle ScholarPubMed
Jordano, D., and Thomas, C. D.. 1992. Specificity of an ant-lycaenid interaction. Oecologia 91:431–438.CrossRefGoogle ScholarPubMed
Kainulainen, P., Holopainen, J., Palomäki, V., and Holopainen, T.. 1996. Effects of nitrogen fertilization on secondary chemistry and ectomycorrhizal state of Scots pine seedlings and on growth of grey pine aphid. Journal of Chemical Ecology 22:617–636.CrossRefGoogle ScholarPubMed
Kaneko, S. 2002. Aphid-attending ants increase the number of emerging adults of the aphid's primary parasitoid and hyperparasitoids by repelling intraguild predators. Entomological Science 5:131–146.Google Scholar
Kaplan, I., and Eubanks, M. D.. 2002. Disruption of cotton aphid (Homoptera: Aphididae) – Natural enemy dynamics by red imported fire ants (Hymenoptera: Formicidae). Environmental Entomology 31:1175–1183.CrossRefGoogle Scholar
Kareiva, P. 1987. Habitat fragmentation and the stability of predator-prey interactions. Nature 326:388–390.CrossRefGoogle Scholar
Karsai, I., and Wenzel, J. W.. 1998. Productivity, individual-level and colony-level flexibility, and organization of work as consequences of colony size. Proceedings of the National Academy of Sciences 95:8665–8669.CrossRefGoogle ScholarPubMed
Kaspari, M., and Vargo, E. L.. 1995. Colony size as a buffer against seasonality – Bergmanns rule in social insects. American Naturalist 145:610–632.CrossRefGoogle Scholar
Kaspari, M., Alonso, L., and O'Donnell, S.. 2000a. Three energy variables predict ant abundance at a geographical scale. Proceedings of the Royal Society of London Series B 267:485–489.CrossRefGoogle Scholar
Kaspari, M., O'Donnell, S., and Kercher, J. R.. 2000b. Energy, density, and constraints to species richness: ant assemblages along a productivity gradient. American Naturalist 155:280–293.CrossRefGoogle Scholar
Katayama, N., and Suzuki, N.. 2002. Cost and benefit of ant-attendance for Aphis craccivora (Hemiptera: Aphididae) with reference to aphid colony size. Canadian Entomologist 134:241–249.CrossRefGoogle Scholar
Kay, A. 2004. The relative availabilities of complementary resources affect the feeding preferences of ant colonies. Behavioral Ecology 15:63–70.CrossRefGoogle Scholar
Keddy, P. 1990. Is mutualism really irrelevant to ecology?Bulletin of the Ecological Society of America 71:101–102.Google Scholar
Keeler, K. H. 1979. Distribution of ants with extrafloral nectaries and ants at two elevations in Jamaica. Biotropica 11:152–154.CrossRefGoogle Scholar
Keeler, K. H. 1981. A model of selection for facultative nonsymbiotic mutualism. American Naturalist 118:488–498.CrossRefGoogle Scholar
Keeler, K. H. 1985. Extrafloral nectaries on plants in communities without ants: Hawaii. Oikos 44:407–414.CrossRefGoogle Scholar
Keller, L., and Chapuisat, M.. 1999. Cooperation among selfish individuals in insect societies. BioScience 49:899–909.CrossRefGoogle Scholar
Keller, L., and Reeve, H. K.. 1994. Partitioning of reproduction in animal societies. Trends in Ecology and Evolution 9:98–102.CrossRefGoogle ScholarPubMed
Kennedy, J. S. and Booth, C. O. 1959. Responses of Aphis fabae Scop to water shortage in host plants in the field. Entomologia Experimentalis et Applicata 2:1–11.CrossRefGoogle Scholar
Kennedy, J. S., Lamb, K. P. and Booth, C. O.. 1958. Responses of Aphis fabae Scop. to water shortage in host plants in pots. Entomologia Experimentalis et Applicata 1: 274–279.CrossRefGoogle Scholar
Killingback, T., Doebeli, M., and Knowlton, N.. 1999. Variable investment, the Continuous Prisoner's Dilemma, and the origin of cooperation. Proceedings of the Royal Society of London Series B 266:1723–1728.CrossRefGoogle ScholarPubMed
Kindlmann, P. and Dixon, A. F. G.. 1999. Generation time ratios – determinants of prey abundance in insect predator–prey interactions. Biological Control 16:133–138.CrossRefGoogle Scholar
Kindlmann, P., Hulle, M., and Stadler, B.. 2007. Timing of dispersal: effects of ants on aphids. Oecologia 152:625–631.CrossRefGoogle ScholarPubMed
Kingsland, S. 1995. Modeling Nature: Episodes in the History of Population Ecology, 2nd edition. Chicago: University of Chicago Press.Google Scholar
Kiss, A. 1981. Melezitose, aphids and ants. Oikos 37:382.CrossRefGoogle Scholar
Kitching, R. L. 1981. Egg clustering and the southern hemisphere lycaenids: comments. American Naturalist 118:423–425.CrossRefGoogle Scholar
Kloft, W. J. 1959. Versuch einer Analyse der trophobiotischen Beziehungen von Ameisen zu Aphiden. Biologisches Zentralblatt 78:863–870.Google Scholar
Kneitel, J. M., and Chase, J. M.. 2004. Trade-offs in community ecology: linking spatial scales and species coexistence. Ecology Letters 7:69–80.CrossRefGoogle Scholar
Koptur, S. 1991. Extrafloral nectaries of herbs and trees: modeling the interaction with ants and parasitoids. In Ant-plant Interactions, ed. Huxley, C. R. and Cutler, D. F., pp. 213–230. Oxford: Oxford University Press.Google Scholar
Koricheva, J., Larsson, S., and Haukioja, E.. 1998. Insect performance on experimentally stressed woody plants: a meta-analysis. Annual Review of Entomology 43:195–216.CrossRefGoogle ScholarPubMed
Koteja, J. 1985. Essay on the prehistory of the scale insects (Homoptera, Coccinea). Annales Zoologici (Wars.) 38:461–504.Google Scholar
Kropotkin, P. A. 1902. Mutual Aid: A Factor of Evolution. London: William Heinemann. Also, 1998. London: Freedom Press.Google Scholar
Kruess, A., and Tscharntke, T.. 1994. Habitat fragmentation, species loss, and biological control. Science 264:1581–1584.CrossRefGoogle ScholarPubMed
Kundu, R., and Dixon, A. F. G.. 1995. Evolution of complex life cycles in aphids. Journal of Animal Ecology 64:245.CrossRefGoogle Scholar
Kunert, G., and Weisser, W. W.. 2003. The interplay between density- and trait mediated effects in predator-prey interactions: a case study in aphid wing polymorphism. Oecologia 135:304–312.CrossRefGoogle ScholarPubMed
Kunkel, H., W. J. Kloft, and A. Fossel. 1985. Die Honigtau-Erzeuger des Waldes. In Waldtracht und Waldhonig in der Imkerei, ed. Kloft, W. J. and Kunkel, H., pp. 48–265. Munich: Ehrenwirth.Google Scholar
Labandeira, C. C. 1997. Insect mouthparts: ascertaining the paleobiology of insect feeding strategies. Annual Review of Ecology and Systematics 28:153–193.CrossRefGoogle Scholar
Larsson, S. 1989. Stressful times for the plant-insect performance hypothesis. Oikos 56:277–283.CrossRefGoogle Scholar
Larsson, S., and Bjorkman, C.. 1993. Performance of chewing and phloem-feeding insects on stressed trees. Scandinavian Journal of Forest Research 8:550–559.CrossRefGoogle Scholar
