Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-29T21:25:26.919Z Has data issue: false hasContentIssue false

1 - The evolution of alternative reproductive tactics: concepts and questions

Published online by Cambridge University Press:  10 August 2009

Michael Taborsky
Affiliation:
Zoological Institute Behavioural Ecology University of Bern Wohlenstrasse 50A CH-3032 Hinterkappelen Switzerland
Rui F. Oliveira
Affiliation:
Unidade de Investigação em Eco-Etologia Instituto Superior de Psicologia Aplicada Rua Jardim do Tabaco 34 1149–041 Lisboa Portugal
H. Jane Brockmann
Affiliation:
Department of Zoology University of Florida Gainesville FL 32611 USA
Rui F. Oliveira
Affiliation:
Instituto Superior Psicologia Aplicada, Lisbon
Michael Taborsky
Affiliation:
Universität Bern, Switzerland
H. Jane Brockmann
Affiliation:
University of Florida
Get access

Summary

CHAPTER SUMMARY

Here we outline the meaning of the term alternative reproductive tactics, or ARTs, and discuss why the existence of ARTs is so widespread in animals. We ask what we need to know to understand the evolution of ARTs and the importance of general principles such as frequency dependence, density dependence, and condition dependence, and what we need to know about proximate mechanisms involved in the regulation of ARTs to comprehend evolutionary patterns. We discuss current issues in the study of ARTs and list 12 questions that we think need particular attention. Throughout we shall provide representative examples of ARTs in animals to illustrate the ubiquitous nature of this phenomenon.

WHAT IS THE MEANING OF ALTERNATIVE REPRODUCTIVE TACTIC?

Alternative

The concept of ARTs refers to alternative ways to obtain fertilizations in both males and females. In its most common use, this term refers to traits selected to maximize fitness in two or more alternative ways in the context of intraspecific and intrasexual reproductive competition. In general, alternative phenotypes are characterized by a discontinuous distribution of traits evolved towards the same functional end. Examples include size dimorphism, color polymorphism, dimorphic morphological structures involved in the monopolization of resources or mates, and various behavioral alternatives such as territoriality vs. floating, monopolization vs. scramble competition, or investment in primary access to a resource vs. social parasitism. Individuals allocate resources to either one or the other (mutually exclusive) way of achieving the same functional end using evolved decision-making rules (Brockmann 2001).

Type
Chapter
Information
Alternative Reproductive Tactics
An Integrative Approach
, pp. 1 - 22
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlund, M. and Andersson, M. 2002. Female ducks can double their reproduction. Nature 414, 600–601.CrossRefGoogle Scholar
Alonzo, S. H., Taborsky, M., and Wirtz, P. 2000. Male alternative reproductive behaviors in a Mediterranean wrasse, Symphodus ocellatus: evidence from otoliths for multiple life-history pathways. Evolutionary Ecology Research 2, 997–1007.Google Scholar
Andersson, M. 1994. Sexual Selection. Princeton, NJ: Princeton University Press.Google Scholar
Arnold, A. B. and Breedlove, S. M. 1985. Organizational and activational effects of sex steroids on brain and behavior: a reanalysis. Hormones and Behavior 19, 469–498.CrossRefGoogle ScholarPubMed
Austad, S. N. 1984. A classification of alternative reproductive behaviors and methods of field-testing ESS models. American Zoologist 24, 309–319.CrossRefGoogle Scholar
Bailey, W. J., Withers, P. C., Endersby, M., and Gaull, K. 1993. The energetic costs of calling in the bush-cricket Requena verticalis (Orthoptera, Tettigoniidae, Listroscelidinae). Journal of Experimental Biology 178, 21–37.Google Scholar
Balshine-Earn, S., Neat, F. C., Reid, H., and Taborsky, M. 1998. Paying to stay or paying to breed? Field evidence for direct benefits of helping behavior in a cooperatively breeding fish. Behavioral Ecology 9, 432–438.CrossRefGoogle Scholar
Barboza, P. S., Hartbauer, D. W., Hauer, W. E., and Blake, J. E. 2004. Polygynous mating impairs body condition and homeostasis in male reindeer (Rangifer tarandus tarandus). Journal of Comparative Physiology B 174, 309–317.CrossRefGoogle Scholar
Basolo, A. L. and Alcaraz, G. 2003. The turn of the sword: length increases male swimming costs in swordtails. Proceedings of the Royal Society of London B 270, 1631–1636.CrossRefGoogle ScholarPubMed
Bass, A. H. 1992. Dimorphic male brains and alternative reproductive tactics in a vocalizing fish. Trends in Neurosciences 15, 139–145.CrossRefGoogle Scholar
Bass, A. H. 1996. Shaping brain sexuality. American Scientist 84, 352–363.Google Scholar
Bass, A. H. and Andersen, K. 1991. Intra- and inter-sexual dimorphisms in the sound-generating motor system in a vocalizing fish: motor axon number and size. Brain, Behavior and Evolution 37, 204–214.CrossRefGoogle Scholar
Bergmüller, R. and Taborsky, M. 2005. Experimental manipulation of helping in a cooperative breeder: helpers “pay to stay” by pre-emptive appeasement. Animal Behaviour 69, 19–28.CrossRefGoogle Scholar
Bergmüller, R., Heg, D., and Taborsky, M. 2005. Helpers in a cooperatively breeding cichlid stay and pay or disperse and breed, depending on ecological constraints. Proceedings of the Royal Society of London B 272, 325–331.CrossRefGoogle ScholarPubMed
Berthold, P. and Querner, U. 1982. Partial migration in birds: experimental proof of polymorphism as a controlling system. Experientia 38, 805–806.CrossRefGoogle Scholar
Berthold, P., Mohr, G., and Querner, U. 1990. Control and evolutionary potential of obligate partial migration: results of a 2-way selective breeding experiment with the blackcap (Sylvia atricapilla). Journal für Ornithologie 131, 33–45.CrossRefGoogle Scholar
Biro, P. A. and Ridgway, M. S. 1995. Individual variation in foraging movements in a lake population of young-of-the-year brook charr (Salvelinus fontinalis). Behaviour 132, 57–74.CrossRefGoogle Scholar
