Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-19T05:30:24.850Z Has data issue: false hasContentIssue false

13 - Pollinator-mediated assortative mating: causes and consequences

Published online by Cambridge University Press:  13 August 2009

Lars Chittka
Affiliation:
Queen Mary University of London
James D. Thomson
Affiliation:
University of Toronto
Get access

Summary

A typical animal pollinator forages non-randomly among plants in a community, using floral cues to recognize the available options. The tendency of individual foragers to restrict their visits to a subset of the available flowering species increases the proportion of pollen grains that arrive on appropriate stigmas. Pollinators partition themselves among plants in several ways, with the common result of assortative mating according to floral type. First, I discuss the evolutionary implications of assortative mating, in light of recent models that emphasize its importance for species divergence, then review the ways in which pollinator behavior contributes to assortative mating among floral types. Finally, I consider how the different forms of non-random pollinator behavior might influence floral evolution and plant speciation.

There is a long-standing tradition of thought that visitation by different pollinators drives divergence of floral form and provides reproductive isolation among incipient plant species (reviewed by Waser, this volume). However, pollinators rarely specialize completely on a single floral type (plant species or distinct phenotype within a species), leading some investigators to question the role of pollinators in the radiation of the angiosperms, and to suggest that floral evolution is largely decoupled from plant speciation (Waser 1998; Chittka et al. 1999). None the less, the remarkable radiation of angiosperms in parallel with pollinators (Grimaldi 1999), and findings that plant families with animal pollination are more speciose than those with abiotic pollination (Dodd et al. 1999), suggest that animal pollination was a key innovation in flowering plant evolution.

Type
Chapter
Information
Cognitive Ecology of Pollination
Animal Behaviour and Floral Evolution
, pp. 259 - 273
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×