Lees, A. D. 1967. The production of the apterous and alatae forms in the aphid Megoura viciae (Buckton), with special reference to the role of crowding. Journal of Insect Physiology 13:289–318.CrossRefGoogle Scholar
Leibold, M. A., Holyoak, M., Mouquet, N.et al. 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7:601–613.CrossRefGoogle Scholar
Leimar, O., and Axen, A. H.. 1993. Strategic behavior in an interspecific mutualism: interactions between lycaenid larvae and ants. Animal Behaviour 46:1177–1182.CrossRefGoogle Scholar
Levieux, J. 1977. La nutrition des fourmis tropicales – V. Eléments de synthèse. Les modes d'exploitation de la biocoenose. Insectes Sociaux 24:235–260.CrossRefGoogle Scholar
Levieux, J., and Louis, D.. 1975. La nutrition des fourmis tropicales – II. Comportement alimentaire et régime de Camponotus vividus (Smith) (Hymenoptera Formicidae). Insectes Sociaux 22:391–404.CrossRefGoogle Scholar
Levin, S. A. 1992. The problem of pattern and scale in ecology. Ecology 73:1943–1967.CrossRefGoogle Scholar
Levins, R., and Culver, D.. 1971. Regional coexistence of species and competition between rare species. Proceedings of the National Academy of Sciences 68:1246–1248.CrossRefGoogle ScholarPubMed
Lin, C. P., Danforth, B. N., and Wood, T. K.. 2004. Molecular phylogenetics and evolution of maternal care in Membracine treehoppers. Systematic Biology 53:400–421.CrossRefGoogle ScholarPubMed
Loreau, M. 1995. Consumers as maximizers of matter and energy flow in ecosystems. American Naturalist 145:22–42.CrossRefGoogle Scholar
Loreau, M., Mouquet, N., and Holt, R. D.. 2003. Meta-ecosystems: a theoretical framework for a spatial ecosystem ecology. Ecology Letters 6:673–679.CrossRefGoogle Scholar
Lotka, A. J. 1925. Elements of Physiological Biology. New York: Dover Publication (1956).Google Scholar
Mackauer, M., and Völkl, W.. 1993. Regulation of aphid populations by aphid wasps: does parasitoid foraging behaviour or hyperparasitism limit impact?Oecologia 94:339–350.CrossRefGoogle ScholarPubMed
Malicky, H. 1969. Versuch einer Analyse der ökologischen Beziehungen zwischen Lycaeniden (Lepidoptera) und Formiciden (Hymenoptera). Tijdschrift voor Entomologie 112:85–90.Google Scholar
Malicky, H. 1970. New aspects of the association between lycaenid larvae (Lycaenidae) and ants (Formicidae; Hymenoptera). Journal of the Lepidopterists' Society 24:190–202.Google Scholar
Maschwitz, U., Dumpert, K., and Tuck, K. R.. 1986. Ants feeding on anal exudate from tortricid larvae: a new type of trophobiosis. Journal of Natural History 20:1041–1050.CrossRefGoogle Scholar
Maschwitz, U., Fiala, B., and Dolling, W. R.. 1987. New trophobiotic symbioses of ants with South-East-Asian bugs. Journal of Natural History 21:1097–1107.CrossRefGoogle Scholar
Mattson, J. W. 1980. Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics 11:119–161.CrossRefGoogle Scholar
Mattson, J. W., and R. A. Haack. 1987. The role of drought stress in provoking outbreaks of phytophagous insects. In Insect Outbreaks: Ecological and Evolutionary Perspectives, ed. Barbosa, P. and Schultz, J., pp. 365–407. New York: Academic Press.Google Scholar
Maurer, B. A. 1999. Untangling Ecological Complexity: The Macroscopic Perspective. Chicago: University of Chicago Press.Google Scholar
May, R. M. 1972. Will a larger complex system be stable?Nature 238:413–417.CrossRefGoogle Scholar
May, R. M. 1973. Stability and Complexity in Model Ecosystems. Princeton: Princeton University Press.Google ScholarPubMed
May, R. M. and Seger, J. (1986) Ideas in ecology. American Scientist 74: 256–267.Google Scholar
MacArthur, R. H. 1972. Geographical Ecology. New York: Harper & Row.Google Scholar
MacArthur, R. H., and Wilson, O. E.. 1967. The Theory of Island Biogeography. Princeton: Princeton University Press.Google Scholar
McClure, M. S. 1980. Foliar nitrogen: a basis for host suitability for elongate hemlock scale, Fiorinia externa (Homoptera, Diaspididae). Ecology 61:72–79.CrossRefGoogle Scholar
McEvoy, P. B. 1979. Advantages and disadvantages to group living in treehoppers (Homoptera: Membracidae). Miscellaneous Publications of the Entomological Society of America 11:1–13.Google Scholar
McGlynn, T. P. 1999. The worldwide transfer of ants: geographical distribution and ecological invasions. Journal of Biogeography 26: 535–548.CrossRefGoogle Scholar
McIver, J. D., and Loomis, C.. 1993. A size-distance relation in Homoptera-tending thatch ants (Formica obscuripes, Formica planipilis). Insectes Sociaux 40:207–218.CrossRefGoogle Scholar
McKamey, S. H. 1998. Taxonomic catalogue of the Membracoidea (exclusive of leafhoppers): second supplement to Fascicle I: Membracidae of the general catalogue of the Hemiptera. Memoirs of the American Entomological Institute 60:1–377.Google Scholar
McKamey, S. H., and Deitz, L. L.. 1996. Generic revision of the new world tribe Hoplophorionini (Hemiptera: Membracidae: Membracinae). Systematic Entomology 21:295–342.CrossRefGoogle Scholar
Messina, F. J. 1981. Plant protection as a consequence of an ant-membracid mutualism: interactions on Goldenrod (Solidago sp.). Ecology 62: 1433–1440.CrossRefGoogle Scholar
Mesterton-Gibbons, M., and Dugatkin, L. A.. 1992. Cooperation among unrelated individuals: evolutionary factors. Quarterly Review of Biology 67:267–281.CrossRefGoogle Scholar
Miles, P. W., Aspinall, D., and Rosenberg, L.. 1982. Performance of the cabbage aphid, Brevicoryne brassicae (L), on water-stressed rape plants, in relation to changes in their chemical composition. Australian Journal of Zoology 30:337–345.CrossRefGoogle Scholar
Miller, D. R., and Kosztarab, M.. 1979. Recent advances in the study of scale insects. Annual Review of Entomology 24:1–27.CrossRefGoogle Scholar
Mittler, T. E. 1958. Studies on the feeding and nutrition of Tuberolachnus salignus (Gmelin) (Homoptera, Aphididae). 11. The nitrogen and sugar composition of ingested phloem sap and excreted honeydew. Journal of Experimental Biology. 35: 74–84.Google Scholar
Mole, S., and Zera, A. J.. 1993. Differential allocation of resources underlies the dispersal-reproduction trade-off in the wing-dimorphic cricket, Gryllus rubens. Oecologia 93:121–127.CrossRefGoogle ScholarPubMed
Mole, S., and Zera, A. J.. 1994. Differential resource consumption obviates a potential flight fecundity trade-off in the sand cricket (Gryllus firmus). Functional Ecology 8:573–580.CrossRefGoogle Scholar
Molyneux, R. J., Campbell, B. C., and Dreyer, D. L.. 1990. Honeydew analysis for detecting phloem transport of plant natural products: implications for host plant resistance to sap sucking insects. Journal of Chemical Ecology 16:1899–1909.CrossRefGoogle ScholarPubMed