Bisazza, A. 1993. Male competition, female mate choice and sexual size dimorphism in poeciliid fishes. Marine Behavior and Physiology 23, 257–286.CrossRefGoogle Scholar
Bisazza, A. and Pilastro, A. 1997. Small male mating advantage and reversed size dimorphism in poeciliid fishes. Journal of Fish Biology 50, 397–406.CrossRefGoogle Scholar
Brantley, R. K. and Bass, A. H. 1994. Alternative male spawning tactics and acoustic signals in the plainfin midshipman fish Porichthys notatus Girard (Teleostei, Batrachoididae). Ethology 96, 213–232.CrossRefGoogle Scholar
Brantley, R. K., Wingfield, J. C., and Bass, A. H. 1993. Sex steroid levels in Porichthys notatus, a fish with alternative reproductive tactics, and a review of the hormonal bases for male dimorphism among teleost fishes. Hormones and Behavior 27, 332–347.CrossRefGoogle Scholar
Brockmann, H. J. 1993. Parasitizing conspecifics: comparisons between Hymenoptera and birds. Trends in Ecology and Evolution 8, 2–4.CrossRefGoogle Scholar
Brockmann, H. J. 2001. The evolution of alternative strategies and tactics. Advances in the Study of Behavior 30, 1–51.CrossRefGoogle Scholar
Brockmann, H. J. 2002. An experimental approach to altering mating tactics in male horseshoe crabs (Limulus polyphemus). Behavioral Ecology 13, 232–238.CrossRefGoogle Scholar
Brockmann, H. J. and Dawkins, R. 1979. Joint nesting in a digger wasp as an evolutionarily stable preadaptation to social life. Behaviour 71, 203–245.CrossRefGoogle Scholar
Brockmann, H. J. and Penn, D. 1992. Male mating tactics in the horseshoe crab, Limulus polyphemus. Animal Behaviour 44, 653–665.CrossRefGoogle Scholar
Brockmann, H. J., Grafen, A., and Dawkins, R. 1979. Evolutionarily stable nesting strategy in a digger wasp. Journal of Theoretical Biology 77, 473–496.CrossRefGoogle Scholar
Brown, C. and Brown, M. 1997. Fitness components associated with alternative reproductive tactics in cliff swallows. Behavioral Ecology 9, 158–171.CrossRefGoogle Scholar
Byrne, P. G. and Roberts, J. D. 2004. Intrasexual selection and group spawning in quacking frogs (Crinia georgiana). Behavioral Ecology 15, 872–882.CrossRefGoogle Scholar
Cade, W. 1979. The evolution of alternative male reproductive strategies in field crickets. In Blum, M. S. and Blum, N. A. (eds.) Sexual Selection and Reproductive Competition in Insects, pp. 343–379. New York: Academic Press.Google Scholar
Caro, T. M. and Bateson, P. 1986. Organization and ontogeny of alternative tactics. Animal Behaviour 34, 1483–1499.CrossRefGoogle Scholar
Charnov, E. L. 1982. The Theory of Sex Allocation. Princeton, NJ: Princeton University Press.Google ScholarPubMed
Chipps, S. R., Dunbar, J. A., and Wahl, D. H. 2004. Phenotypic variation and vulnerability to predation in juvenile bluegill sunfish (Lepomis macrochirus). Oecologia 138, 32–38.CrossRefGoogle Scholar
Clutton-Brock, T. H. 1991. The Evolution of Parental Care. Princeton, NJ: Princeton University Press.Google Scholar
Clutton-Brock, T. H., Russell, A. F., Sharpe, L. L., et al. 2002. Evolution and development of sex differences in cooperative behavior in meerkats. Science 297, 253–256.CrossRefGoogle ScholarPubMed
Cordts, R. and Partridge, L. 1996. Courtship reduces longevity of male Drosophila melanogaster. Animal Behaviour 52, 269–278.CrossRefGoogle Scholar
Correa, C., Baeza, J. A., Hinojosa, I. A., and Thiel, M. 2003. Male dominance hierarchy and mating tactics in the rock shrimp Rhynchocinetes typus (Decapoda: Caridea). Journal of Crustacean Biology 23, 33–45.CrossRefGoogle Scholar
Darwin, C. 1871. The Descent of Man, and Selection in Relation to Sex. London: John Murray.Google Scholar
Davies, N. B., Hartley, I. R., Hatchwell, B. J., and Langmore, N. E. 1996. Female control of copulations to maximize male help: a comparison of polygynandrous alpine accentors, Prunella collaris, and dunnocks, P. modularis. Animal Behaviour 51, 27–47.CrossRefGoogle Scholar
Dawkins, R. 1980. Good strategy or evolutionarily stable strategy? In Barlow, G. W. and Silverberg, J. (eds.) Sociobiology: Beyond Nature/Nurture? pp. 331–367. Boulder, CO: Westview Press.Google Scholar
Fraipont, M., FitzGerald, G. J., and Guderley, H. 1993. Age-related differences in reproductive tactics in the three-spined stickleback, Gasterosteus aculeatus. Animal Behaviour 46, 961–968.CrossRefGoogle Scholar
Denno, R. F. 1994. The evolution of dispersal polymorphisms in insects: the influence of habitats, host plants and mates. Researches on Population Ecology 36, 127–135.CrossRefGoogle Scholar
Dickinson, J. L. 2004. A test of the importance of direct and indirect fitness benefits for helping decisions in western bluebirds. Behavioral Ecology 15, 233–238.CrossRefGoogle Scholar
Dierkes, P., Taborsky, M., and Kohler, U. 1999. Reproductive parasitism of broodcare helpers in a cooperatively breeding fish. Behavioral Ecology 10, 510–515.CrossRefGoogle Scholar
Double, M. C. and Cockburn, A. 2003. Subordinate superb fairy-wrens (Malurus cyaneus) parasitize the reproductive success of attractive dominant males. Proceedings of the Royal Society of London B 270, 379–384.CrossRefGoogle ScholarPubMed
Doums, C., Viard, F., and Jarne, P. 1998. The evolution of phally polymorphism. Biological Journal of the Linnean Society 64, 273–296.CrossRefGoogle Scholar
Eadie, J. M. and Fryxell, J. M. 1992. Density dependence, frequency dependence, and alternative nesting strategies in goldeneyes. American Naturalist 140, 621–641.CrossRefGoogle ScholarPubMed
Eberhard, W. G. and Gutiérrez, E. E. 1991. Male dimorphisms in beetles and earwigs and the question of developmental constraints. Evolution 45, 18–28.CrossRefGoogle ScholarPubMed
Eickwort, G. 1975. Gregarious nesting of the mason bee Hoplitis anthocopoides and the evolution of parasitism and sociality among megachilid bees. Evolution 29, 142–150.CrossRefGoogle ScholarPubMed
