Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-01T07:48:08.884Z Has data issue: false hasContentIssue false

19 - Trends in the evolution of molar crown types in ungulate mammals: evidence from the northern hemisphere

Published online by Cambridge University Press:  11 September 2009

Mark F. Teaford
Affiliation:
The Johns Hopkins University
Moya Meredith Smith
Affiliation:
Guy's Hospital, London
Mark W. J. Ferguson
Affiliation:
University of Manchester
Get access

Summary

Food, fossils, form and function

Food is one of the main dimensions of an animal's environment. If we know what animals eat, then we know a great deal about them. If we can infer an animal's food from its anatomy, then we can reconstruct what extinct animals ate. And if we sum this sort of knowledge over the entire fossil record of a group of animals, we might obtain a reasonable idea of what changes, if any, have occurred in the group's ecology. In this way, mammalian paleontology, largely through the study of tooth evolution, has provided a detailed and dynamic picture of the biotic and abiotic changes that have shaped the terrestrial world during the past 65 million years (Archibald, 1983; Janis, 1989, 1993; Janis and Damuth, 1990; Stucky, 1990, 1992, 1995; Maas and Krause, 1994; Gunnell et al., 1995).

Despite this wealth of knowledge, the ties between dental morphology and food remain loose and methods for obtaining more precise information (such as the study of ‘microwear’; see Teaford, 1994; Teaford et al., 1996) are currently far too laborious to be used on entire faunas, guilds, or clades over long intervals. Samples consisting of hundreds of species are required for the study of large-scale patterns of biotal evolution (sensu Van Valen, 1991). For this sort of study, we must identify different ecological groups of mammals – which can, but do not have to be, taxa – rather than phylogenetic lineages. Comparisons of extinct mammalian faunas and their dietary specializations require broadly applicable grouping criteria for teeth.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×