Mondor, E. B., Roitberg, B. D., and Stadler, B.. 2002. Cornicle length in Macrosiphini aphids: a comparison of ecological traits. Ecological Entomology 27:758–762.CrossRefGoogle Scholar
Montllor, C. B. 1991. The influence of plant chemistry on aphid feeding behavior. In Insect Plant Interactions, ed. Bernays, E., pp. 125–173. Boston: CRC Press.Google Scholar
Mooney, K. A. and Tillberg, C. V.. 2005. Temporal and spatial variation to ant omnivory in pine forests. Ecology 86:1225–1235.CrossRefGoogle Scholar
Morales, M. A. 2000a. Mechanisms and density dependence of benefit in an ant-membracid mutualism. Ecology 81:482–489.Google Scholar
Morales, M. A. 2000b. Survivorship of an ant-tended membracid as a function of ant recruitment. Oikos 90:469–476.CrossRefGoogle Scholar
Morales, M. A. 2002. Ant-dependent oviposition in the membracid Publilia concava. Ecological Entomology 27:247–250.CrossRefGoogle Scholar
Moran, N. 1992. The evolution of aphid life cycles. Annual Review of Entomology 37:321–348.CrossRefGoogle Scholar
Morris, W. F., Bronstein, J. L., and Wilson, W. G.. 2003. Three-way coexistence in obligate mutualist-exploiter interactions: the potential role of competition. American Naturalist 161:860–875.CrossRefGoogle Scholar
Morrison, L. W. 2002. Island biogeography and metapopulation dynamics of Bahamian ants. Journal of Biogeography 29:387–394.CrossRefGoogle Scholar
Mouquet, N., and Loreau, M.. 2002. Coexistence in metacommunities: the regional similarity hypothesis. American Naturalist 159:420–426.CrossRefGoogle ScholarPubMed
Mouquet, N., and Loreau, M.. 2003. Community patterns in source-sink metacommunities. American Naturalist 162:544–557.CrossRefGoogle ScholarPubMed
Mousseau, T. A., and Dingle, H.. 1991. Maternal effects in insect life histories. Annual Review of Entomology 36:511–534.CrossRefGoogle Scholar
Mousseau, T. A., and Fox, C. W.. 1998. The adaptive significance of maternal effects. Trends in Ecology and Evolution 13:403–407.CrossRefGoogle ScholarPubMed
Mueller, U. G., Schultz, T. R., Currie, C. R., Adams, R. M. M., and Malloch, D.. 2001. The origin of the attine ant-fungus mutualism. Quarterly Review of Biology 76:169–197.CrossRefGoogle ScholarPubMed
Müller, C. B., and Godfray, H. C. J.. 1997. Apparent competition between two aphid species. Journal of Animal Ecology 66:57–64.CrossRefGoogle Scholar
Müller, C. B., and Godfray, H. C. J.. 1999. Predators and mutualists influence the exclusion of aphid species from natural communities. Oecologia 119:120–125.Google ScholarPubMed
Muller-Landau, H. C., Levin, S. A., and Keymer, J. E.. 2003. Theoretical perspectives on evolution of long-distance dispersal and the example of specialized pests. Ecology 84:1957–1967.CrossRefGoogle Scholar
Murdoch, W. W. 1994. Population regulation in theory and practice. Ecology 75:271–287.CrossRefGoogle Scholar
Murdoch, W. W., Briggs, C. J., and Nisbet, R. M.. 2003. Consumer-Resource Dynamics. Oxford: Princeton University Press.Google Scholar
Murray, B. G. 1999. Can the population regulation controversy be buried and forgotten?Oikos 84:148–152.CrossRefGoogle Scholar
Nee, S., and May, R. M.. 1992. Dynamics of metapopulations: habitat destruction and competitive coexistence. Journal of Animal Ecology 61:37–40.CrossRefGoogle Scholar
Neuhauser, C., and Fargione, J. E.. 2004. A mutualism-parasitism continuum model and its application to plant-mycorrhizae interactions. Ecological Modelling 177:337–352.CrossRefGoogle Scholar
Nice, C. C., Fordyce, J. A., Shapiro, A. M., and Ffrench-Constant, R.. 2002. Lack of evidence for reproductive isolation among ecologically specialised lycaenid butterflies. Ecological Entomology 27:702–712.CrossRefGoogle Scholar
Nicholson, A. J. 1933. The balance of animal populations. Journal of Animal Ecology 38:131–178.CrossRefGoogle Scholar
Nicholson, A. J., and Bailey, V. A.. 1935. The balance of animal populations. Proceedings of the Zoological Society of London 3:551–598.CrossRefGoogle Scholar
Nixon, G. E. J. 1951. The Association of Ants with Aphids and Coccids. London: Commonwealth Institute of Entomology.Google Scholar
Noe, R., and Hammerstein, P.. 1994. Biological markets: supply and demand determine the effect of partner choice in cooperation, mutualism and mating. Behavioral Ecology and Sociobiology 35:1–11.CrossRefGoogle Scholar
Noe, R., and Hammerstein, P.. 1995. Biological markets. Trends in Ecology and Evolution 10:336–339.CrossRefGoogle ScholarPubMed
Nonacs, P., and Calabi, P.. 1992. Competition and predation risk: their perception alone affects ant colony growth. Proceedings of the Royal Entomological Society of London Series B 249:95–99.CrossRefGoogle Scholar
Nonacs, P., and Dill, L. M.. 1990. Mortality risk vs. food quality trade-offs in a common currency: ant patch preferences. Ecology 71:1886–1892.CrossRefGoogle Scholar
Nonacs, P., and Dill, L. M.. 1991. Mortality risk versus food quality trade-offs in ants: patch use over time. Ecological Entomology 16:73–80.CrossRefGoogle Scholar
Nowak, M. A., and May, R. M.. 1992. Evolutionary games and spatial chaos. Nature 359:826–829.CrossRefGoogle Scholar
Nowak, M. A., Bonhoeffer, S., and May, R. M.. 1994. Spatial games and the maintenance of cooperation. Proceedings of the National Academy of Sciences 91:4877–4881.CrossRefGoogle ScholarPubMed
Nuismer, S. L., Gomulkiewicz, R., and Morgan, M. T.. 2003. Coevolution in temporally variable environments. American Naturalist 162:195–204.CrossRefGoogle ScholarPubMed
O'Dowd, D. J., and Catchpole, E. A.. 1983. Ants and extrafloral nectaries: no evidence for plant protection in Helichrysum spp. – ant interactions. Oecologia 59:191–200.CrossRefGoogle ScholarPubMed
Offenberg, J. 2000. Correlated evolution of the association between aphids and ants and the association between aphids and plants with extrafloral nectaries. Oikos 91:146–152.CrossRefGoogle Scholar
Offenberg, J. 2001. Balancing between mutualism and exploitation: the symbiotic interaction between Lasius ants and aphids. Behavioral Ecology and Sociobiology 49:304–310.CrossRefGoogle Scholar
Oliveira, P. S., and Freitas, A. V. L.. 2004. Ant-plant-herbivore interactions in the neotropical cerrado savanna. Naturwissenschaften 91:557–570.CrossRefGoogle ScholarPubMed
Olmstead, K. L., and Wood, T. K.. 1990. The effect of clutch size and ant-attendance on egg guarding by Entylia bactriana (Homoptera: Membracidae). Psyche 97:111–119.CrossRefGoogle Scholar
Osborn, F., and Jaffe, K.. 1997. Cooperation vs. exploitation: interactions between Lycaenid (Lepidoptera: Lycaenidae) larvae and ants. Journal of Research on the Lepidoptera 34:69–82.Google Scholar