Emlen, D. J. 1996. Artificial selection on horn length/body size allometry in the horned beetle Onthophagus acuminatus (Coleoptera: Scarabaeidae). Evolution 50, 1219–1230.CrossRefGoogle Scholar
Emlen, D. J. 1997. Alternative reproductive tactics and male-dimorphism in the horned beetle Onthophagus acuminatus (Coleoptera: Scarabaeidae). Behavioral Ecology and Sociobiology 41, 335–341.CrossRefGoogle Scholar
Emlen, D. J. and Nijhout, H. F. 2000. The development and evolution of exaggerated morphologies in insects. Annual Review of Entomology 45, 661–708.CrossRefGoogle ScholarPubMed
Falconer, D. S. and Mackay, T. F. C. 1996. Introduction to Quantitative Genetics, 4th edn. New York: Longman.Google Scholar
Field, J. 1992. Intraspecific parasitism as an alternative reproductive tactic in nest-building wasps and bees. Biological Reviews 67, 79–126.CrossRefGoogle Scholar
Field, J. 1994. Selection of host nests by intraspecific nest-parasitic digger wasps. Animal Behaviour 48, 113–118.CrossRefGoogle Scholar
Fu, P., Neff, B. D., and Gross, M. R. 2001. Tactic-specific success in sperm competition. Proceedings of the Royal Society of London B 268, 1105–1112.CrossRefGoogle ScholarPubMed
Fukuyama, K. 1991. Spawning behaviour and male mating tactics of a foam-nesting treefrog, Rhacophorus schlegelii. Animal Behaviour 42, 193–199.CrossRefGoogle Scholar
Gadgil, M. 1972. Male dimorphism as a consequence of sexual selection. American Naturalist 106, 574–580.CrossRefGoogle Scholar
Gould, S. J. and Vrba, E. S. 1982. Exaptation: a missing term in the science of form. Paleobiology 8, 4–15.CrossRefGoogle Scholar
Grafe, T. U. 1996. Energetics of vocalization in the African reed frog (Hyperolius marmoratus). Comparative Biochemistry and Physiology A 114, 235–243.CrossRefGoogle Scholar
Grafe, T. U. and Thein, J. 2001. Energetics of calling and metabolic substrate use during prolonged exercise in the European treefrog Hyla arborea. Journal of Comparative Physiology B 171, 69–76.CrossRefGoogle ScholarPubMed
Grafen, A. 1991. Modelling in behavioural ecology. In Krebs, J. R. and Davies, N. B. (eds.) Behavioural Ecology, pp. 5–31. Oxford, UK: Blackwell Scientific.Google Scholar
Griffith, S. C., Lyon, B. E., and Montgomerie, R. 2004. Quasi-parasitism in birds. Behavioral Ecology and Sociobiology 56, 191–200.CrossRefGoogle Scholar
Gross, M. R. 1982. Sneakers, satellites and parentals: polymorphic mating strategies in North-American sunfishes. Zeitschrift für Tierpsychologie 60, 1–26.CrossRefGoogle Scholar
Gross, M. R. 1991. Salmon breeding behavior and life history evolution in changing environments. Ecology 72, 1180–1186.CrossRefGoogle Scholar
Gross, M. R. 1996. Alternative reproductive strategies and tactics: diversity within sexes. Trends in Ecology and Evolution 11, 92–98.CrossRefGoogle ScholarPubMed
Gross, M. R. and Repka, J. 1998a. Inheritance in the conditional strategy. In Dugatkin, L. A. and Reeve, H. K. (eds.) Game Theory and Animal Behavior, pp. 168–187. Oxford, UK: Oxford University Press.Google Scholar
Gross, M. R. and Repka, J. 1998b. Stability with inheritance in the conditional strategy. Journal of Theoretical Biology 192, 445–453.CrossRefGoogle Scholar
Hack, M. A. 1998. The energetics of male mating strategies in field crickets (Orthoptera: Gryllinae: Gryllidae). Journal of Insect Behavior 11, 853–867.CrossRefGoogle Scholar
Hall, K. C. and Hanlon, R. T. 2002. Principal features of the mating system of a large spawning aggregation of the giant Australian cuttlefish Sepia apama (Mollusca: Cephalopoda). Marine Biology 140, 533–545.Google Scholar
Halliday, T. M. and Tejedo, M. 1995. Intrasexual selection and alternative mating behaviour. In Heatwole, H. and Sullivan, B. K. (eds.) Amphibian Biology, vol. 2, pp. 469–517. Chipping Norton, NSW: Surrey Beatty and Sons.Google Scholar
Hansell, M. H. 1984. Animal Architecture and Building Behaviour. Harlow, UK: Longman.Google Scholar
Hansell, M. 2005. Animal Architecture. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Hartley, I. R., Davies, N. B., Hatchwell, B. J., et al. 1995. The polygynandrous mating system of the alpine accentor, Prunella collaris. 2. Multiple paternity and parental effort. Animal Behaviour 49, 789–803.CrossRefGoogle Scholar
Hatchwell, B. J. and Davies, N. B. 1992. An experimental study of mating competition in monogamous and poyandrous dunnocks, Prunella modularis. 2. Influence of removal and replacement experiments on mating systems. Animal Behaviour 43, 611–622.CrossRefGoogle Scholar
Hazel, W. N., Smock, R., and Johnson, M. D. 1990. A polygenic model for the evolution and maintenance of conditional strategies. Proceedings of the Royal Society of London B 242, 181–187.CrossRefGoogle ScholarPubMed
Healey, M. C., Henderson, M. A., and Burgetz, I. 2000. Precocial maturation of male sockeye salmon in the Fraser River, British Columbia, and its relationship to growth and year-class strength. Canadian Journal of Fisheries and Aquatic Sciences 57, 2248–2257.CrossRefGoogle Scholar
Heath, D. D., Rankin, L., Bryden, C. A., Heath, J. W., and Shrimpton, J. M. 2002. Heritability and Y-chromosome influence in the jack male life history of chinook salmon (Oncorhynchus tshawytscha). Heredity 89, 311–317.CrossRefGoogle Scholar
Hiebeler, D. 2004. Competition between near and far dispersers in spatially structured habitats. Theoretical Population Biology 66, 205–218.CrossRefGoogle ScholarPubMed
Hindar, K. and Jonsson, B. 1993. Ecological polymorphism in arctic charr. Biological Journal of the Linnean Society 48, 63–74.CrossRefGoogle Scholar
Hoback, W. W. and Wagner, W. E. 1997. The energetic cost of calling in the variable field cricket, Gryllus lineaticeps. Physiological Entomology 22, 286–290.CrossRefGoogle Scholar
Hofmann, H. A. 2003. Functional genomics of neural and behavioral plasticity. Journal of Neurobiology 54, 272–282.CrossRefGoogle ScholarPubMed
Hogg, J. T. and Forbes, S. H. 1997. Mating in bighorn sheep: frequent male reproduction via a high-risk “unconventional” tactic. Behavioral Ecology and Sociobiology 41, 33–48.CrossRefGoogle Scholar
Hori, M. 1993. Frequency-dependent natural selection in the handedness of scale-eating cichlid fish. Science 393, 216–219.CrossRefGoogle Scholar
Huck, M., Lottker, P., and Heymann, E. W. 2004. The many faces of helping: possible costs and benefits of infant carrying and food transfer in wild moustached tamarins (Saguinus mystax). Behaviour 141, 915–934.CrossRefGoogle Scholar
Hunt, J. and Simmons, L. W. 2000. Maternal and paternal effects on offspring phenotype in the dung beetle Onthophagus taurus. Evolution 54, 936–941.CrossRefGoogle ScholarPubMed
Hutchings, J. A. and Myers, R. A. 1994. The evolution of alternative mating strategies in variable environments. Evolutionary Ecology 8, 256–268.CrossRefGoogle Scholar
Jennings, M. J. and Philipp, D. P. 1992. Female choice and male competition in longear sunfish. Behavioral Ecology 3, 84–94.CrossRefGoogle Scholar
Johnstone, R. A. 2000. Models of reproductive skew: a review and synthesis. Ethology 106, 5–26.CrossRefGoogle Scholar
Johnstone, R. A. and Cant, M. A. 1999. Reproductive skew and the threat of eviction: a new perspective. Proceedings of the Royal Society of London B 266, 275–279.CrossRefGoogle Scholar
Jones, A. G., Walker, D., Kvarnemo, C., Lindstrom, K., and Avise, J. C. 2001a. How cuckoldry can decrease the opportunity for sexual selection: data and theory from a genetic parentage analysis of the sand goby, Pomatoschistus minutus. Proceedings of the National Academy of Sciences of the United States of America 98, 9151–9156.CrossRefGoogle Scholar
Jones, A. G., Walker, D., Lindstrom, K., Kvarnemo, C., and Avise, J. C. 2001b. Surprising similarity of sneaking rates and genetic mating patterns in two populations of sand goby experiencing disparate sexual selection regimes. Molecular Ecology 10, 461–469.CrossRefGoogle Scholar
Jonsson, B. and Jonsson, N. 2001. Polymorphism and speciation in Arctic charr. Journal of Fish Biology 58, 605–638.CrossRefGoogle Scholar
Kaitala, A., Kaitala, V., and Lundberg, P. 1993. A theory of partial migration. American Naturalist 142, 59–81.CrossRefGoogle Scholar
Keenleyside, M. H. A. 1972. Intraspecific intrusions into nests of spawning longear sunfish (Pisces: Centrarchidae). Copeia272–278.CrossRefGoogle Scholar
Keller, L. and Reeve, H. K. 1994. Partitioning of reproduction in animal societies. Trends in Ecology and Evolution 9, 98–103.CrossRefGoogle ScholarPubMed
Kellog, K. A., Markert, J. A., Stauffer, J. R., and Kocher, T. D. 1998. Intraspecific brood mixing and reduced polyandry in a maternal mouth-brooding cichlid. Behavioral Ecology 9, 309–312.CrossRefGoogle Scholar
Kempenaers, B., Verheyen, G. R., and Dhondt, A. A. 1995. Mate guarding and copulation behavior in monogamous and polygynous blue tits: do males follow a best-of-a-bad-job strategy?Behavioral Ecology and Sociobiology 36, 33–42.CrossRefGoogle Scholar
Kempenaers, B., Everding, S., Bishop, C., Boag, P., and Robertson, R. J. 2001. Extra-pair paternity and the reproductive role of male floaters in the tree swallow (Tachycineta bicolor). Behavioral Ecology and Sociobiology 49, 251–259.CrossRefGoogle Scholar
Ketterson, E. D. and Nolan, V. Jr. 1999. Adaptation, exaptation, and constraint: a hormonal perspective. American Naturalist 154, S4–S25.CrossRefGoogle ScholarPubMed
Ketterson, E. D., Nolan, V. Jr., Cawthorn, M. J., Parker, P. G., and Ziegenfus, C. 1996. Phenotypic engineering: using hormones to explore the mechanistic and functional bases of phenotypic variation in nature. Ibis 138, 1–17.Google Scholar
Kokko, H. 2003. Are reproductive skew models evolutionary stable?Proceedings of the Royal Society of London B 270, 265–270.CrossRefGoogle ScholarPubMed
Kokko, H., Johnstone, R. A., and Wright, J. 2002. The evolution of parental and alloparental effort in cooperatively breeding groups: when should helpers pay to stay?Behavioral Ecology 13, 291–300.CrossRefGoogle Scholar
Kotiaho, J. S. and Simmons, L. W. 2003. Longevity cost of reproduction for males but no longevity cost of mating or courtship for females in the male-dimorphic dung beetle Onthophagus binodis. Journal of Insect Physiology 49, 817–822.CrossRefGoogle ScholarPubMed
Kotiaho, J. S. and Tomkins, J. L. 2001. The discrimination of alternative male morphologies. Behavioral Ecology 12, 553–557.CrossRefGoogle Scholar
Kurdziel, J. P. and Knowles, L. L. 2002. The mechanisms of morph determination in the amphipod Jassa: implications for the evolution of alternative male phenotypes. Proceedings of the Royal Society of London B 269, 1749–1754.CrossRefGoogle ScholarPubMed
Langellotto, G. A. and Denno, R. F. 2001. Benefits of dispersal in patchy environments: mate location by males of a wing-dimorphic insect. Ecology 82, 1870–1878.CrossRefGoogle Scholar
Langellotto, G. A., Denno, R. F., and Ott, J. R. 2000. A trade-off between flight capability and reproduction in males of a wing-dimorphic insect. Ecology 81, 865–875.CrossRefGoogle Scholar
Lank, D. B., Smith, C. M., Hanotte, O., Burke, T., and Cooke, F. 1995. Genetic polymorphism for alternative mating behaviour in lekking male ruff Philomachus pugnax. Nature 378, 59–62.CrossRefGoogle Scholar
Lank, D. B., Coupe, M., and Wynne-Edwards, K. E. 1999. Testosterone-induced male traits in female ruffs (Philomachus pugnax): autosomal inheritance and gender differentiation. Proceedings of the Royal Society of London B 266, 2323–2330.CrossRefGoogle Scholar
Lee, J. S. F. 2005. Alternative reproductive tactics and status-dependent selection. Behavioral Ecology 16, 566–570.CrossRefGoogle Scholar
Lejeune, P. 1985. Etude écoéthologique des comportements reproducteurs et sociaux des Labridae méditerranéens des genres Symphodus Rafinesque, 1810 et Coris Lacepède, 1802. Cahiers d'Ethologie 5, 1–208.Google Scholar
Lens, L., Wauters, L. A., and Dhondt, A. A. 1994. Nest-building by crested tit Parus cristatus males: an analysis of costs and benefits. Behavioral Ecology and Sociobiology 35, 431–436.CrossRefGoogle Scholar