Oster, G. F., and Wilson, E. O.. 1978. Caste and Ecology in the Social Insects. Princeton: Princton University Press.Google ScholarPubMed
Parvinen, K., Dieckmann, U., Gyllenberg, M., and Metz, J. A. J.. 2003. Evolution of dispersal in metapopulations with local density dependence and demographic stochasticity. Journal of Evolutionary Biology 16:143–153.CrossRefGoogle ScholarPubMed
Pemberton, R. W. 1998. The occurrence and abundance of plants with extrafloral nectaries, the basis for antiherbivore defensive mutualisms, along a latitudinal gradient in east Asia. Journal of Biogeography 25:661–668.CrossRefGoogle Scholar
Petersen, M. K., and Sandström, J. P.. 2001. Outcome of indirect competition between two aphid species mediated by responses in their common host plant. Functional Ecology 15:525–534.CrossRefGoogle Scholar
Peterson, M. A. 1995. Unpredictability in the facultative association between larvae of Euphilotes enoptes (Lepidoptera: Lycaenidae) and ants. Biological Journal of the Linnean Scociety. 55:209–223.Google Scholar
Pierce, N. E. 1985. Lycaenid butterflies and ants: selection for nitrogen-fixing and other protein rich food plants. American Naturalist 125:888–895.CrossRefGoogle Scholar
Pierce, N. E. 1987. The evolution of biogeography of associations between lycaenid butterflies and ants. In Oxford Surveys in Evolutionary Biology, vol. 4, ed. Harvey, P. H. and Partridge, L., pp. 89–116. Oxford: Oxford University Press.Google Scholar
Pierce, N. E., and Easteal, S.. 1986. The selective advantage of attendant ants for the larvae of a lycaenid butterfly, Glaucopsyche lygdamus. Journal of Animal Ecology 55:451–462.CrossRefGoogle Scholar
Pierce, N. E., and Elgar, M. A.. 1985. The influence of ants on host plant selection by Jalmenus evagoras, a myrmecophilous lycaenid butterfly. Behavioral Ecology and Sociobiology 16:209–222.CrossRefGoogle Scholar
Pierce, N. E., and Young, W. R.. 1986. Lycaenid butterflies and ants. Two-species stable equilibria in mutualistic, commensal, and parasitic interactions. American Naturalist 128:216–227.CrossRefGoogle Scholar
Pierce, N. E., Braby, M. F., Heath, A., Lohman, D. J., Mathew, J., Rand, D. B., and Travassos, M. A.. 2002. The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annual Review of Entomology 47:733–771.CrossRefGoogle Scholar
Pierce, N. E., Kitching, R. L., Buckley, R. C., Taylor, M. F. J., and Benbow, K. F.. 1987. The costs and benefits of cooperation between the Australian lycaenid butterfly, Jalmenus evagoras, and its attendant ants. Behavioral Ecology and Sociobiology 21:237–248.CrossRefGoogle Scholar
Plantegenest, M., and Kindlmann, P.. 1999. Evolutionarily stable strategies of migration in heterogeneous environments. Evolutionary Ecology 13:229–244.CrossRefGoogle Scholar
Poethke, H. J., and Hovestadt, T.. 2002. Evolution of density-and patch-size-dependent dispersal rates. Proceedings of the Royal Society of London Series B 269:637–645.CrossRefGoogle ScholarPubMed
Polis, G. A., Anderson, W. B., and Holt, R. D.. 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics 28:289–316.CrossRefGoogle Scholar
Ponsen, M. B. 1991. Structure of the digestive system of aphids. Wageningen Agricultural University Papers 91:1–61.Google Scholar
Pontin, A. J. 1978. The number and distribution of subterranean aphids and their exploitation by the ant Lasius flavus (Fabr.). Ecological Entomology 3:203–207.CrossRefGoogle Scholar
Porter, S. D., and Savignano, D. A.. 1990. Invasion of polygyne fire ants decimates native ants and disrupts arthropod community. Ecology 71:2095–2106.CrossRefGoogle Scholar
Portha, S., Deneubourg, J.-L., and Detrain, C.. 2002. Self-organized asymmetries in ant foraging: a functional response to food type and colony needs. Behavioural Ecology 13:776–781.CrossRefGoogle Scholar
Portha, S., Deneubourg, J. L., and Detrain, C.. 2004. How food type and brood influence foraging decisions of Lasius niger scouts. Animal Behaviour 68:115–122.CrossRefGoogle Scholar
Poveda, K., Steffan-Dewenter, I., Scheu, S., and Tscharntke, T.. 2005. Effects of decomposers and herbivores on plant performance and aboveground plant-insect interactions. Oikos 108:503–510.CrossRefGoogle Scholar
Power, M. E. 1992. Top-down and bottom-up forces in food webs: do plants have primacy?Ecology 73:733–746.CrossRefGoogle Scholar
Prado, E., and Tjallingii, W. F.. 1997. Effects of previous plant infestation on sieve element acceptance by two aphids. Entomologia Experimentalis et Applicata 82:189–200.CrossRefGoogle Scholar
Price, P. W. 1991. The plant vigor hypothesis and herbivore attack. Oikos 62:244–251.CrossRefGoogle Scholar
Price, P. W. 1997. Insect Ecology, 3rd edition. New York: Wiley & Sons.Google Scholar
Price, P. W. 2002. Resource-driven terrestrial interaction webs. Ecological Research 17:241–247.CrossRefGoogle Scholar
Prins, A. H., Vrieling, K., Klinkhamer, P. G. L., and Jong, T. J.. 1990. Flowering behaviour of Senecio jacobaea: effects of nutrient availability and size-dependent vernalization. Oikos 59:248–252.CrossRefGoogle Scholar
Punttila, P. 1996. Succession, forest fragmentation, and the distribution of wood ants. Oikos 75:291–298.CrossRefGoogle Scholar
Punttila, P., Haila, Y., Pajunen, T., and Tukia, H.. 1991. Colonization of clear-cut forests by ants in the Southern Finnish Taiga – a quantitative survey. Oikos 61:250–262.CrossRefGoogle Scholar
Rai, B., Freedman, H. I., and Addicott, J. F.. 1983. Analysis of three species models of mutualism in predator-prey and competitive systems. Mathematical Biosciences 65:13–50.CrossRefGoogle Scholar
Rankin, M. A., and Burchsted, J. C. A.. 1992. The cost of migration in insects. Annual Review of Entomology 37:533–559.CrossRefGoogle Scholar
Raven, J. A. 1983. Phytophages of xylem and phloem: a comparison of animal and plant sap-feeders. Advances in Ecological Research 13:136–234.Google Scholar
Remaudière, G., and Remaudière, M.. 1997. Catalogue of the World's Aphididae. Paris: INRA.Google Scholar
Renault, C. K., Buffa, L. M., and Delfino, M. A.. 2005. An aphid-ant interaction: effects on different trophic levels. Ecological Research 20:71–74.CrossRefGoogle Scholar
Retana, J., Cerda, X., Alsina, A., and Bosch, J.. 1988. Field observations of the ant Camponotus sylvaticus (Hym., Formicidae): diet and activity patterns. Acta Oecologica 9:101–109.Google Scholar
Rhodes, J. D., Croghan, P. C., and Dixon, A. F. G.. 1996. Uptake, excretion and respiration of sucrose and amino acids by the pea aphid Acyrthosiphon pisum. Journal of Experimental Biology 199:1269–1276.Google ScholarPubMed