Lu, G. Q. and Bernatchez, L. 1999. Correlated trophic specialization and genetic divergence in sympatric lake whitefish ecotypes (Coregonus clupeaformis): support for the ecological speciation hypothesis. Evolution 53, 1491–1505.Google ScholarPubMed
Lucas, J. R., Howard, R. D., and Palmer, J. G. 1996. Callers and satellites: chorus behaviour in anurans as a stochastic dynamic game. Animal Behaviour 51, 501–518.CrossRefGoogle Scholar
Lyon, B. E. 2003. Egg recognition and counting reduce costs of avian conspecific brood parasitism. Nature 422, 495–499.CrossRefGoogle ScholarPubMed
Magnhagen, C. 1992. Alternative reproductive behaviour in the common goby, Pomatoschistus microps: an ontogenetic gradient?Animal Behaviour 44, 182–184.CrossRefGoogle Scholar
Magrath, R. D. and Whittingham, L. A. 1997. Subordinate males are more likely to help if unrelated to the breeding female in cooperatively breeding white-browed scrubwrens. Behavioral Ecology and Sociobiology 41, 185–192.CrossRefGoogle Scholar
Martin, E. and Taborsky, M. 1997. Alternative male mating tactics in a cichlid, Pelvicachromis pulcher: a comparison of reproductive effort and success. Behavioral Ecology and Sociobiology 41, 311–319.CrossRefGoogle Scholar
Maynard Smith, J. 1982. Evolution and the Theory of Games. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Mboko, S. K. and Kohda, M. 1999. Piracy mating by large males in a monogamous substrate-breeding cichlid in Lake Tanganyika. Journal of Ethology 17, 51–55.CrossRefGoogle Scholar
McGrew, W. C. and Marchant, L. F. 1997. On the other hand: current issues in and meta-analysis of the behavioral laterality of hand function in nonhuman primates. Yearbook of Physical Anthropology 40, 201–232.3.0.CO;2-6>CrossRefGoogle Scholar
Miller, P. L. 1984. Alternative reproductive routines in a small fly, Puliciphora borinquenensis (Diptera: Phoridae). Ecological Entomology 9, 293–302.CrossRefGoogle Scholar
Moczek, A. P. and Emlen, D. J. 2000. Male horn dimorphism in the scarab beetle Onthophagus taurus: do alternative tactics favor alternative phenotypes?Animal Behaviour 59, 459–466.CrossRefGoogle Scholar
Mole, S. and Zera, A. J. 1993. Differential allocation of resources underlies the dispersal-reproduction trade-off in the wing-dimorphic cricket, Gryllus rubens. Oecologia 93, 121–127.CrossRefGoogle ScholarPubMed
Moore, M. C. 1991. Application of organization-activation theory to alternative male reproductive strategies: a review. Hormones and Behavior 25, 154–179.CrossRefGoogle ScholarPubMed
Moore, M. C., Hews, D. K., and Knapp, R. 1998. Hormonal control and evolution of alternative male phenotypes: generalizations of models for sexual differentiation. American Zoologist 38, 133–151.CrossRefGoogle Scholar
Morris, D. 1952. Homosexuality in the ten-spined stickleback (Pygosteus pungitius L.). Behaviour 4, 233–261.CrossRefGoogle Scholar
Müller, J. K., Eggert, E. K., and Dressel, J. 1990. Intraspecific brood parasitism in the burying beetle, Necrophorus vespilloides (Coleoptera: Silphidae). Animal Behaviour 40, 491–499.CrossRefGoogle Scholar
Munoz, R. C. and Warner, R. R. 2003. A new version of the size-advantage hypothesis for sex change: incorporating sperm competition and size–fecundity skew. American Naturalist 161, 749–761.CrossRefGoogle ScholarPubMed
Nakajima, M., Matsuda, H., and Hori, M. 2004. Persistence and fluctuation of lateral dimorphism in fishes. American Naturalist 163, 692–698.CrossRefGoogle ScholarPubMed
Nijhout, H. F. 2003. Development and evolution of adaptive polyphenisms. Evolution and Development 5, 9–18.CrossRefGoogle ScholarPubMed
Oliveira, R. F. 2005. Neuroendocrine mechanisms of alternative reproductive tactics in fish. In Sloman, K. A., Wilson, R. W., and Balshine, S. (eds.) Fish Physiology, vol. 24, Behavior and Physiology of Fish, pp. 297–357. New York: Elsevier.Google Scholar
Oliveira, R. F., Carvalho, N., Miranda, J., et al. 2002. The relationship between the presence of satellite males and nest-holders' mating success in the Azorean rock-pool blenny Parablennius sanguinolentus parvicornis. Ethology 108, 223–235.CrossRefGoogle Scholar
Oliveira, R. F., Ros, A. F. H., and Gonçalves, D. M. 2005. Intra-sexual variation in male reproduction in teleost fish: a comparative approach. Hormones and Behavior 48, 430–439.CrossRefGoogle ScholarPubMed
Parker, G. A., Baker, R. R., and Smith, V. G. F. 1972. The origin and evolution of gamete dimorphism and the male–female phenomenon. Journal of Theoretical Biology 36, 529–553.CrossRefGoogle ScholarPubMed
Parker, H. H., Noonburg, E. G., and Nisbet, R. M. 2001. Models of alternative life-history strategies, population structure and potential speciation in salmonid fish stocks. Journal of Animal Ecology 70, 260–272.CrossRefGoogle Scholar
Perrill, S. A., Gerhardt, H. C., and Daniel, R. E. 1982. Mating strategy shifts in male green treefrogs (Hyla cinerea): an experimental study. Animal Behaviour 30, 43–48.CrossRefGoogle Scholar
Petrie, M. and Møller, A. P. 1991. Laying eggs in other's nests: intraspecific brood parasitism in birds. Trends in Ecology and Evolution 6, 315–320.CrossRefGoogle Scholar
Pienaar, J. and Greeff, J. M. 2003. Different male morphs of Otitesella pseudoserrata fig wasps have equal fitness but are not determined by different alleles. Ecology Letters 6, 286–289.CrossRefGoogle Scholar
Pigeon, D., Chouinard, A., and Bernatchez, L. 1997. Multiple modes of speciation involved in the parallel evolution of sympatric morphotypes of lake whitefish (Coregonus clupeaformis, Salmonidae). Evolution 51, 196–205.Google Scholar
Plaistow, S. J., Johnstone, R. A., Colegrave, N., and Spencer, M. 2004. Evolution of alternative mating tactics: conditional versus mixed strategies. Behavioral Ecology 15, 534–542.CrossRefGoogle Scholar
Prestwich, K. N. 1994. The energetics of acoustic signaling in anurans and insects. American Zoologist 34, 625–643.CrossRefGoogle Scholar