Rhodes, J. D., Croghan, P. C., and Dixon, A. F. G.. 1997. Dietary sucrose and oligosaccharide synthesis in relation to osmoregulation in the pea aphid, Acyrthosiphon pisum. Physiological Entomology 22:373–379.CrossRefGoogle Scholar
Ricker, W. E. 1954. Stock and recruitment. Journal of the FisheriesBoard of Canada 11:559–623.Google Scholar
Rissing, S., Pollock, G., Higgins, M., Hagen, R. and Smith, D.. 1989. Foraging specialization without relatedness or dominance among co-founding ant queens. Nature 338: 420–422.CrossRefGoogle Scholar
Ritchie, M. G., Butlin, R. K., and Hewitt, G. M.. 1987. Causation, fitness effects and morphology of macropterism in Chorthippus parallelus (Orthoptera: Acrididae). Ecological Entomology 12:209–218.CrossRefGoogle Scholar
Robbins, R. K. 1991. Cost and evolution of a facultative mutualism between ants and lycaenid larvae (Lepidoptera). Oikos 62:363–369.CrossRefGoogle Scholar
Roche, R. K., and Wheeler, D. A.. 1997. Morphological specialization of the digestive tract of Zacryptocerus rohweri (Hymenoptera: Formicidae). Journal of Morphology 234:253–262.3.0.CO;2-A>CrossRefGoogle Scholar
Roff, D. A. 1984. The cost of being able to fly: a study of wing polymorphism in two species of crickets. Oecologia 63:30–37.CrossRefGoogle ScholarPubMed
Roff, D. A. 1986. The evolution of wing dimorphism in insects. Evolution 40:1009–1020.CrossRefGoogle ScholarPubMed
Roff, D. A. 1990. The evolution of flightlessness in insects. Ecological Monographs 60:389–421.CrossRefGoogle Scholar
Roff, D. A. 1994. Habitat persistence and the evolution of wing dimorphism in insects. American Naturalist 144:772–798.CrossRefGoogle Scholar
Rosengren, R., and Pamilo, P.. 1983. The evolution of polygyny and polydomy in mound building Formica ants. Acta Entomologica Fennici 42:65–77.Google Scholar
Rosengren, R., and L. Sundström. 1991. The interaction between red wood ants, Cinara aphids, and pines. A ghost of mutualism past? In Ant-plant Interactions, ed. Huxley, C. R. and Cutler, D. F., pp. 81–91. Oxford: Oxford University Press.Google Scholar
Rosenzweig, M. L. 1995. Species Diversity in Space and Time. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Ruf, C., Freese, A., and Fiedler, K.. 2003. Larval sociality in three species of central-place foraging lappet moths (Lepidoptera: Lasiocampidae): a comparative survey. Zoologischer Anzeiger 242:209–222.CrossRefGoogle Scholar
Sakata, H. 1994. How an ant decides to prey on or attend aphids. Researches on Population Ecology. 36:45–51.CrossRefGoogle Scholar
Sakata, H. 1995. Density-dependent predation of the ant Lasius niger (Hymenoptera: Formicidae) on two attended aphids Lachnus tropicalis and Myzocallis kuricola (Homoptera: Aphididae). Researches on Population Ecology 37:159–164.CrossRefGoogle Scholar
Sakata, H. 1999. Indirect interactions between two aphid species in relation to ant-attendance. Ecological Research 14:329–340.CrossRefGoogle Scholar
Sakata, H., and Hashimoto, Y.. 2000. Should aphids attract or repel ants? Effect of rival aphids and extrafloral nectaries on ant-aphid interactions. Population Ecology 42:171–178.CrossRefGoogle Scholar
Sandström, J. P., and Moran, N. A.. 2001. Amino acid budgets in three aphid species using the same host plant. Physiological Entomology 26:202–211.CrossRefGoogle Scholar
Sandström, J., Telang, A., and Moran, N. A.. 2000. Nutritional enhancement of host plants by aphids: a comparison of three aphid species on grasses. Journal of Insect Physiology 46:33–40.CrossRefGoogle ScholarPubMed
Scheu, S., Theenhaus, A., and Jones, T. H.. 1999. Links between the detritivore and the herbivore system: effects of earthworms and Collembola on plant growth and aphid development. Oecologia 119:541–551.CrossRefGoogle ScholarPubMed
Schmidt, M. H., Lauer, A., Purtauf, T., Thies, C., Schaefer, M., and Tscharntke, T.. 2003. Relative importance of predators and parasitoids for cereal aphid control. Proceedings of the Royal Society of London Series B-Biological Sciences 270:1905–1909.CrossRefGoogle ScholarPubMed
Schoener, T. W. 1986. Mechanistic approaches to community ecology: a new reductionism. American Zoologist 26:81–106.CrossRefGoogle Scholar
Seppa, P., Sundstrom, L., and Punttila, P.. 1995. Facultative polygyny and habitat succession in boreal ants. Biological Journal of the Linnean Society 56:533–551.CrossRefGoogle Scholar
Seufert, P., and Fiedler, K.. 1996a. The influence of ants on patterns of colonization and establishment within a set of coexisting lycaenid butterflies in a south-east Asian tropical rain forest. Oecologia 106:127–136.CrossRefGoogle Scholar
Seufert, P., and Fiedler, K.. 1996b. Life-history diversity and local co-existence of three closely related lycaenid butterflies (Lepidoptera: Lycaenidae) in Malaysian rainforests. Zoologischer Anzeiger 234:229–239.Google Scholar
Seufert, P., and Fiedler, K.. 1999. Myrmecophily and parasitoid infestation of south-east Asian lycaenid butterfly larvae. Ecotropica 5: 59–64.Google Scholar
Shenk, T. M., White, G. C., and Burnham, K. P.. 1998. Sampling-variance effects on detecting density dependence from temporal trends in natural populations. Ecological Monographs 68:445–463.CrossRefGoogle Scholar
Shields, O. 1989. World numbers of butterflies. Journal of the Lepidopterists' Society 43:178–183.Google Scholar
Shingleton, A. W., and Foster, W. A.. 2000. Ant tending influences soldier production in a social aphid. Proceedings of the Royal Society of London Series B 267:1863–1868.CrossRefGoogle Scholar
Shingleton, A. W., and Stern, D. L.. 2003. Molecular phylogenetic evidence for multiple gains or losses of ant mutualism within the aphid genus Chaitophorus. Molecular Phylogenetics and Evolution 26:26–35.CrossRefGoogle ScholarPubMed
Shingleton, A. W., Stern, D. L., and Foster, W. A.. 2005. The origin of a mutualism: a morphological trait promoting the evolution of ant-aphid mutualisms. Evolution 59:921–926.CrossRefGoogle ScholarPubMed
Skinner, G. J., and Whittaker, J. B.. 1981. An experimental investigation of interrelationships between the wood-ant (Formica rufa) and some tree canopy herbivores. Journal of Animal Ecology 50:313–326.CrossRefGoogle Scholar
Sloggett, J. J., and Majerus, M. E. N. 2000. Habitat preferences and diet in the predatory Coccinellidae: an evolutionary perspective. Biological Journal of the Linnean Society 70:63–88.CrossRefGoogle Scholar
Sloggett, J. J., and Majerus, M. E. N.. 2003. Adaptations of Coccinella magnifica, a myrmecophilous coccinellid to aggression by wood ants (Formica rufa group). II. Larval behaviour, and ladybird oviposition location. European Journal of Entomology 100:337–344.CrossRefGoogle Scholar