Pruden, A. J. and Uetz, G. W. 2004. Assessment of potential predation costs of male decoration and courtship display in wolf spiders using video digitization and playback. Journal of Insect Behavior 17, 67–80.CrossRefGoogle Scholar
Radwan, J. 1993. The adaptive significance of male polymorphism in the acarid mite Caloglyphus berlesei. Behavioral Ecology and Sociobiology 33, 201–208.CrossRefGoogle Scholar
Radwan, J. 1995. Male morph determination in two species of acarid mites. Heredity 74, 669–673.CrossRefGoogle Scholar
Radwan, J. 2001. Male morph determination in Rhizoglyphus echinopus (Acaridae). Experimental and Applied Acarology 25, 143–149.CrossRefGoogle Scholar
Radwan, J. 2003. Heritability of male morph in the bulb mite, Rhizoglyphus robini (Astigmata, Acaridae). Experimental and Applied Acarology 29, 109–114.CrossRefGoogle Scholar
Radwan, J. and Bogacz, I. 2000. Comparison of life-history traits of the two male morphs of the bulb mite, Rhizoglyphus robini. Experimental and Applied Acarology 24, 115–121.CrossRefGoogle ScholarPubMed
Radwan, J. and Klimas, M. 2001. Male dimorphism in the bulb mite, Rhizoglyphus robini: fighters survive better. Ethology Ecology and Evolution 13, 69–79.CrossRefGoogle Scholar
Radwan, J., Unrug, J., and Tomkins, J. L. 2002. Status-dependence and morphological trade-offs in the expression of a sexually selected character in the mite, Sancassania berlesei. Journal of Evolutionary Biology 15, 744–752.CrossRefGoogle Scholar
Reichard, M., Bryja, J., Ondrackova, M., et al. 2005. Sexual selection for male dominance reduces opportunities for female mate choice in the European bitterling (Rhodeus sericeus). Molecular Ecology 14, 1533–1542.CrossRefGoogle Scholar
Reinhold, K., Greenfield, M. D., Jang, Y. W., and Broce, A. 1998. Energetic cost of sexual attractiveness: ultrasonic advertisement in wax moths. Animal Behaviour 55, 905–913.CrossRefGoogle ScholarPubMed
Repka, J. and Gross, M. R. 1995. The evolutionarily stable strategy under individual condition and tactic frequency. Journal of Theoretical Biology 176, 27–31.CrossRefGoogle ScholarPubMed
Reyer, H. U. 1984. Investment and relatedness: a cost/benefit analysis of breeding and helping in the pied kingfisher (Ceryle rudis). Animal Behaviour 32, 1163–1178.CrossRefGoogle Scholar
Reyer, H. U. 1986. Breeder–helper interactions in the pied kingfisher reflect the costs and benefits of cooperative breeding. Behaviour 96, 277–303.CrossRefGoogle Scholar
Ribbink, A. J. 1977. Cuckoo among Lake Malawi cichlid fish. Nature 267, 243–244.CrossRefGoogle Scholar
Richardson, D. S., Burke, T., and Komdeur, J. 2002. Direct benefits and the evolution of female-biased cooperative breeding in Seychelles warblers. Evolution 56, 2313–2321.CrossRefGoogle ScholarPubMed
Rico, C., Kuhnlein, U., and FitzGerald, G. J. 1992. Male reproductive tactics in the threespine stickleback: an evaluation by DNA fingerprinting. Molecular Ecology 1, 79–87.CrossRefGoogle Scholar
Robinson, B. W. and Wilson, D. S. 1996. Genetic variation and phenotypic plasticity in a trophically polymorphic population of pumpkinseed sunfish (Lepomis gibbosus). Evolutionary Ecology 10, 631–652.CrossRefGoogle Scholar
Roff, D. A. 1996. The evolution of threshold traits in animals. Quarterly Review of Biology 71, 3–35.CrossRefGoogle Scholar
Rohwer, F. C. and Freeman, S. 1989. The distribution of conspecific nest parasitism in birds. Canadian Journal of Zoology 67, 239–253.CrossRefGoogle Scholar
Ros, A. F. H., Oliveira, R. F., Bouton, N., and Santos, R. S. 2006. Alternative male reproductive tactics and the immunocompetence handicap in the Azorean rock pool blenny, Parablennius parvicornis. Proceedings of the Royal Society of London B 273, 901–909.CrossRefGoogle ScholarPubMed
Rowland, W. J. 1979. Stealing fertilizations in the fourspine stickleback, Apeltes quadracus. American Naturalist 114, 602–604.CrossRefGoogle Scholar
Ryan, M. J., Pease, C. M., and Morris, M. R. 1992. A genetic polymorphism in the swordtail, Xiphophorus nigrensis: testing the prediction of equal fitnesses. American Naturalist 139, 21–31.CrossRefGoogle Scholar
Sage, R. D. and Selander, R. K. 1975. Trophic radiation through polymorphism in cichlid fishes. Proceedings of the National Academy of Sciences of the United States of America 72, 4669–4673.CrossRefGoogle ScholarPubMed
Sandell, M. I. and Diemer, M. 1999. Intraspecific brood parasitism: a strategy for floating females in the European starling. Animal Behaviour 57, 197–202.CrossRefGoogle ScholarPubMed
Sato, T., Hirose, M., Taborsky, M., and Kimura, S. 2004. Size-dependent male alternative reproductive tactics in the shell-brooding cichlid fish Lamprologus callipterus in Lake Tanganyika. Ethology 110, 49–62.CrossRefGoogle Scholar
Scheiner, S. M. 1993. Genetics and evolution of phenotypic plasticity. Annual Review of Ecology and Systematics 24, 35–68.CrossRefGoogle Scholar
Schlichting, C. D. and Pigliucci, M. 1998. Phenotypic Evolution: A Reaction Norm Perspective. Sunderland, MA: Sinauer Associates.Google Scholar
Shuster, S. M. 1989. Male alternative reproductive strategies in a marine isopod crustacean (Paracerceis sculpta): the use of genetic markers to measure differences in fertilization success among a-, B-, and g-males. Evolution 43, 1683–1698.Google Scholar
Shuster, S. M. 1992. The reproductive behaviour of alpha, beta and gamma-male morphs in Paracerceis sculpta, a marine isopod crustacean. Behaviour 121, 231–258.CrossRefGoogle Scholar
Shuster, S. M. and Wade, M. J. 1991. Equal mating success among male reproductive strategies in a marine isopod. Nature 350, 606–611.CrossRefGoogle Scholar
Shuster, S. M. and Wade, M. J. 2003. Mating Systems and Strategies. Princeton, NJ: Princeton University Press.Google Scholar
Simmons, L. W., Teale, R. J., Maier, M., et al. 1992. Some costs of reproduction for male bush-crickets, Requena verticalis (Orthoptera, Tettigoniidae): allocating resources to mate attraction and nuptial feeding. Behavioral Ecology and Sociobiology 31, 57–62.CrossRefGoogle Scholar
Sinervo, B. 2001. Runaway social games, genetic cycles driven by alternative male and female strategies, and the origin of morphs. Genetica 112, 417–434.CrossRefGoogle ScholarPubMed
Sinervo, B. and Lively, C. M. 1996. The rock–paper–scissors game and the evolution of alternative male strategies. Nature 380, 240–243.CrossRefGoogle Scholar
Skubic, E., Taborsky, M., McNamara, J. M., and Houston, A. I. 2004. When to parasitize? A dynamic optimization model of reproductive strategies in a cooperative breeder. Journal of Theoretical Biology 227, 487–501.CrossRefGoogle Scholar
Skúlason, S. and Smith, T. B. 1995. Resource polymorphisms in vertebrates. Trends in Ecology and Evolution 10, 366–370.CrossRefGoogle ScholarPubMed
Slatkin, M. 1978. Equilibration of fitnesses by natural selection. American Naturalist 112, 845–859.CrossRefGoogle Scholar
Slatkin, M. 1979. Evolutionary response to frequency-dependent and density-dependent interactions. American Naturalist 114, 384–398.CrossRefGoogle Scholar
Smith, T. B. and Skúlason, S. 1996. Evolutionary significance of resource polymorphisms in fishes, amphibians, and birds. Annual Review of Ecology and Systematics 27, 111–133.CrossRefGoogle Scholar
Snorrason, S. S. and Skúlason, S. 2004. Adaptive speciation in northern freshwater fishes: patterns and processes. In Dieckmann, U., Metz, H., Doebeli, M. and Tautz, D. (eds.) Adaptive Speciation, pp. 210–228. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Snorrason, S. S., Skúlason, S., Jonsson, B., et al. 1994. Trophic specialization in arctic charr Salvelinus alpinus (Pisces, Salmonidae): morphological divergence and ontogenic niche shifts. Biological Journal of the Linnean Society 52, 1–18.CrossRefGoogle Scholar
Stiver, K. A., Dierkes, P., Taborsky, M., Gibbs, H. L., and Balshine, S. 2005. Relatedness and helping in fish: examining the theoretical predictions. Proceedings of the Royal Society of London B 272, 1593–1599.CrossRefGoogle ScholarPubMed
Taborsky, B., Dieckmann, U., and Heino, M. 2003. Unexpected discontinuities in life-history evolution under size-dependent mortality. Proceedings of the Royal Society of London B 270, 713–721.CrossRefGoogle ScholarPubMed
Taborsky, M. 1984. Broodcare helpers in the cichlid fish Lamprologus brichardi: their costs and benefits. Animal Behaviour 32, 1236–1252.CrossRefGoogle Scholar
Taborsky, M. 1985. Breeder–helper conflict in a cichlid fish with broodcare helpers: an experimental analysis. Behaviour 95, 45–75.CrossRefGoogle Scholar
Taborsky, M. 1994. Sneakers, satellites, and helpers: parasitic and cooperative behavior in fish reproduction. Advances in the Study of Behavior. 23, 1–100.CrossRefGoogle Scholar
Taborsky, M. 1997. Bourgeois and parasitic tactics: do we need collective, functional terms for alternative reproductive behaviours?Behavioral Ecology and Sociobiology 41, 361–362.CrossRefGoogle Scholar
Taborsky, M. 1998. Sperm competition in fish: bourgeois males and parasitic spawning. Trends in Ecology and Evolution 13, 222–227.CrossRefGoogle ScholarPubMed
Taborsky, M. 1999. Conflict or cooperation: what determines optimal solutions to competition in fish reproduction? In Oliveira, R. F., Almada, V., and Gonçalves, E. (eds.) Behaviour and Conservation of Littoral Fishes, pp. 301–349. Lisbon: Instituto Superior de Psicologia Aplicada.Google Scholar
Taborsky, M. 2001. The evolution of parasitic and cooperative reproductive behaviors in fishes. Journal of Heredity 92, 100–110.CrossRefGoogle ScholarPubMed
Taborsky, M., Hudde, B., and Wirtz, P. 1987. Reproductive behaviour and ecology of Symphodus (Crenilabrus) ocellatus, a European wrasse with four types of male behaviour. Behaviour 102, 82–118.CrossRefGoogle Scholar
Tallamy, D. W. 1985. “Egg dumping” in lace bugs (Gargaphia solani, Hemiptera: Tingidae). Behavioral Ecology and Sociobiology 17, 357–362.CrossRefGoogle Scholar
Tallamy, D. W. 2005. Egg dumping in insects. Annual Review of Entomology 50, 347–370.CrossRefGoogle ScholarPubMed
Tallamy, D. W. and Horton, L. A. 1990. Costs and benefits of the eggdumping alternative in Gargaphia lace bugs (Hemiptera: Tingidae). Animal Behaviour 39, 352–359.CrossRefGoogle Scholar
Thomas, R. J. 2002. The costs of singing in nightingales. Animal Behaviour 63, 959–966.CrossRefGoogle Scholar
Thorpe, J. E. 1986. Age at first maturity in Atlantic salmon, Salmo salar: freshwater period influences and conflicts with smolting. In Meerburg, D. J. (ed.) Salmonid Age at Maturity, pp. 7–14. Ottawa, ON: Department of Fisheries and Oceans.Google Scholar
Thorpe, J. E. and Morgan, R. I. G. 1980. Growth rate and smolting rate of progeny of male Atlantic salmon parr (Salmo salar L.). Journal of Fisheries Biology 17, 451–459.CrossRefGoogle Scholar
Timms, S., Ferro, D. N., and Waller, J. B. 1980. Suppression of production of pleomorphic males in Sancassania berlesei (Michael) (Acari: Acaridae). International Journal of Acarology 6, 91–96.CrossRefGoogle Scholar
Timms, S., Ferro, D. N., and Emberson, R. M. 1982. Andropolymorphism and its heritability in Sancassania berlesei (Michael) (Acari, Acaridae). Acarologia 22, 391–398.Google Scholar
Tomkins, J. L. and Brown, G. S. 2004. Population density drives the local evolution of a threshold dimorphism. Nature 431, 1099–1103.CrossRefGoogle ScholarPubMed
Tomkins, J. L. and Simmons, L. W. 2000. Sperm competition games played by dimorphic male beetles: fertilization gains with equal mating access. Proceedings of the Royal Society of London B 267, 1547–1553.CrossRefGoogle ScholarPubMed
Tomkins, J. L., LeBas, N. R., Unrug, J., and Radwan, J. 2004. Testing the status-dependent ESS model: population variation in fighter expression in the mite Sancassania berlesei. Journal of Evolutionary Biology 17, 1377–1388.CrossRefGoogle ScholarPubMed
Tomkins, J. L., Kotiaho, J. S., and LeBas, N. R. 2005. Matters of scale: positive allometry and the evolution of male dimorphisms. American Naturalist 165, 389–402.CrossRefGoogle ScholarPubMed