Sloggett, J. J., Wood, R. A., and Majerus, M.. 1998. Adaptation of Cocinella magnifica Redtenbacher, a myrmecophilous coccinellid, to aggression by wood ants (Formica rufa group). I. Adult behavioral adaptation, its ecological context and evolution. Journal of Insect Behaviour 11:889–904.CrossRefGoogle Scholar
Smiley, J. T., Atsatt, P. R., and Pierce, N. E.. 1988. Local distribution of the lycaenid butterfly, Jalmenus evagoras, in response to host ants and plants. Oecologia 76:416–422.CrossRefGoogle ScholarPubMed
Sober, E. and Wilson, D. S. 1998. Unto Others. Cambridge, MA: Harvard University Press.Google Scholar
Solbreck, C. 1986. Wing and flight muscle polymorphism in a lygaeid bug, Horvathiolus gibbicollis: determinants and life-history consequences. Ecological Entomology 11:435–444.CrossRefGoogle Scholar
Southwood, T. R. E. 1962. Migration of terrestrial arthropods in relation to habitat. Biological Reviews of the Cambridge Philosophical Society 37: 171–214.CrossRefGoogle Scholar
Stachowicz, J. J. 2001. Mutualism, facilitation, and the structure of ecological communities. BioScience 51:235–246.CrossRefGoogle Scholar
Stacy, P. B., V. A. Johnson, and M. L. Taper. 1997. Migration within metapopulations: the impact upon local population dynamics. In Metapopulation Biology, ed. Hanski, I. A. and Gilpin, M. E., pp. 267–291. San Diego: Academic Press.Google Scholar
Stadler, B. 1995. Adaptive allocation of resources and life-history trade-offs in aphids relative to plant quality. Oecologia 102:246–254.CrossRefGoogle ScholarPubMed
Stadler, B. 2002. Determinants of the size of aphid-parasitoid assemblages. Journal of Applied Entomology 126:258–264.CrossRefGoogle Scholar
Stadler, B. 2004. Wedged between bottom-up and top-down processes: aphids on tansy. Ecological Entomology 29:106–116.CrossRefGoogle Scholar
Stadler, B., and Dixon, A. F. G.. 1998a. Costs of ant-attendance for aphids. Journal of Animal Ecology 67:454–459.CrossRefGoogle Scholar
Stadler, B., and A. F. G. Dixon. 1998b. Why are obligate mutualistic interactions between aphids and ants so rare? In Aphids in Natural and Managed Ecosystems, ed. NietoNafria, J. M. and Dixon, A. F. G., pp. 271–278. Leon: University of Leon.Google Scholar
Stadler, B., and Dixon, A. F. G.. 2005. Ecology and evolution of aphid-ant interactions. Annual Review of Ecology, Evolution and Systematics 36:345–372.CrossRefGoogle Scholar
Stadler, B., Dixon, A. F. G., and Kindlmann, P.. 2002. Relative fitness of aphids: effects of plant quality and ants. Ecology Letters 5:216–222.CrossRefGoogle Scholar
Stadler, B., Fiedler, K., Kawecki, T. J., and Weisser, W. W.. 2001. Costs and benefits for phytophagous myrmecophiles: when ants are not always available. Oikos 92:467–478.CrossRefGoogle Scholar
Stadler, B., Kindlmann, P., Šmilauer, P., and Fiedler, K.. 2003. A comparative analysis of morphological and ecological characters of European aphids and lycaenids in relation to ant-attendance. Oecologia 135:422–430.CrossRefGoogle ScholarPubMed
Stadler, B., Michalzik, B., and Müller, T.. 1998. Linking aphid ecology with nutrient fluxes in a coniferous forest. Ecology 79:1514–1525.CrossRefGoogle Scholar
Stadler, B, Müller, T., and Orwig, D.. 2006a. The ecology of energy and nutrient fluxes in hemlock forest invaded by hemlock woolly adelgid. Ecology, 87: 1792–1804.CrossRefGoogle Scholar
Stadler, B., Schramm, A., and Kalbitz, K.. 2006b. Ant-mediated effects on spruce litter decomposition, solution chemistry, and microbial activity. Soil Biology Biochemistry 38:561–572.CrossRefGoogle Scholar
Stanton, M. L. 2003. Interacting guilds: moving beyond the pairwise perspective on mutualisms. American Naturalist 162:S10–S23.CrossRefGoogle ScholarPubMed
Stanton, M. L., Palmer, T. M., and Young, T. P.. 2002. Competition-colonization trade-offs in a guild of African Acacia ants. Ecological Monographs 72:347–363.Google Scholar
Stern, D. L., and Foster, W. A.. 1996. The evolution of soldiers in aphids. Biological Review 71:29–79.CrossRefGoogle ScholarPubMed
Stern, D. L., and W. A. Foster. 1997. The evolution of sociality in aphids: a clone's-eye view. In The Evolution of Social Behavior in Insects and Arachnids, ed. Choe, J. and Crespi, B., pp. 150–165. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Stern, D. L., Aoki, S., and Kurosu, D. U.. 1995. The life-cycle and natural history of the tropical aphid Cerataphis fransseni (Homoptera, Aphididae, Hormaphidinae), with reference to the evolution of host alternation in aphids. Journal of Natural History 29:231–242.CrossRefGoogle Scholar
Stradling, D. J. 1987. Nutritional ecology of ants. In Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates, ed. Slansky, F. and Rodriguez, J. G., pp. 927–969. New York: Wiley-Interscience.Google Scholar
Strauss, S. Y. 1987. Direct and indirect effects of host-plant fertilization on an insect community. Ecology 68:1670–1678.CrossRefGoogle ScholarPubMed
Straw, N. A., and Green, G.. 2001. Interactions between green spruce aphid Elatobium abietinum (Walker) and Norway and Sitka spruce under high and low nutrient conditions. Agricultural and Forest Entomology 3:263–274.CrossRefGoogle Scholar
Sudd, J. H. 1983. The distribution of foraging wood-ants (Formica lugubris Zett) in relation to the distribution of aphids. Insectes Sociaux 30: 298–307.CrossRefGoogle Scholar
Sudd, J. H., and Sudd, M. E.. 1985. Seasonal changes in the response of wood-ants (Formica lugubris) to sucrose baits. Ecological Entomology 10:89–97.CrossRefGoogle Scholar
Szentesi, A., and Wink, M.. 1991. Fate of quinolizidine alkaloids through 3 trophic levels – Laburnum anagyroides (Leguminosae) and associated organisms. Journal of Chemical Ecology 17:1557–1573.CrossRefGoogle ScholarPubMed
Takada, H., and Hashimoto, Y.. 1985. Association of the root aphid parasitoids Aclitus sappaphis and Paralipsis eikoae (Hymenoptera, Aphidiidae) with the aphid-attending ants Pheidole fervida and Lasius niger (Hymenoptera, Formicidae). Kontyu, Tokyo 53:150–160.Google Scholar
Taylor, F. 1977. Foraging behaviour of ants: experiments with two species of myrmecine ants. Behavioral Ecology and Sociobiology 2:147–167.CrossRefGoogle Scholar
Taylor, R. W. 1978. Nothomyrmecia macrops: a living-fossil ant rediscovered. Science 201: 979–985.CrossRefGoogle ScholarPubMed
Telang, A., Sandstrom, J., Dyreson, E., and Moran, N. A.. 1999. Feeding damage by Diuraphis noxia results in a nutritionally enhanced phloem diet. Entomologia Experimentalis et Applicata 91:403–412.CrossRefGoogle Scholar