Trudel, M., Tremblay, A., Schetagne, R., and Rasmussen, J. B. 2001. Why are dwarf fish so small? An energetic analysis of polymorphism in lake whitefish (Coregonus clupeaformis). Canadian Journal of Fisheries and Aquatic Sciences 58, 394–405.CrossRefGoogle Scholar
Unrug, J., Tomkins, J. L., and Radwan, J. 2004. Alternative phenotypes and sexual selection: can dichotomous handicaps honestly signal quality?Proceedings of the Royal Society of London B 271, 1401–1406.CrossRefGoogle ScholarPubMed
Utami, S. S., Goossens, B., Bruford, M. W., Ruiter, J. R. and Hooff, J. A. R. A. 2002. Male bimaturism and reproductive success in Sumatran orang-utans. Behavioral Ecology 13, 643–652.CrossRefGoogle Scholar
Berghe, E. P. 1988. Piracy: a new alternative male reproductive tactic. Nature 334, 697–698.CrossRefGoogle Scholar
Vehrencamp, S. L. 1983. A model for the evolution of despotic versus egalitarian societies. Animal Behaviour 31, 667–682.CrossRefGoogle Scholar
Verspoor, E. and Cole, L. J. 1989. Genetically distinct sympatric populations of resident and anadromous Atlantic salmon, Salmo salar. Canadian Journal of Zoology/Revue Canadienne de Zoologie 67, 1453–1461.CrossRefGoogle Scholar
Villalobos, E. M. and Shelly, T. E. 1996. Intraspecific nest parasitism in the sand wasp Stictia heros (Fabr.) (Hymenoptera: Sphecidae). Journal of Insect Behavior 9, 105–119.CrossRefGoogle Scholar
Vollestad, L. A., Peterson, J., and Quinn, T. P. 2004. Effects of freshwater and marine growth rates on early maturity in male coho and Chinook salmon. Transactions of the American Fisheries Society 133, 495–503.CrossRefGoogle Scholar
Wagner, W. E. 2005. Male field crickets that provide reproductive benefits to females incur higher costs. Ecological Entomology 30, 350–357.CrossRefGoogle Scholar
Ward, S., Speakman, J. R., and Slater, P. J. B. 2003. The energy cost of song in the canary, Serinus canaria. Animal Behaviour 66, 893–902.CrossRefGoogle Scholar
Warner, R. R. and Hoffman, S. G. 1980. Population density and the economics of territorial defense in a coral reef fish. Ecology 61, 772–780.CrossRefGoogle Scholar
Warner, R. R., Robertson, D. R., and Leigh, E. G. J. 1975. Sex change and sexual selection. Science 190, 633–638.CrossRefGoogle ScholarPubMed
Webster, M. S., Tarvin, K. A., Tuttle, E. M., and Pruett-Jones, S. 2004. Reproductive promiscuity in the splendid fairy-wren: effects of group size and auxiliary reproduction. Behavioral Ecology 15, 907–915.CrossRefGoogle Scholar
West-Eberhard, M. J. 1986. Alternative adaptations, speciation, and phylogeny. Proceedings of the National Academy of Sciences of the United States of America 83, 1388–1392.CrossRefGoogle ScholarPubMed
West-Eberhard, M. J. 1989. Phenotypic plasticity and the origins of diversity. Annual Review of Ecology and Systematics 20, 249–278.CrossRefGoogle Scholar
West-Eberhard, M. J. 2003. Developmental Plasticity and Evolution. New York: Oxford University Press.Google Scholar
Westneat, D. F. 1993. Temporal patterns of within-pair copulations, male mate guarding, and extra-pair events in eastern red-winged blackbirds (Agelaius phoeniceus). Behaviour 124, 267–290.CrossRefGoogle Scholar
Westneat, D. F. and Stewart, I. R. K. 2003. Extra-pair paternity in birds: causes, correlates, and conflict. Annual Review of Ecology Evolution and Systematics 34, 365–396.CrossRefGoogle Scholar
Whittingham, L. A., Dunn, P. O., and Magrath, R. D. 1997. Relatedness, polyandry and extra-group paternity in the cooperatively-breeding white-browed scrubwren (Sericornis frontalis). Behavioral Ecology and Sociobiology 40, 261–270.CrossRefGoogle Scholar
Wingfield, J. C., Jacobs, J. D., Soma, K., et al. 1999. Testosterone, aggression, and communication: ecological bases of endocrine phenomena. In Hauser, M. D. and Konishi, M. (eds.) The Design of Animal Communication, pp. 257–283. Cambridge, MA: MIT Press.Google Scholar
Wingfield, J. C., Lynn, S. E., and Soma, K. K. 2001. Avoiding the “costs” of testosterone: ecological bases of hormone–behavior interactions. Brain, Behavior, and Evolution 57, 239–251.CrossRefGoogle ScholarPubMed
Wirtz, P. 1982. Territory holders, satellite males and bachelor males in a high density population of waterbuck (Kobus ellipsiprymnus) and their associations with conspecifics. Zeitschrift für Tierpsychologie 58, 277–300.CrossRefGoogle Scholar
Woodring, J. P. 1969. Observations on the biology of six species of acarid mites. Annals of the Entomological Society of America 62, 102–108.CrossRefGoogle Scholar
Yanagisawa, Y. 1985. Parental strategy of the cichlid fish Perissodus microlepis, with particular reference to intraspecific brood “farming out.” Environmental Biology of Fish 12, 241–249.CrossRefGoogle Scholar
Yoccoz, N. G., Mysterud, A., Langvatn, R., and Stenseth, N. C. 2002. Age- and density-dependent reproductive effort in male red deer. Proceedings of the Royal Society of London B 269, 1523–1528.CrossRefGoogle ScholarPubMed
Yom-Tov, Y. 1980. Intraspecific nest parasitism in birds. Biological Reviews of the Cambridge Philosophical Society 55, 93–108.CrossRefGoogle Scholar
Yom-Tov, Y. 2001. An updated list and some comments on the occurrence of intraspecific nest parasitism in birds. Ibis 143, 133–143.CrossRefGoogle Scholar
Zera, A. J. and Rankin, M. A. 1989. Wing dimorphism in Gryllus rubens: genetic basis of morph determination and fertility differences between morphs. Oecologia 80, 249–255.CrossRefGoogle ScholarPubMed
Zink, A. G. 2003. Intraspecific brood parasitism as a conditional reproductive tactic in the treehopper Publilia concava. Behavioral Ecology and Sociobiology 54, 406–415.CrossRefGoogle Scholar
Zupanc, G. K. H. and Lamprecht, J. 2000. Towards a cellular understanding of motivation: structural reorganization and biochemical switching as key mechanisms of behavioral plasticity. Ethology 106, 467–477.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×