Thomas, J. A., Elmes, G. W., Clarke, R. T., Kim, K. G., Munguira, M. L., and Hochberg, M. E.. 1997. Field evidence and model predictions of butterfly-mediated apparent competition between gentian plants and red ants. Acta Oecologica-International Journal of Ecology 18:671–684.CrossRefGoogle Scholar
Thompson, J. N. 1994. The Coevolutionary Process. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Thompson, J. N. 1997. Evaluating the dynamics of coevolution among geographically structured populations. Ecology 78:1619–1623.CrossRefGoogle Scholar
Thompson, J. N. 1999. Specific hypotheses on the geographic mosaic of coevolution. American Naturalist 153:S1–S14.CrossRefGoogle Scholar
Thompson, J. N., and Cunningham, B. M.. 2002. Geographic structure and dynamics of coevolutionary selection. Nature 417:735–738.CrossRefGoogle ScholarPubMed
Thompson, W. R. 1924. La theory mathematique de l'action des parasites entomophages et le facteur du hassard. Annales Faculté des Sciences de Marseille 2:69–89.Google Scholar
Tilman, D. 1994. Competition and biodiversity in spatially structured habitats. Ecology 75:2–16.CrossRefGoogle Scholar
Tobin, J. E. 1991. A neotropical rainforest canopy, ant community: some ecological considerations, In Ant-plant Interactions, ed. Huxley, C. R. and Cutler, D. F., pp. 536–538. Oxford: Oxford University Press.Google Scholar
Tobin, J. E. 1993. Ants as primary consumers: diet and abundance in the Formicidae. In Nourishment and Evolution in Insect Societies, ed. Hunt, J. A. and Nalepa, C. A., pp. 279–307. Boulder, CO: Westview Press.Google Scholar
Todes, D. P. 1987. Darwin's Malthusian Metaphor and Russian evolutionary thought, 1859–1917. Isis 78: 537–551.CrossRefGoogle ScholarPubMed
Toft, S. 1995. Value of the aphid Rhopalosiphum padi as food for cereal spiders. Journal of Applied Ecology 32:552–560.CrossRefGoogle Scholar
Tremblay, E. 1989. Coccoidea endocytobiosis. In Insect Endocytobiosis: Morphology, Physiology, Genetics, Evolution, ed. Schwemmler, W. and Gassner, G., pp. 145–173. Boca Raton: CRC Press.CrossRef
Trivers, R. 1971. The evolution of reciprocal altruism. Quarterly Review of Biology 46:35–57.CrossRefGoogle Scholar
Tscharntke, T., and Brandl, R.. 2004. Plant-insect interactions in fragmented landscapes. Annual Review of Entomology 49:405–430.CrossRefGoogle ScholarPubMed
Tsutsui, N. D., and Suarez, A. V.. 2003. The colony structure and population biology of invasive ants. Conservation Biology 17:48–58.CrossRefGoogle Scholar
Turchin, P. 1999. Population regulation: a synthetic view. Oikos, 84: 153–159.CrossRefGoogle Scholar
Turchin, P. 2001. Does population ecology have general laws?Oikos 94:17–26.CrossRefGoogle Scholar
Turchin, P. 2003. Complex Population Dynamics. Princeton: Princeton University Press.Google Scholar
Turchin, P., and Berryman, A. A.. 2000. Detecting cycles and delayed density dependence: a comment on Hunter & Price (1998). Ecological Entomology 25:119–121.CrossRefGoogle Scholar
Vandermeer, J. H. and Goldberg, D. E.. 2003. Population Ecology. Princeton: Princeton University Press.Google Scholar
Ham, R., Kamerbeek, J., Palacios, C., et al. 2003. Reductive genome evolution in Buchnera aphidicola. Proceedings of the National Academy of Sciences 100:581–586.Google ScholarPubMed
Vepsalainen, K., and Savolainen, R.. 1990. The effect of interference by Formicine ants on the foraging of Myrmica. Journal of Animal Ecology 59:643–654.CrossRefGoogle Scholar
Vepsalainen, K., Savolainen, R., Tiainen, J., and Vilen, J.. 2000. Successional changes of ant assemblages: from virgin and ditched bogs to forests. Annales Zoologici Fennici 37:135–149.Google Scholar
Verhulst, P. F. 1838. Notices sur la loi que la population suit dans son croissement. Correspondance Mathématique et Physique 10:113–121.Google Scholar
Völkl, W. 1992. Aphids or their parasitoids: who actually benefits from ant-attendance?Journal of Animal Ecology 61:273–281.CrossRefGoogle Scholar
Völkl, W. 1995. Behavioral and morphological adaptations of the coccinellid, Platynaspis luteorubra for exploiting ant-attended resources (Coleoptera: Coccinellidae). Journal of Insect Behaviour 8:653–670.CrossRefGoogle Scholar
Völkl, W., and Vohland, K.. 1996. Wax covers in larvae of two Scymnus species: do they enhance coccinellid larval survival?Oecologia 107:498–503.CrossRefGoogle ScholarPubMed
Völkl, W., Woodring, J., Fischer, M., Lorenz, M. W., and Hoffmann, K. H.. 1999. Ant-aphid mutualisms: the impact of honeydew production and honeydew sugar composition on ant preferences. Oecologia 118:483–491.Google ScholarPubMed
Volterra, V. 1926. Fluctuation in the abundance of a species considered mathematically. Nature 118:558–560.CrossRefGoogle Scholar
Dohlen, C. D., and Moran, N. A.. 1995. Molecular phylogeny of the Homoptera: a paraphyletic taxon. Journal of Molecular Evolution 41:211–223.CrossRefGoogle Scholar
Vrieling, K., Smit, W. and Vandermeijden, E.. 1991. Tritrophic interactions between aphids (Aphis jacobaeae Schrank), ant species, Tyria jacobaeae L., and Senecio jacobaea L. lead to maintenance of genetic variation in pyrrolizidine alkaloid concentration. Oecologia, 86: 177–182.CrossRefGoogle Scholar
Wagner, D. 1993. Species-specific effects of tending ants on the development of lycaenid butterfly larvae. Oecologia 96:276–281.CrossRefGoogle ScholarPubMed
Wagner, D. L., and Liebherr, J. K.. 1992. Flightlessness in Insects. Trends in Ecology and Evolution 7:216–220.CrossRefGoogle ScholarPubMed
Waloff, N. 1983. Absence of wing polymorphism in the arboreal, phytophagous species of some taxa of temperate Hemiptera: an hypothesis. Ecological Entomology 8:229–232.CrossRefGoogle Scholar
Walters, K. F. A., and Dixon, A. F. G.. 1983. Migratory urge and reproductive investment in aphids: variation within clones. Oecologia 58:70–75.CrossRefGoogle ScholarPubMed
Ward, S. A., Leather, S. R., Pickup, J. and Harrington, R.. 1998. Mortality during dispersal and the cost of host-specificity in parasites: how many aphids find hosts?Journal of Animal Ecology 67:763–773.CrossRefGoogle Scholar
Wardle, D. A. 2002. Communities and Ecosystems: Linking the Aboveground and Belowground Components. Princeton: Princeton University Press.Google Scholar
Watt, A. D., and Dixon, A. F. G.. 1981. The role of cereal growth stages and crowding in the induction of alatae in Sitobion avenae and its consequences for population growth. Ecological Entomology 6:441–447.CrossRefGoogle Scholar
Way, M. J. 1963. Mutualism between ants and honeydew-producing Homoptera. Annual Review of Entomology 8:307–344.CrossRefGoogle Scholar
Weisser, W. W. 2000. Metapopulation dynamics in an aphid-parasitoid system. Entomologia Experimentalis et Applicata 97:83–92.CrossRefGoogle Scholar
Weisser, W. W., Braendle, C., and Minoretti, N.. 1999. Predator-induced morphological shift in the pea aphid. Proceedings of the Royal Society of London Series B 266:1175–1181.CrossRefGoogle Scholar
Wheeler, W. M. 1910. Ants: Their structure, Development and Behaviour. New York: Columbia University Press.Google Scholar
White, T. C. R. 1969. An index to measure weather-induced stress of trees associated with outbreaks of psyllids in Australia. Ecology 50:905–909.CrossRefGoogle Scholar
White, T. C. R. 1978. The importance of relative shortage of food in animal ecology. Oecologia 33:71–86.CrossRefGoogle ScholarPubMed
White, T. C. R. 1984. The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia 63:90–105.CrossRefGoogle ScholarPubMed
White, T. C. R. 2004. Limitation of populations by weather-driven changes in food: a challenge to density-dependent regulation. Oikos 105:664–666.CrossRefGoogle Scholar
Wiens, J. A. 1977. On competition and variable environments. American Scientist 65:590–597.Google Scholar
Wilkinson, T. L., Fukatsu, T., and Ishikawa, H.. 2003. Transmission of symbiotic bacteria Buchnera to parthenogenetic embryos in the aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea). Arthropod Structure and Development 32:241–245.CrossRefGoogle Scholar
Williams, G. C. 1966. Adaptation and Natural Selection. Princeton: Princeton University Press.Google Scholar
Wilson, D. S. 1975. Theory of group selection. Proceedings of the National Academy of Sciences 72:143–146.CrossRefGoogle ScholarPubMed
Wilson, D. S. 1983. The group selection controversy: history and current status. Annual Review of Ecology and Systematics 14:159–187.CrossRefGoogle Scholar
Wilson, D. S. 1992. Complex interactions in metacommunities, with implications for biodiversity and higher levels of selection. Ecology 73:1984–2000.CrossRefGoogle Scholar
Wilson, E. O. 1987. Causes of ecological success: the case of the ants. Journal of Animal Ecology 56:1–9.CrossRefGoogle Scholar
Wilson, E. O. 1990. Success and Dominance in Ecosystems: The Case of Social Insects. Nordbünte: Ecological Institute.Google Scholar
Wilson, E. O., and Hölldobler, B.. 2005. The rise of the ants: a phylogenetic and ecological explanation. Proceedings of the National Academy of Sciences 102:7411–7414.CrossRefGoogle ScholarPubMed
Wimp, G. M., and Whitham, T. G.. 2001. Biodiversity consequences of predation and host plant hybridization on an aphid-ant mutualism. Ecology 82:440–452.Google Scholar
Wink, M., and Römer, P.. 1986. Acquired toxicity: the advantages of specializing on alkaloid-rich lupins to Macrosiphon albifrons (Aphidae). Naturwissenschaften 73:210–212.CrossRefGoogle Scholar
Wink, M., and Witte, L.. 1991. Storage of quinolizidine alkaloids in Macrosiphum albifrons and Aphis genistae (Homoptera: Aphididae). Entomologia Generalis 15:237–254.CrossRefGoogle Scholar
Wolin, C. L. 1985. The population dynamics of mutualistic systems. In The Biology of Mutualism, ed. Boucher, D. H., pp. 248–269. New York: Oxford University Press.
Wolin, C. L., and Lawlor, L. R.. 1984. Models of facultative mutualism: density effects. American Naturalist 124:843–862.CrossRefGoogle Scholar
Wood, T. K. 1977. Role of parent females and attendant ants in the maturation of the treehopper, Entylia bactriana (Homoptera: Membracidae). Sociobiology 2:257–272.Google Scholar
Wood, T. K. 1982. Ant-attended nymphal aggregations in the Enchenopa binotata complex (Homoptera: Membracidae). Annals of the Entomological Society of America 75:649–653.CrossRefGoogle Scholar
Wood, T. K. 1993. Diversity in the new-world Membracidae. Annual Review of Entomology 38:409–435.CrossRefGoogle Scholar
Woodring, J., Wiedemann, R., Fischer, M. K., Hoffmann, K. H., and Volkl, W.. 2004. Honeydew amino acids in relation to sugars and their role in the establishment of ant-attendance hierarchy in eight species of aphids feeding on tansy (Tanacetum vulgare). Physiological Entomology 29:311–319.CrossRefGoogle Scholar
Wootton, J. T. 1994. The nature and consequences of indirect effects in ecological communities. Annual Review of Ecology and Systematics 25:443–466.CrossRefGoogle Scholar
Wright, D. H. 1989. A simple, stable model of mutualism incorporating handling time. American Naturalist 134:664–667.CrossRefGoogle Scholar
Wright, S. 1978. Evolution and Genetics of Populations. Chicago: University of Chicago Press.Google Scholar
Yamamura, N., Higashi, M., Behera, N., and Wakano, J. Y.. 2004. Evolution of mutualism through spatial effects. Journal of Theoretical Biology 226:421–428.CrossRefGoogle ScholarPubMed
Yao, I., and Akimoto, S.. 2001. Ant attendance changes the sugar composition of the honeydew of the drepanosiphid aphid Tuberculatus quercicola. Oecologia 128:36–43.CrossRefGoogle ScholarPubMed
Yao, I., and Akimoto, S.. 2002. Flexibility in the composition and concentration of amino acids in honeydew of the drepanosiphid aphid Tuberculatus quercicola. Ecological Entomology 27:745–752.CrossRefGoogle Scholar
Yao, I., Shibao, H., and Akimato, S.. 2000. Costs and benefits of ant-attendance to the drepanosiphid aphid Tuberculatus quercicola. Oikos 89:3–10.CrossRefGoogle Scholar
Yu, D. W. 2001. Parasites of mutualisms. Biological Journal of the Linnean Society 72:529–546.CrossRefGoogle Scholar
Yu, D. W., and Wilson, H. B.. 2001. The competition-colonization trade-off is dead; long live the competition-colonization trade-off. American Naturalist 158:49–63.Google ScholarPubMed
Yu, D. W., Wilson, H. B., and Pierce, N. E.. 2001. An empirical model of species coexistence in a spatially structured environment. Ecology 82:1761–1771.CrossRefGoogle Scholar
Zera, A. J., and Mole, S.. 1994. The physiological costs of flight capability in wing-dimorphic crickets. Researches on Population Ecology 36:151–156.CrossRefGoogle Scholar
Zera, A. J., Mole, S., and Rokke, K.. 1994. Lipid, carbohydrate and nitrogen-content of long-winged and short-winged Gryllus firmus – implications for the physiological cost of flight capability. Journal of Insect Physiology 40:1037–1044.CrossRefGoogle Scholar
Zhang, Z. B. 2003. Mutualism or cooperation among competitors promotes coexistence and competitive ability. Ecological Modelling 164:271–282.CrossRefGoogle Scholar
Zink, A. G. 2003. Quantifying the costs and benefits of parental care in female treehoppers. Behavioral Ecology 14:687–693.CrossRefGoogle Scholar
Zschokke, S., Dolt, C., Rusterholz, H. P., et al. 2000. Short-term responses of plants and invertebrates to experimental small-scale grassland fragmentation. Oecologia 125:559–572.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×